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Abstract
Black holes have often provided profound insights into the nature of gravity and the
structure of space–time. The study of the mathematical properties of black objects is
a major research theme of contemporary theoretical physics. This review presents a
comprehensive survey of the various versions of the first law and second law of black
hole mechanics in general relativity and beyond. The emphasis is to understand how
these laws can constrain the physics beyond general relativity.

“The black holes of nature are the most perfect macroscopic objects there are in
the universe: the only elements in their construction are our concepts of space
and time.”

.... Subrahmanyan Chandrasekhar

1 Introduction

It is appropriate to start a review of black hole thermodynamics with the above quo-
tation by S. Chandrasekhar. The quote brings out the fundamental characteristics of a
black hole: The Universality. The properties of a black hole are (almost) independent
of the details of the collapsing matter, and this universality is ultimately related to the
fact that black holes could be the thermodynamic limit of underlying quantum gravi-
tational degrees of freedom. Therefore, the classical and semi-classical properties of
black holes are expected to provide important clues about the nature of quantum grav-
ity. A significant obstacle in constructing a theory of quantum gravity is the absence
of any experimental or observational result. The only “test” we can imagine is the
theoretical and mathematical consistency of the approach. The understanding of the
fundamental laws of black hole mechanics could be a necessary (if not sufficient)
constraint on the theory of quantum gravity.
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The modern understanding of the properties of black hole starts with the resolution
of the “Schwarzschild Singularity” using Kruskal–Szekeres coordinates [1,2]. These
coordinates cover that entire spacetime manifold of the maximally extended vacuum
spherically symmetric solution of the Einstein’s field equation and are well-behaved
everywhere outside the physical singularity at the origin, in particular at the position
r = 2M . The next important step is the discovery of the rotating asymptotically flat
vacuum black hole solution by RoyKerr [3]. The solution exhibited various interesting
and generic properties of a stationary black hole in general relativity. The existence
of Ergosphere and Superradiance show how to extract energy and angular momentum
from the black hole. The study of these phenomena lead to a significant result; the area
of the black hole can never be decreased using these processes. For example, using the
Penrose process, it is possible to extract energy from the black hole, and as a result,
the mass of the black hole decreases. At the same time, the process slowed down the
rotation, and the net effect only increases the area.

Then comes the famouswork byHawking [4] which analyzes the general properties
of a black hole, independent of the symmetry of a particular solution. This work
contains several important theorems: the topology theorem, the strong rigidity theorem
and most importantly, the area theorem. Area theorem is a remarkable result which
asserts that the area of the event horizon can not decrease as long as the matter obeys a
specific energy condition. This is a highly nontrivial statement related to the dynamics
of black holes in general relativity. Consider the collision of two black holes which
generated a burst of gravitational waves extracting energy from the black holes to
infinity. The area theorem constrains the efficiency of this process and limits the
amount of radiated energy so that the area of the final black hole is always greater than
the sum of the individual black hole areas before the collision [5]. In this sense, the
area theorem is a statement of the limitation of converting the black hole mass into
energy; akin to the second law of thermodynamics.

Immediately after this result, Hawking, Bardeen, and Carter wrote down the four
laws of black hole mechanics [6] and as it is well known, these laws have an intrigu-
ing resemblance with the laws of thermodynamics. Interestingly, the paper treated
this resemblance as only a formal analogy. The real step towards the black hole ther-
modynamics was taken by Bekenstein, [7,8] who proposes that we should take the
area theorem seriously and the area of the black hole is indeed related to the ther-
modynamic entropy of the event horizon. The basis of this claim was somewhat
heuristic; Gedanken experiments estimating the loss of information due to the pres-
ence of the horizon. The arguments show that the entropy is proportional to the area
of the event horizon and therefore the area theorem is a consequence of the second
law of thermodynamics. These results mark the real beginning of the black hole ther-
modynamics, and the analogy becomes a robust correspondence with the discovery
of the Hawking radiation [9] fixing the proportionality constant between area and
entropy. The final expression of the Hawking temperature and Bekenstein entropy
of the horizon of a 4-dimensional Schwarzschild black hole of mass M and area A
becomes;

TH = � c3

8πGkB M
; S = c3kB A

4G�
, (1)
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It is evident from the appearance of the Planck constant, and the Newton’s constant,
the understanding of these expressions would require some form of quantum gravity.
It may be possible to proclaim that these are the leading order result of the theory of
quantum gravity.1

This review aims to understand the issue of the general applicability of the laws
of black hole thermodynamics. In particular, we will try to answer the following
questions;

• How far the laws of Black Hole mechanics can be generalized beyond General
Relativity?

• Can we constrain possible extensions of general relativity using the black hole
(BH) mechanics?

• What exactly we have learned so far about QuantumGravity fromBHMechanics?

The last question is indeed the toughest and probably remain unanswered in this
review except for some rudimentary remarks at the end. But, given the recent devel-
opments of black hole physics, it is possible to provide reasonable answers to the first
two questions.

The discussion in the review will be mostly classical, and we will assume the
applicability of the classical energy conditions, in particular, the null energy condition.
The primary focus is a comprehensive discussion of the physical process law and the
second law. We will not consider the issues related to the semiclassical gravity; in
particular, Hawking radiation and trans Planckian problem. Another vital omission
will be the information loss paradox. We will also restrict ourselves to the mechanics
and thermodynamics of the event horizon only.

2 The various versions of the first law

The first law of black hole mechanics has several avatars, and we need to distinguish
the different formulations of the first law. In ordinary thermodynamics, the first law
is the statement of the conservation of energy. The total energy can not be destroyed
or created, but can always be converted into another form of energy. The statement
is mathematically described by the difference equation �U = Q − W . The change
of the internal energy U of the system is equal to the difference of the heat supplied
Q, and the work done W by the system. The conservation of energy is built-in into
the dynamics of general relativity. So, what we mean by the first law is the Clausius
theoremwhich involves the notion of the entropy. Consider a system under quasi-static
change which is subjected to an infinitesimal amount of heatd̄ Q from the surrounding.
The heat change is an inexact differential, and therefore the total heat Q is not a state
function. It is then assured that there exists a state function called the “entropy” S such
that the temperature of the system acts as an integrating factor relating the change
in entropy to the heat supplied as T d S = d̄ Q. The Clausius theorem ensures the
existence of the state function entropy associated with a thermodynamic equilibrium

1 As a side remark, let me point out that the Chandrasekar mass formula also contains all the fundamental
constants. But we do not associate that result with the quantum gravity.
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state of the system. Note that all changes are considered to be quasi-stationary, always
infinitesimally close from an equilibrium state.

In the case of a black hole, we need to be careful before applying these concepts.
To begin, the obvious choice of an equilibrium state is a stationary black hole. So, let
us first define the notion of the stationary black hole in general relativity.

To define the event horizon of a black hole, we require information about the
asymptotic structure. Suppose we consider an asymptotically flat space–time such
that the asymptotic structure is the same as that of the flat space–time. Then, the event
horizon is defined as the complement of the past of the future null infinity. This is a
global definition and to find the location of the event horizon,we require the knowledge
about the entire space–time. This is not a very convenient concept. For example, if
one is looking for the signature of the formation of the event horizon in the computer
codes of numerical relativity, she has to wait for infinite time! As a result, alternative
notions like apparent horizon and quasi-local horizons may suit much better for such
an analysis. Nevertheless, the event horizon can be very useful because it is a null
surface,2 and the causal boundary between two regions of space–time called inside
and outside of the black hole. As a result, at least intuitively it makes sense to assign
an entropy to the null event horizon.

The definition of the event horizon does not need any symmetries of the underlying
space–time. Now, consider the particular case when the space–time is stationary and
contains a time like Killing vector. Such a time like Killing vector provides a related
concept called the Killing horizon. A Killing horizon is a surface where the time like
Killing field becomes null. An example of such a surface would be the Rindler horizon
in the flat space–time. It is easy to check that the boost Killing field indeed becomes
null at the location of the Rindler horizon. This example shows that the Killing horizon
may be entirely unrelated to the event horizon. The Rindler accelerated horizon is a
Killing horizon but not an event horizon.

Next, consider an event horizon in a stationary space–time. Then, it is the Strong
Rigidity theorem [4] which asserts that the event horizon in a stationary space–time is
also a Killing horizon. The strong rigidity theorem is a powerful result, and the proof
requires Einstein field equation and some technical assumptions like the analyticity of
the space–time. Generalizing the proof beyond 3+ 1 dimensions needs more sophis-
ticated mathematical machinery [11,12]. The strong rigidity theorem is only proven
for general relativity. Therefore for black holes in various modified gravity theories,
we have to consider this as an assumption.

The derivation of the equilibrium state version of the first law starts with a stationary
event horizon which is also a Killing horizon. For simplicity, the D dimensional
spacetime is assumed to be asymptotically flat. We will also assume that the physical
space–time can be extended to add a bifurcation surface in the past, where the time like
Killing field vanishes. The existence of a bifurcation surface ensures that the surface
gravity is constant along all the directions on the horizon [13]. We will consider that
the bifurcation surface is regular, i.e., all the fields have a smooth limit from the outside
to the bifurcation surface. This is a nontrivial assumption, and there are theories, e.g.,

2 A proof that the event horizon in an asymptotically flat spacetime is a null surface is given in [4] and also
discussed in detail in [10].
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Einstein–Aether Theory [14] in which such an assumption does not hold. Given all
these, we now write down the expression of the ADMmass, or in this case the Komar
mass as,

M = − 1

8π

∫
S
∇aξb d Sab. (2)

The integration is at the asymptotic spatial infinity, and the Killing field is normal-
ized as ξaξa = −1 asymptotically. For the black hole spacetime, let us consider a
space like hypersurface � which extends from infinity to the horizon. The surface has
two boundaries, one at infinity and other at the horizon. Using Stokes theorem and
Einstein’s field equations Gab = 8πTab, we can then express the Komar mass as,

M = −2
∫

�

(
T a

b ξb − 1

D − 2
T ξa

)
d�a + 1

8π

∫
H

∇aξb d Sab, (3)

where T denotes the trace of the energy–momentum tensor. Let us further assume that
we are only considering a vacuum solution; and therefore Tab = 0. Also, there is no
angular momentum, and the space–time is static. Then the first integral vanishes. The
last integral is at the inner boundary of the surface � where it meets the horizon. For
the static spacetime, we can evaluate the second integral and write the final expression
as [6],

M =
(

D − 2

D − 3

)
TH S, (4)

where TH is the Hawking Temperature and S is the Bekenstein entropy of the black
hole. The expressions of TH and S contain the Planck constant �, but the product is
independent of �. This equation is a particular case of what is known as the Smarr
formula [15]. Although the derivation of this equation is straightforward, the interpre-
tation is a bit subtle. The equation relates an asymptotic quantity, the ADM/Komar
mass with the quantities corresponding to the horizon. If we approve the use of ther-
modynamic concepts, the Smarr formula may be regarded as the equation of state at
thermodynamic equilibrium relating energy M , temperature TH and entropy S. Also,
the derivation does not work for D = 3 indicating the absence of asymptotically flat
vacuum black hole solutions in lower dimensions. Note that, there is no physical pro-
cess by which we can change the ADM or Komar mass. This formula is only valid
for a strictly static and vacuum space–time. Therefore, instead of a physical change,
let us now consider a virtual change of the quantities: two Schwarzschild black hole
solutions in D dimensions with masses M and M + �M in the space of solutions of
general relativity. Therefore the variation �M represents a virtual change, again only
in the space of static, vacuum and asymptotically flat black hole solutions of general
relativity. Then, the variation of the Smarr formula gives,

�M =
(

D − 2

D − 3

)
(TH �S + S�TH ) . (5)
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Let us evaluate the r .h.s of the above equation for a Schwarzschild black hole in D
dimensions. Set (G = � = kB = c = 1) and then the metric is,

ds2 = −
(
1 − C

r D−3

)
dt2 + dr2(

1 − C
r D−3

) + r2d�2. (6)

The constant C is a function of the ADM mass M of the space time and if D = 4,

we have C = 2M . The horizon is located at rh = C
1

D−3 and the surface gravity

is κ = ((D − 3)/2)C− 1
D−3 . The expression of the Hawking Temperature and the

Bekenstein entropy are then given by,

TH = κ

2π
= D − 3

4π
C− 1

D−3 ; S = AD−2C
D−2
D−3

4
. (7)

Using these expressions, it is easy to verify that,

�M =
(

D − 2

D − 3

)
(TH �S + S�TH ) = TH �S, (8)

This is the simplest derivation of the equilibrium state version of the first law of black
hole mechanics.

This derivation can be generalized in several ways. If we include matter, e.g., an
electrovacuum solution, there will be additional work terms. But the most interesting
generalization is for theories with higher curvature terms in the action. The area law
fails generically for higher curvature gravity [18–22] and the entropy is proportional
to a different local geometric quantity evaluated on the horizon. In fact, the black hole
entropy in any diffeomorphism invariant theory of gravity turns out to be the Noether
charge of the Killing isometry which generates the horizon [21,22]. Before discussing
the derivation of this “Wald entropy”, we will first try to understand intuitively why
and how the area law fails beyond general relativity, using a generalized version of
the original argument by Bekenstein [7,8].

There are several motivations of considering a higher curvature theory. As a typical
example, consider the perturbative quantization of gravity which leads to nonrenor-
malizable quantum theory and is confronted by uncontrollable infinities. If we treat
such a nonrenormalizable theory as a low-energy effective field theory, adding new
counter-terms and couplings at each new loop order, then the effective Lagrangian of
gravity can be expressed as

L = 1

16πG

(
R + αO(R2) + β O(R3) + · · ·

)
, (9)

where α, β, . . . are the new parameters of the theory with appropriate dimensions of
length. At the level of the effective theory, all terms consistent with diffeomorphism
invariance can appear, but from a phenomenological point of view, only a subset of
terms which leads to a well behaved classical theory is more desirable. In this case,
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the motivation of having these higher curvature terms comes from the idea that the
Einstein–Hilbert action is only the first term in the expansion for the low energy
effective action and higher order terms arise from the quantum corrections to the
Einstein–Hilbert action functional [23], which will, of course, depend on the nature
of the microscopic theory. In particular, such higher curvature terms also arise in the
effective low energy actions of some string theories [24,25].

The detailed structure of these terms will depend on the specifics of the underlying
quantum gravity theory. If we turn on these higher curvature corrections, the field
equation will get modified, and the area theorem may not hold anymore. But, for
specific higher curvature terms, we can still obtain exact black hole solutions as in
case of GR. Now, consider the simplest case of spherical symmetry and assume that a
set of identical particles with the same mass m is collapsing in D dimensions to form
a black hole of mass M . If each of these particles contains one bit of information (in
whatever form, may be information about their internal states, etc.), then the total loss
of information due to the formation of the black hole will be∼ M/m. Classically, this
can be as high as possible, but quantum mechanically there is a bound on the mass of
each constituent particle because we want the Compton wavelength of these particles
to be less than the radius of the hole rh . Then, the maximum loss of information will be
∼ Mrh , and this is ameasure of the entropy of the hole. Note that, we have not used any
information about the field equation yet. So, this is completely an off-shell result. The
field equation will provide a relationship between the mass M and the horizon radius.
Let us now treat the specific case of general relativity. If we solve the vacuumEinstein’s
equations for spherical symmetry, we obtain the usual Schwarzschild solution with
M ∼ r D−3

h , and this lead to black hole entropy proportional to r D−2
h , the area of the

horizon.
Next comes the modified gravity, with higher curvature terms and we will have

new dimensionful constants in our disposal. Therefore, there could be a complicated
relationship between mass and horizon radius. For example, if we restrict ourselves up
to only curvature square correction terms with a coupling constant α, we could have a
relationship like M ∼ r D−3

h +α r D−5
h , and the second term results in a sub-leading cor-

rection to black hole entropy. This simple illustration shows how the presence of new
dimensionful constants in modified gravity theories leads to a possible modification
of the black hole entropy.

The simplest way to derive the first law for any higher curvature theory would be
to start with a suitable modification of the definition of the Komar mass in Eq. (2).
For example, if we are working with m-th Lovelock class of action functionals with
Lagrangian L(m), the appropriate definition of the Komar mass will be [16],

M = − 1

8π

∫
S

Pabcd∇cξd d Sab, (10)

where the tensor Pabcd has the symmetries of the Riemann Curvature tensor and is
defined as,

Pabcd = ∂L(m)

∂ Rabcd
. (11)
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For Lovelock gravity, the tensor also has the property∇i Pabcd = 0; i = a, b, c, d.
Using this expression and also the properties of theKilling vector, it is possible to derive
a Smarr formula [17] exactly as in case of GR but the entropy as;

Sw = −2π
∫
B

Pabcdεabεcd
√

h d D−2x, (12)

where εab is the bi-normal to the bifurcation surface B. As in the case of general rel-
ativity, the entropy obeys a Clausius theorem T �S = �M for infinitesimal variation
in the space of static vacuum solutions.

This simple derivation can be made more rigorous by using the Noether charge
formalism of Wald and collaborators [18–22]. The crucial input to the derivation is
the diffeomorphism invariance in the presence of an inner boundary. The bulk part of
the Hamiltonian vanishes on-shell, and the two boundary terms (one at the horizon
and other at the outer boundary) are related to each other. Then for variations in the
space of stationary solutions, we get the first law as the Clausius theorem.

The construction of Wald entropy formula crucially depends on the existence of
a bifurcation surface. However, as pointed out by [26], the Wald entropy remains
unaffected even when it is evaluated on an arbitrary cross-section of a stationary event
horizon provided the bifurcation surface is regular. The Noether charge construction
also has several ambiguities, but, the ambiguities in the Noether charge construction
doesn’t affect the Wald entropy in case of stationary black holes [22,26]. However, if
the horizon is involved in a dynamical process, i.e., for nonstationary black holes, the
Wald entropy formula no longer holds and turns out to be ambiguous up to the addition
of terms proportional to the expansion and shear of the dynamical event horizon.

Having discussed the equilibrium state version of the first law, let us now focus on
another version of the first law for black holes: The physical process law. This version
of the first law involves the direct computation of the horizon area change when a flux
of matter perturbs the horizon [27–29] (henceforth referred to as PPFL). Unlike the
equilibrium state version, PPFL is local and does not require the information about
the asymptotic structure of the space–time and is therefore expected to hold for a wide
class of horizons (see Fig. 1). Consequently, after some initial debate regarding the
applicability of PPFL in the context of Rindler space–time [29], it was later demon-
strated, following [30,31], that the physical process version of first law indeed holds
for Rindler horizon in flat space time, or for that matter, any bifurcate Killing horizon.

Consider a situation, in which a black hole is perturbed by matter influx with stress-
energy tensor Tab and it finally settles down to a new stationary state in the future.
Then the PPFL which determines the change of the horizon area AH is given by,

κ

2π
δ

(
AH

4

)
=

∫
H

Tab ξa d�b . (13)

Here d�b = kb d A dλ is the surface area element and ka = (∂/∂λ)a stands for the
null generator of the horizon. The integration is over the dynamical event horizon
and the affine parameter λ varies from the bifurcation surface (set at λ = 0) to the
future stationary cross section at λ = λ f . Also, the background event horizon is a
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Past bifurcation surface: = 0

Future stationary slice: = f

= 1

= 2

Time

Background 
stationary horizon

Fig. 1 A pictorial depiction of the geometry considered in the physical process version of the first law. The
green line depicts the evolution of the unperturbed stationary event horizon while the black curve denotes
the evolution of the perturbed dynamical event horizon. The change in area is calculated between the two
slices λ = 0 (the bifurcation surface) and λ = λ f (a stationary final slice) along the black curve (color
figure online)

Killing horizon with the Killing field ξa being null on the background horizon. On
the background horizon surface, it is related with the affinely parametrized horizon
generator (ka) as ξa = λκka , where κ is the surface gravity of the background Killing
horizon. It is important to note that the derivation of the above result crucially hinges on
the fact that the terms quadratic in expansion and shear of the null generator ka can be
neglected since the process has been assumed to be sufficiently close to stationarity.
This approximation ensures that there will be no caustic formation in the range of
integration.

For PPFL, the variation δAH represents the physical change in the area of the black
hole due to the accretion of matter. As a result, here we are considering a genuinely
dynamical situation. The physical process first law, therefore, relates the total change
of entropy due to the matter flux from the bifurcation surface to a final state. If we
assume that the black hole horizon is stable under perturbation, then the future state
can always be taken to be stationary with vanishing expansion and shear, and the initial
cross-section can be set at the bifurcation surface (λ = 0). The choice of these initial
and final states are necessary for this derivation of the physical process first law, to
make some boundary terms vanish. The derivation can be generalized to obtain the
expression of the entropy change between two arbitrary nonequilibrium cross sections
of the dynamical event horizon. The additional boundary terms appearing in Eq. (13)
are then related to the energy of the horizon membrane arising in the context of the
black hole membrane paradigm [32].
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To elaborate on the derivation of the PPFL, let us start by describing the horizon
geometry and set up the notations and conventions. We will follow the derivation as
presented in [32].

3 General structure of PPFL

The event horizon H of a stationary black hole in D spacetime dimensions is a null
hypersurface generated by a null vector field ka = (∂/∂λ)a with λ being an affine
parameter. The cross section (H) of the event horizon, which is a co-dimension two,
spacelike surface, can be taken as λ = constant slice. Being a co-dimension two
surface,H posses two normal direction. One of them is the null normal ka and the other
corresponds to an auxiliary null vector la defined onH such that kala = −1. Then, the
induced metric on the horizon cross section takes the form, hab = gab + kalb + kbla .
Taking x A to be the coordinates on H, (λ, x A) spans the horizon. We define the
expansion and shear of the horizon to be the trace and traceless symmetric part of the
extrinsic curvature and denoted as (θk, σ

k
ab) and (θl , σ

l
ab) with respect to ka and la

respectively. Taking h to be the determinant of the induced metric hab, the expansion
θk of the horizon can be written as,

θk = 1√
h

d

dλ

√
h. (14)

Then, the evolution of θk along the horizon with respect to the affine parameter λ is
governed by the Raychaudhuri equation,

dθk

dλ
= − 1

D − 2
θ2k − σ k

abσ
ab
k − Rabkakb. (15)

As mentioned before, an important notion that will play a significant role throughout
our discussion is the bifurcation surface. A bifurcation surface is a (D−2) dimensional
spacelike surface B, on which the Killing field ξa identically vanishes. Also B is the
surface onwhich the past and future horizons intersect. For our purpose, it is convenient
to choose B to be at λ = 0. This choice can always be made due to the freedom to
choose the parametrization of the horizon. The bifurcation surface is not a part of
black hole spacetime formed by the gravitational collapse of an object. However, if
the geodesics that generate the horizon are complete to the past, one can always have
a bifurcation surface at some earlier λ. This can be realized by the maximal extension
of the black hole space–time. For instance, no notion of bifurcation surface exists
in the Schwarzschild space–time. Nevertheless, in its maximal extension, i.e., in the
Kruskal space–time, the 2-sphere at U = 0, V = 0 represents a bifurcation surface,
as indicated in Eq. (2). A simple calculation leads to the following expressions of the
expansion coefficients along k and l,

θk ∝ U ; θl ∝ V . (16)
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Fig. 2 The point
B (U = 0, V = 0), a
(D − 2)-dimensional
cross-section of the Horizon
represents the Bifurcation
surface, where θk , θl = 0

Hence, at the future horizon U = 0, the expansion θk = 0 and at the past horizon
where V = 0, we have θl = 0. At the bifurcation surface (U = 0, V = 0) both θk

and θl vanishes. Also, the shears can be shown to be vanishing on B.
θk and σk are of first order in perturbation, i.e., O(ε), while θl and σl are of zeroth

order, with ε referring to the strength of perturbation everywhere on the future event
horizon. However, since θl and σl vanishes at the bifurcation surface of the stationary
black hole, they both must be of at leastO(ε) only at B. This result is a property of the
bifurcation surface itself, independent of the physical theory one considers. Hence it
also generalizes beyond general relativity and holds for higher curvature theories as
well. In summary we have, θk, σk, Rabkakb � O(ε) and θl , σl � O(ε) at B. As a
result, terms like θkθl � O(ε2) only at the bifurcation surface (Fig. 2).

Having defined the geometry of the horizon, we are now set to illustrate the physical
process version of first law for an arbitrary diffeomorphism invariant theory of gravity
in its most general form. In order to discuss the PPFL, we need to define some suitable
notion of entropy of the horizon. Since we consider theories beyond general relativity,
the Bekenstein area law no longer holds. Nevertheless, whatever the expression for
entropy might be, it must be some local functional integrated over the horizon. Hence
we start by considering the following expression for horizon entropy:

S = 1

4

∫
H

(1 + ρ)
√

h d D−2x, (17)

where ρ is some entropy density constructed locally on the horizon and may contain
the higher curvature contributions. The area-entropy relation in general relativity limit
can be obtained by setting ρ = 0. If the black hole is stationary, the entropy should
coincide with the Wald formula, but for non stationary case, can also be different.

The field equation in such a general theory can always be written as,

Gab + Hab = 8πTab, (18)
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where, the term Hab represents the deviation from general relativity. Let us now
compute the variation of the entropy along the horizon generator ka , in response to
some influx of matter,

δS(ρ) = 1

4

∫
H

d D−2x
∫

d

dλ
[(1 + ρ)

√
h] dλ

= 1

4

∫
H

√
h d D−2x

∫
dλ �k, (19)

where �k = θk + ρθk + dρ
dλ
. In case of general relativity, �k is simply the expansion

of the horizon generators. Otherwise, this can only be interpreted as the change in
entropy per unit area; we will call this the generalized expansion. The entropy change
can be further simplified by integrating by parts and finally the change in entropy
between two cross sections at λ1 and λ2 takes the form,

δS(ρ) = 1

4

(∫
d A λ�k

)λ2

λ1

+ 2π
∫

d A dλ λ Tabkakb

+ 1

4

∫
d A dλ λ

[
−

(
D − 3

D − 2

)
(1 + ρ)θ2k + (1 + ρ)σ 2

]

− 1

4

∫
d A dλ λ

(
d2ρ

dλ2
+ 2θk

dρ

dλ
− ρRabkakb + Habkakb

)
. (20)

To derive this equation, we have used Raychaudhuri equation as well as the field
equation of the form Gab + Hab = 8πTab. We would like to emphasize that Eq. (20)
represents the most general form of the variation of entropy along the null generator
and no assumption regarding the strength of the perturbation or the range of integration
has been made throughout the derivation. We can now discuss the change in entropy at
various orders of perturbation. Since terms like θ2k , σ 2

k and θk(dρ/dλ) are of O(ε2),
they do not contribute to the first order variation. Hence, truncating the general result
upto first order in perturbation, we find that the first order change in entropy takes the
form,

δS(1)(ρ) = 1

4

(∫
d A λ�k

)λ2

λ1

+ 2π
∫

d A dλ λTabkakb

− 1

4

∫
d A dλ λ

(
d2ρ

dλ2
− ρRabkakb + Habkakb

)
. (21)

Let us evaluate the last integrand of the above equation for some simplified models,
say general relativity with f (R) correction, for which, the full field equation takes the
form,

Gab + α

(
f ′(R)Rμν − 1

2
gμν f (R) + gμν� f ′(R) − �μ�ν f ′(R)

)
= 8πTμν.

(22)
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We now need an expression of the horizon entropy for f (R) gravity. Let us first
use the Wald entropy formula for stationary black holes Eq. (12) which gives f ′(R)

represents themodifications to the entropy density over and above the Einstein–Hilbert
expression, i.e., ρ = α f ′(R), where the prime denotes first derivative w.r.t the Ricci
scalar R. Also, one can always rewrite the field equation for f (R) theory in the form
of Eq. (18), with

Habkakb = α
(

f ′(R)Rabkakb − kakb∇a∇b f ′(R)
)

. (23)

Substitution of the above expression for Habkakb results into the following identity
for f (R) theories with ρ = α f ′(R),

∫
d A dλ λ

(
d2ρ

dλ2
− ρRabkakb + Habkakb

)
= 0. (24)

Eq. (24) is a property of the entropy density. If this equation is valid, our expression
for the change in entropy upto first order as given in Eq. (21) will take a very simplified
form. Motivated by this result, we argue that, Eq. (24) could be a general property
of the entropy density and holds in an arbitrary diffeomorphism invariant theory of
gravity, at least up to the first order in perturbation. In fact, for f (R) gravity including
general relativity, it holds as an exact identity if we choose the entropy density as
ρ = α f ′(R). Hence in general we demand that Eq. (24) is of the form,

∫
d A dλ λ

(
d2ρ

dλ2
− ρRabkakb + Habkakb

)
= O(ε2) (25)

If this is valid for a theory of gravity, the first order variation of the entropy simplifies
to,

δS(1)(ρ) = 1

4

(∫
d A λ �k

)λ2

λ1

+ 2π
∫

d A dλ λ Tabkakb (26)

This is the linearised change of the entropy between two arbitrary cross sections at
λ = λ1 to λ = λ2 provided the condition in Eq. (25) holds. The first term in the r .h.s
is a boundary term and can be interpreted as a change of the energy δE associated
with the horizon membrane. Then, we have a version of the physical process law of
the form: T δS = δE + δQ [32]. Now, let us spells out two more assumptions which
we like to use,

• The horizon possesses a regular bifurcation surface in the asymptotic past, which
is set at λ = 0 in our coordinate system.

• The horizon is stable under perturbation and eventually settle down to a new
stationary black hole. So, all Lie derivatives with respect to horizon generators
vanish in the asymptotic future.
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The second assumption ismotivated by the cosmic censorship conjecturewhich asserts
that the black hole horizon must be stable under perturbation so that expansion and
shear vanish in the asymptotic future at λ = λ f . This is in principle similar to the asser-
tion that a thermodynamic system with dissipation ultimately reaches an equilibrium
state. This is a desirable property of the black hole horizon. Moreover, while deriving
the physical process first law, we are already neglecting higher order terms, and this
requires that small perturbations remain small throughout the region of interest. This
is equivalent to not having any caustic formation on any portion of the dynamical
horizon. Under these assumptions, the boundary term doesn’t contribute when inte-
grated from the bifurcation surface to a stationary slice. This is because we have set the
bifurcation surface to be at λ = 0 and the final stationary cross-section, all temporal
derivatives vanish.3 Ultimately, what we left with is,

δS = 2π
∫ λ f

λ=0
λ dλ d A Tabkakb . (27)

Subsequently identifying the background Killing field as ξa = λ κ ka one can rewrite
the above equation as,

κ

2π
δS =

∫
H

Tab ξa d�b . (28)

This completes the standard derivation of what is known as the integrated version of
the physical process first law. If the matter field satisfies the null energy condition,
then one will have Tabkakb ≥ 0. As a consequence, it will follow that the total change
in entropy between the boundary slices is also positive semi-definite.

The validity of Eq. (25) is an important requirement for the validity of the physical
process law.As of now, there is no general proof of the condition Eq. (25). In case f (R)

gravity, the condition Eq. (25) holds as an exact identity leading to the physical process
law for such a theory [33]. Same can be established for Einstein Gauss–Bonnet and
Lovelock class of theories [34–36]. But, there is still no general proof of this condition.
We will discuss more on this in the later sections.

In comparison with the equilibrium state version of the first law, the PPFL is
local and independent of the asymptotic structure of the space–time. The relation-
ship between these two versions is not straightforward. In the next section, we would
like to understand how these two approaches are related to each other.

4 Equilibrium state version and physical process law

The equilibrium state version compares two nearby stationary solutions in the phase
space which differ infinitesimally in ADMmass and relates the change of ADMmass
�M to the entropy variation �S as,

3 This requires the generalized expansion �k goes to zero in the future faster than the time scale 1/λ [29].
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κ

2π
�S = �M . (29)

The variation � is to be understood in the space of solutions.
To understand the relationship with PPFL, consider a time-dependent black hole

solution: say for simplicity, a spherically symmetric Vaidya black hole which is accret-
ing radiation. The metric for such a space–time is [37],

ds2 = −
(
1 − 2M(v)

r

)
dt2 + 2dv dr + r2d�2. (30)

The Vaidya space–time is an excellent scenario to study the physical process first law.
The area of the event horizon is increasing due to the flux of the infalling matter.
The rate of change of the time-dependent mass M(v) represents the energy entering
into the horizon. But, although M(v) is changing with time, the ADM mass of the
spacetime is constant, evaluated at the spacelike infinity: MADM = M(v → ∞). In
fact, by definition, there is no physical process which can change the ADM mass of
the space time. Therefore, the relationship between the PPFL and the equilibrium state
version is somewhat subtle.

To understand the relationship, we consider the Vaidya spacetime, as a perturbation
over a stationary black hole of ADM mass m. Therefore, we assume M(v) = m +
ε f (v). The parameter ε signifies the smallness of the perturbation. Note that, the
background spacetime with ADMmass m is used only as a reference; it does not have
any physical meaning beyond this. In the absence of the perturbation, the final ADM
mass would be the same as m. Therefore, we may consider the process as a transition
from a black hole of ADMmass m to another with ADMmass MADM, and this allows
us to relate the PPFL to the equilibrium state version.

In the case of an ordinary thermodynamic system, the entropy is a state function,
and its change is independent of the path. Therefore, we can calculate the change of
entropy due to some non equilibrium irreversible process between two equilibrium
states by using a completely different reversible path in phase space. In black hole
mechanics, the equilibrium state version can be thought as the change of entropy along
a reversible path in the space of solutions, whereas the PPFL is a direct irreversible
process. The equality of the entropy change for both these processes shows that the
black hole entropy is indeed behaving like that of a true thermodynamic entropy [28].

Having understood the relationship between these two versions of the first law for
black holes, we will now study the ambiguities of Wald’s construction and how PPFL
is affected by such ambiguities.

5 Physical process first law and ambiguities in black hole entropy

The entropy of a stationary black hole with a regular bifurcation surface in an arbitrary
diffeomorphism invariant theory of gravity is given by Wald’s formula [21] as,

SW = −2π
∫
B

∂L

∂ Rabcd
εabεcd

√
h d D−2x = 1

4

∫
B
(1 + ρw)

√
h d D−2x (31)
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where εab = kalb − kbla is the bi-normal of the bifurcation surface and ρw represents
the contribution from higher curvature terms.

As discussed in [22,26], the ambiguities in the Noether charge construction doesn’t
affect the Wald entropy in case of a stationary black hole. However, if the horizon is
involved in a dynamical process, i.e., for nonstationary black holes, the Wald entropy
formula no longer holds and turns out to be ambiguous up to the addition of terms of
the form,

�Sw =
∫

� d A, (32)

where � = (pθkθl + qσkσl) and σkσl = σ k
abσ

ab
l . Note that, terms in � contains an

equal number of k and l indices and hence combine to produce a boost invariant object,
although they individually transform non-trivially under boost. The coefficients p and
q are entirely arbitrary and can not be determined from the equilibrium state version
of the first law.

Comparing Eq. (17) and Eq. (31) and taking into account the ambiguities, we can
identify ρ = ρw +�. This identification essentially means that the black hole entropy
for a non-stationary horizon slice can always be expressed as the expression obtained
from Wald’s formula plus ambiguities. So, let us define ρ as the black hole entropy
for higher curvature correction and ρw as the Wald entropy. Note that the black hole
entropy ρ coincide with Wald entropy only in the stationary limit. Now, we would
like to ask a definite question: how does the physical process law get affected by
the ambiguities in the Noether charge construction? We will show that as in the case
of the stationary version, the physical process law for linear perturbations is also
independent of these ambiguities, provided we consider the entropy change from the
past bifurcation surface to the final stationary cross-section. To see this, we write the
difference between the change in black hole entropy and the change in Wald entropy
up to first order in expansion and shear. A straightforward calculation using Eq. (21)
for ρ and ρw shows,

�S(1)(ρ) − �S(1)(ρw) = 1

4

∫
d Aλ

(
d�

dλ
+ �θk

) ∣∣∣∣
λ2

λ1

− 1

4

∫
d A dλ

(
λ

d2�

dλ2

)
,

(33)

where we have neglected the terms � Rabkakb and �θk which are of O(ε2) and do
not contribute to the first order variation. Simplifying it further one can obtain,

�S(1)(ρ) − �S(1)(ρw) = 1

4

∫
d A �

∣∣∣λ f

λ=0
. (34)

The above equation represents the difference in the change in black hole entropy and
Wald entropy as a boundary term evaluated between the bifurcation surface at λ = 0
and the final stationary cross section at λ = λ f . Then, as discussed in the previous
section, terms like θkθl are of second order in perturbation and therefore � turns out
to be O(ε2) and does not contribute to the linear order calculation. The contribution
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from the upper limit also vanishes as the expansion θk is zero on a future stationary
cross-section. Hence, up to first order, the ambiguities does not affect the PPFL when
integrated from a bifurcation surface to a stationary slice. This is analogous to the case
of the equilibrium state version of the first law as proven in [22,26]. The integrated
version of the physical process law and therefore the net change of the entropy is
independent of the ambiguities in the Wald entropy construction.

In summary, given a particular theory, if there is a choice of entropy density ρ

which obeys the condition Eq. (25), then ρ +� will also obey the same condition. So,
Eq. (25) is independent of the ambiguities as long as we the integrating from a past
bifurcation surface to a stationary future cross-section. If it holds for ρw, it will hold
for ρ also.

This result, however, doesn’t hold when second-order perturbations are considered.
Unlike first order, the difference in the change in black hole entropy andWald entropy
is given by a boundary term and a bulk integral. As a result, any conclusion about the
change of black hole entropy beyond linearized perturbation requires the resolution
of these ambiguities.

Similarly, if we demand an instantaneous second law, such that the entropy is
increasing at every cross-section, to hold beyond general relativity, we need to fix
the ambiguities and find the appropriate black hole entropy [38,39]. Then, it is also
possible to study the higher order perturbations and obtain the transport coefficients
related to the horizon [40].

6 Linerized version of the second law

We have seen in the last section that the integrated version of the physical process law
is insensitive to the ambiguities in the Wald entropy. Therefore, to fix the ambiguities,
let us consider the linearized version of the second law, where we seek to evaluate the
instantaneous change of the entropy due to the flux of matter. To start, we consider
the expression of the change of the entropy,

�S(ρ) = 1

4

∫
H

√
h d D−2x

∫
dλ �k . (35)

If we can prove that the generalized expansion is always positive on any cross-
section of the horizon, we have an instantaneous increase theorem for the black hole
entropy. Before proceeding with the calculation, we ponder over the implication of
such a result. In ordinary thermodynamics, the entropy is generally defined for an
equilibrium state. So, it makes sense to obtain the change of entropy between two
equilibrium states of the thermodynamic system. The integrated version of the physical
process law is an equivalent calculation for black holes. But, the area theorem in
GR shows that the area/entropy is a locally increasing function, and there is a local
version of the second law at a non stationary cross-section of the black hole horizon.
This is indeed stronger than the global increase of the entropy. Using the local second
law, we can define an entropy current associated with the horizon which has positive
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divergence. The existence of such a current may imply a hydrodynamical picture of
the black hole mechanics as envisaged in fluid gravity duality [41].4

To present the derivation, first consider the general relativity, for which�k = θk/4.
Then, the Raychaudhuri equation and Einstein equation imply,

d�k

dλ
= −2π Tabkakb + O(ε2), (36)

where the higher order terms involve the squares of expansion and shear of the horizon
generators. The matter flux itself is of O(ε). So, if the matter obeys null energy
condition, i.e., Tabkakb > 0 and the higher order terms are essentially small, then we
have, d�k/dλ < 0. So, the expansion is decreasing at every cross section. Next, we
recall the assumption about the stability of the black hole, which asserts that �k → 0
in the asymptotic future. This boundary condition immediately gives �k ≥ 0 at every
slice on the horizon, and the equality holds only in the asymptotic stationary future.
As a result, the area is increasing locally on the horizon. Note that importance of the
boundary condition to derive the result. The assumption that the expansion vanishes in
the asymptotic future ensures the stability of the black hole under perturbation. There
are several aspects to this assumption. This can be argued using the Penrose’s theorem
that the generators of the event horizon have no end future point and as a result, there
is no caustic in the future. If the expansion is negative at any instant, it will further
decrease and ultimately will lead to a caustic invalidating the Penrose’s result [10].
This is also related to the cosmic censorship hypothesis [42].

We want to generalize the same result to a theory of gravity with higher curvature
correction terms. To do this, let uswrite the black hole entropy for a non stationary cross
section as ρ = ρw + p θkθl + q σkσl . Then, the evolution equation of the generalized
expansion at the linearized order of the perturbation becomes

d�k

dλ
= −2π Tabkakb + 1

4

(
d2ρ

dλ2
− ρRabkakb + Habkakb

)
+ O(ε2). (37)

While discussing the integrated version, we have shown that the integrated version
of physical process first law is independent of the ambiguities of Wald entropy. This
is because the integral of the second term in r.h.s of the above equation is of higher
order when we integrate between past bifurcation surface to the future stationary
slice. So, if ρ obeys the integrated version of the first law so does ρw as both of these
obey Eq. (25). On the other hand, the formulation of the local first law requires the
integrand of Eq. (25) to be of higher order. Therefore, the condition for the validity of
the linearized increase law is,

d2ρ

dλ2
− ρRabkakb + Habkakb = O(ε2). (38)

Therefore, we set the first order part of the l.h.s of the above equation to zero and
determine the ambiguity coefficients p and q. This is just one condition, but at the

4 We thank Shiraz Minwalla to suggest this.
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linearized order, expansion and shear are independent of each other, and as a result, we
have two independent conditions from the above equation. As an example, consider a
theory of gravity of gravity described the Lagrangian,

L = 1

16π

(
R + β Rab Rab

)
. (39)

The Wald formula in Eq. (31) for this theory gives ρw = −2β Rabkalb. Then the
requirement of the validity of the condition Eq. (38) will give p = −1/2 and q = 0
[38] and the black hole entropy becomes,

S = 1

4

∫
d A

[
1 − 2β

(
Rabkalb − 1

2
θkθl

)]
. (40)

The evolution equation of the generalized expansion for this entropy is,

d�k

dλ
= −2π Tabkakb + O(ε2). (41)

This equation is exactly analogous to the linerized Raychaudhuri equation in general
relativity. This is a nontrivial result; the entropy function has modified due to higher
curvature corrections, the field equation is also different. But the evolution equation
of the entropy for linerized perturbation remains same in form! Therefore, if we use
the future stability condition i.e., �k → 0 in the future, we have the instantaneous
increase of the entropy at every cross section of the horizon, �k (λ) > 0 provided the
matter obeys the null energy condition.

Similarly, consider a more general theory of gravity in D dimensions with the
Lagrangian,

L = 1

16π

(
R + α R2 + β Rab Rab + γ LGB

)
, (42)

where LGB = R2 − 4Rab Rab + Rabcd Rabcd , the so called Gauss Bonnet correction
term.The black hole entropy for such a theory can be obtained byfixing the ambiguities
using the linerized second law and the result is,

S = 1

4

∫
d A

[
1 +

(
2αR − 2β

(
Rabkalb − 1

2
θkθl

)
+ 2γ (D−2) R

)]
, (43)

where (D−2) R is the intrinsic Ricci scalar associated with the horizon cross section.
This can be generalized to any theory, and it is always possible to fix the ambiguities

from the linearized second law so that we have a local increase theorem at every cross-
section of the nonstationary event horizon [38,39,47].

If we now consider that the black hole is in an asymptotically Anti De Sitter space–
time, after fixing the ambiguities, the black hole entropy becomes identical in form
to the holographic entanglement entropy of the boundary gauge theory [38,39]. The
holographic entanglement entropy [43] is a proposal which relates the entropy of the

123



63 Page 20 of 28 S. Sarkar

boundary gauge theory with the area of certain minimal surfaces in the bulk (which
obeys Einstein’s equation) within the context of gauge-gravity duality. The original
principle has been generalized to higher curvature theories [44–46] and the entangle-
ment entropy density of the boundary theory is given as, ρ = ρw+a θkθl +b σkσl ,. The
part ρw is of the same form ofWald entropy for black holes, and the coefficients a and
b depends on the choice of gravity theory in the bulk; for general relativity a = b = 0.
The expansions and shears correspond to that of a codimension two surface which
is anchored to a region of the boundary. Note, a priory, this entanglement entropy
is not related to the entropy of the black hole in the bulk. Also, this entropy has no
ambiguities, and the coefficients a and b can be calculated using AdS-CFT [46]. Our
calculations show, if we consider a nonstationary black hole in the bulk and demand
that the black hole entropy obeys linearized second law, we will have p = a and
q = b [39]. It is indeed remarkable that the entropy for black holes in AdS spacetime
which obeys linearized second law turns out to be related with the holographic entan-
glement entropy. It seems that the validity of black hole thermodynamics is already
encoded in the holographic principle; the holographic entanglement entropy satisfies
the linearized second law while the Wald entropy does not.

Let us summarise themain results: a theory of gravitywhich has black hole solutions
will obey the integrated version of the physical process law if Eq. (25) holds. Given
a theory and an expression of black hole entropy, we can always verify the validity
of this condition. Also, the condition Eq. (25) is independent of the ambiguities of
the Noether charge construction, as long as we are integrating from initial bifurcation
surface to a future stationary cross-section. Therefore, in any theory, if Wald entropy
ρw satisfied this condition, so does the black entropy ρ. On the other hand, the local
increase law depends on the validity of Eq. (38) which is sensitive to the ambiguities.
Hence, there is only a particular choice of the ambiguity coefficients p and q for
which the local increase law for linearized fluctuations holds. Remarkably, such a
choice makes the black hole entropy identical in form to holographic entanglement
entropy.

7 Beyond the linearized second law

The next obvious question is to find the full evolution equation of the entropy. For
general relativity, the full Raychaudhuri equation Eq. (15) with null energy condition
still gives dθk/dλ < 0 and this leads to the area theorem. Beyond general relativity,
the calculation is straightforward and gives an evolution equation for the generalized
expansion �k . We will only present the final result, for more details about the deriva-
tion, refer to [40]. We consider a D dimensional Einstein–Gauss–Bonnet theory; the
entropy is then given by,

S = 1

4

∫
d A

(
1 + 2γ (D−2) R

)
. (44)

This entropy can be obtained by setting α = β = 0 in the expression Eq. (43).
Then, the full evolution equation of the generalized expansion is,
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4
d�k

dλ
= − θ(k)2

D − 2
− σ (k)abσ

(k)
ab − 6γ

(D − 4)θ(k)2R
(D − 2)2

− 2γ σ (k)abσ
(k)
ab R

− 4γ
(D − 8)θ(k)σ (k)abRab

(D − 2)
+ 8γ σ

(k)a
c σ (k)cbRab − 4αR f abp σ (k)abσ (k)p f

+ 2γ

[
2

(
Dcβ

c
)(

K (k)
ab K (k)ab

)
− 4

(
Dcβ

b
)(

K (k)
ab K (k)ac

)
+ 2βcβc K (k)

ab K (k)ab

− 4βc K (k)
ab βb K (k)ac

]
+ 4γ

[
2

(
Dbβ f

)(
K (k)K (k)

b f

)
− 2

(
Daβa

)(
K (k)

)2

+ 2habβc K (k)
ac βb K (k) − habβaβb(K (k))2

]
+ 4γ Rkk

(D − 3)(D − 4)θ(n)θ(k)

(D − 2)2

−4γ hachbd Rkckd
(D − 4)θ(k)σ

(n)
ab

D − 2
− 4γ hachbd Rkckd

(D − 4)θ(n)σ
(k)
ab

D − 2

+ 8γ hachbd Rkckdσ
(k)
a f σ

(n) f
b − 4γ Rkkσ

(k)
ab σ (n)ab − 8πG Tkk

+ γ (total derivatives). (45)

To comprehend this formidable equation, let us first spell out the notations. K (i)
ab is

the extrinsic curvature of the horizon cross section w.r.t the null normal i = k, l. We
have also used the notations Rkckd = Rμcρdkμkρ , βa = −lμ∇akμ etc. Setting γ = 0,
we will obtain the familiar null Raychaudhuri equation. Otherwise, this equation is the
thermodynamics generalization of the null Raychaudhuri equation. The expansion and
shear of the horizon generators, i.e., θ(k) and σ

(k)
ab vanish on the background stationary

horizon and therefore are at least linear order in perturbation. But, the expansion of
the auxiliary null vector θ(l) is non zero even on the stationary horizon. The total
derivative terms involve spacial derivative of the extrinsic curvatures and are second
order in perturbation. If we consider only the terms linear in perturbation, we will
obtain:

d�k

dλ
= −2π Tabkakb + O(ε2). (46)

This is the equation which will give us the linearized version of the physical process
law.

The full equation will give an exact expression of the change of horizon entropy.
We would like to apply this equation to understand the full evolution of the horizon
entropy. Due to the complicated structure of the terms, it is difficult to obtain any
conclusion in general. So, to make sense of this equation, we will now specialize to
the case of spherically symmetric second-order perturbations about a static black hole
backgroundwithmaximally symmetric horizon cross-section [38,39]. Then, in a order
by order calculation in θ(k) and σ

(k)
ab , we will obtain followings up to second order:

d�k

dλ
= −2π Tabkakb − ζ θ2k , (47)
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where the quantity ζ is to be evaluated on the background horizon. There is no shear
because we have assumed spherically symmetric perturbation only. Now consider a
situation where the stationary black hole is perturbed by some matter flux, and we
are examining the second law when the matter has already entered into the black
hole. In that case, the above evolution equation does not have any contribution from
matter stress-energy tensor and the evolution will be driven solely by the θ2k term.
In such a situation, if we demand the entropy is increasing, we have to fix the sign
of the coefficient of θ2k ; the quantity ζ . We evaluate the coefficient in the stationary
background and impose the condition that overall sign in front of θ2k is negative. This
will immediately give us a bound on the parameters of the theory under consideration.
To illustrate this, we now consider specific cases. First consider the case when the
background is a spherically symmetric solution of the Einstein Gauss–Bonnet (EGB)
gravity with metric,

ds2 = − f (r) dt2 + dr2

f (r)
+ r2 d�2

D−2. (48)

The expression of ζ is now given by,

ζ = 1

D − 2
+ (D − 4)γ

(D − 2)2

[
6 (D−2) R − 2 (D − 3)(D − 2) f ′(r)

r(v)

]
. (49)

As discussed earlier, we will evaluate ζ for different backgrounds and determine
bounds on the coefficient γ from the constraint ζ > 0. For the EGB gravity, we
first consider the 5-dimensional spherically symmetric, asymptotically flat Boulware–
Deser (BD) [25] black hole as the background, for which the horizon radius rh is
related to the mass M as, r2h +2γ = M and the existence of an event horizon demands
r2h > 0. Now, evaluating ζ for the above background at the horizon r = rh , and
imposing that ζ > 0, we obtain the condition, M > 2|γ | if M > 0. To understand
this better, note that we require M > 2γ to avoid the naked singularity of the black
hole solution for γ > 0. Thus in this case for a spherically symmetric black hole, ζ
will be positive and hence second law will be automatically satisfied. The condition
of the validity of the second law is same as that for having a regular event horizon.
Also, for γ > 0, it is possible to make rh as small as possible by tuning the mass M .
But when γ is negative (a situation that appears to be disfavoured by string theory, see
[25], [48] and references therein), rh cannot be made arbitrarily small, and it would
suggest that these black holes cannot be formed continuously from a zero temperature
set up. Notice that we could have concluded the same without the second law if M is
considered to be positive–however, our current argument does not need to make this
assumption. Due to this pathology, it would appear that the negative Gauss–Bonnet
coupling case would be ruled out in a theory with no cosmological constant.

The case for the 5-dimensional AdS black hole solution for EGB gravity with
cosmological constant � = −(D − 1)(D − 2)/2l2 as the background is more inter-
esting. Now the horizon could be of planar, spherical or hyperbolic cross sections.
We will first consider a black brane solution with a planar horizon. Then we obtain
ζ = 1/(D − 2) (1 − 2(D − 1)λG B) where we have introduced a rescaled coupling in
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D dimensions as λG Bl2 = (D − 3)(D − 4)γ . Again demanding positivity of ζ we
get [39],

λG B <
1

2(D − 1)
. (50)

Remarkably, in D = 5 this coincides with the bound which has to be imposed to avoid
instability in the sound channel analysis of quasi-normal modes of a black hole in
EGB theory which is taken to be the holographic dual of a conformal gauge theory.
It was shown in [49] that when λG B > 1/8 the Schroedinger potential develops a
well which can support unstable quasi-normal modes in the sound channel. It is quite
interesting to see that the second law knows about this instability.

Another interesting case corresponds to the hyperbolic horizon. In this case, the
intrinsic scalar is negative, and if we also assume that γ > 0, then there is an obvious
bound on the higher curvature coupling beyond which the entropy itself becomes
negative and thereby loses any thermodynamic interpretation. This bound in general
D dimension is found as λG B < D(D − 4)/4(D − 2)2. If the analysis of the second
law has any usefulness, it must provide a more stringent bound for the coupling γ , and
that is indeed the case. Also, to analyze the case for hyperbolic horizons, we will only
consider the so-called zero mass limit. In the context of holographic entanglement
entropy, these topological black holes play an important role as shown in [44,50,51].
One can relate the entanglement entropy across a sphere to the thermal entropy in
R × H D−2 geometry by a conformal transformation.

Now for holographic CFTs, one has to evaluate the Wald entropy for these topo-
logical black holes as they are dual to the field theory placed on R × H D−2 to obtain
the entanglement entropy across a spherical region at the boundary. In our context,
imposing ζ > 0, it turns out that the zero mass limits gives the most stringent bound
on the coupling λG B given by [39],

λG B <
9

100
. (51)

First, note that this bound on λG B is independent of the dimensions. Also, comparing
with the bound in Eq. (50) we can easily see that up to D = 6, the bound in Eq. (51)
is strongest but from D = 7 onwards Eq. (50) is the strongest one. Next, in the five
dimensions, the bound in Eq. (51) quite curiously coincide with the tensor channel
causality constraint [52–54]. For D > 5, this bound Eq. (51) from the second law will
be stronger than the causality constraints.

In principle, it is possible to repeat this analysis for any higher curvature gravity
theory to obtain similar bounds on the higher curvature couplings provided we have
an exact stationary black hole solution as the background [39]. These bounds will be
necessary if we demand that the second law of thermodynamics holds for an observer
outside the horizon. Any quantum theory of gravity which reproduces such higher
curvature corrections and also aims to explain the microscopic origin of black hole
entropymust satisfy these bounds.Wecan constrain various interesting gravity theories
in 4 dimensions by ourmethod. In 4 dimensions, ourmethod is the only one to constrain
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these theories where the causality based analysis [55] is insufficient. For example, for
critical gravity theories in D = 4 [56] analyzing black holes in AdS background we
obtain the bound on the coupling (αc),− 1

2 ≤ αc ≤ 1
12 .Also, for NewMassive gravity

in D = 3 [57,58] we obtain the bound on couplings (σ ) as, −3 ≤ σ ≤ 9
25 .

5

In conclusion, these results show that the validity of a local increase law of black
hole entropy can constrain the parameters of the higher curvature terms. Any theory of
gravity which does not obey these bounds will have a severe problem with the second
law in the presence of a black hole.

Interestingly, there are works which suggest that the higher curvature gravity does
not make sense as a stand-alone classical theory. Consider Einstein–Gauss–Bonnet
gravity in dimensions greater than four. The theory has exact shock wave solutions
which can lead to a negative Shapiro time delay. This can be used to create a time
machine: closed timelike curve without any violation of energy conditions [55]. As a
result, such higher curvature theories have badly behaved causal properties for either
sign of the higher curvature coupling. Hence, it is proposed that these theories can
only make sense as an effective theory and any finite truncation of the gravitational
action functional will lead to pathological problems. This result is criticized in [59]
where gravitons propagating in smooth black hole spacetimes are considered. It is
shown that for a small enough black hole, the gravitons of appropriate polarisation,
and small impact parameter, can indeed experience negative time delay, but this can
not be used to build a time machine. This is because the required initial data surface
is not everywhere space like and therefore the initial value problem is not well-posed.
Nevertheless, the result of [55] is quite significant and needs careful understanding.

Similar conclusions can be obtained about the validity of the classical second law
for black hole mergers in Lovelock class of theories [60,61]. In such theories, it is
possible to construct scenarios involving the merger of two black holes in which the
entropy instantaneously decreases. But, it is also argued that the second law is not
violated in the regime where Einstein–Gauss–Bonnet theory holds as an effective
theory and black holes can be treated thermodynamically [62].

8 Conclusions and open problems

Black hole thermodynamics provides a powerful constraint on any proposal to under-
stand the quantum gravitational origin of black hole entropy. The area law has
motivated significant progress in theoretical physics;most importantly the holographic
principle. Similarly, the pioneering work by Jacobson [63] where he considered the
concept of local Rindler horizons and showed that Einstein field equations could be
derived from thermodynamic considerations hints a deep thermodynamic origin of the
full dynamics of gravity.

Similar results are proven in a more general context by Padmanabhan and collabo-
rators. They have shown that the field equations of any higher curvature gravity theory
admits an intriguing thermodynamic interpretation [64,65]. Interestingly, the result
is also valid beyond black hole horizons and for any null surface in space–time [66].

5 The lower bound for both these two cases are coming from demanding the positivity of the entropy.
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These fascinating results lead an alternative approach “the emergent gravity paradigm”
to understand the dynamics of gravity [67]. There is also a local gravitational first law
of thermodynamics formulated using the local stretched light cones in the neighbour-
hood of any event [68]. This result indicates that certain geometric surfaces—stretched
future light cones—which exist near every point in every spacetime, also behave as if
they are endowed with thermodynamic properties. All these results seems to suggest
that the thermodynamic properties of space time transcends beyond the usual black
hole event horizon.

The derivation of a full second law beyond general relativity remains an impor-
tant open problem. Ideally, we would like to follow a nonperturbative approach and
find a suitable generalization of the area theorem with some restriction on the higher
curvature parameters. This requires understanding the thermodynamic Raychaudhuri
equation like Eq. (45) for an arbitrary theory of gravity. This is a formidable but
straightforward problem. We also like to understand the relationship between holo-
graphic entanglement entropy and black hole entropy. The area theorem may have
some interesting holographic interpretations. The Holographic Entanglement Entropy
was shown to obey various nontrivial inequalities. One of these is the strong subad-
ditivity condition (SSA) which is a fundamental property of entanglement entropy
in any quantum field theory and a central theorem of quantum information theory.
It is known that the violation of SSA for the boundary theory is connected with the
violation of the null energy condition in the bulk spacetime [69–71]. Since null energy
condition is a requirement for the validity of the Hawking area theorem, it is expected
that there exists a strong connection between the area theorem for black holes and
SSA for holographic entanglement entropy. This relationship may provide us a better
understanding of the scope and applicability of the holographic principle.

We end this review with a quotation by Arthur Eddington,

“The law that entropy always increases, holds, I think, the supreme position among
the laws of Nature. If someone points out to you that your pet theory of the universe
is in disagreement with Maxwell’s equations - then so much the worse for Maxwell’s
equations. If it is found to be contradicted by observation - well, these experimentalists
do bungle things sometimes. But if your theory is found to be against the second law
of thermodynamics I can give you no hope; there is nothing for it but to collapse in
deepest humiliation.”

Same can be said for any theory of gravity which has a black hole solution.
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