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Abstract
An approximate realistic metric representing the spacetime of neutron stars is obtained
by perturbing the Kerr metric. This metric has five parameters, namely the mass, spin
or angular momentum,mass quadrupole, spin octupole andmass hexadecapole.More-
over, a version of the Hartle–Thorne metric containing these parameters is constructed
bymeans of a series transformation between these spacetimes and solving the Einstein
field equations. The form of the Pappas metric in Schwarzschild spherical coordinates
is found. The three relativistic multipole structures are compared.

Keywords Relativistic multipole moments · Neutron stars · Stationary spacetimes

1 Introduction

Among compact objects are neutron stars (NS). These stars are relativistic rotating
objects with high density, and strong gravitational and magnetic fields. The study of
NS is relevant to understand the extrem conditions of matter in there, the behaviour
of particles around them, and the structure of its spacetime [1,3,12].

The quest to find a realistic spacetime representation for neutron stars (NS) is
an important task in astrophysics. Many attemps to obtain this spacetime have been
done from approximate metrics until numerical metrics. The first attempt was made
by Hartle–Thorne (HT). The relevance of the HT work was that they matched the
interior solution with the exterior one [11]. Quevedo and Mashhoon [18] and Manko
and Novikov [14] obtained exact solutions with charge and arbitrary mass multi-
poles. Later, more exact solutions containing other features, for instance magnetic
dipole, were found [15]. With the advent of computer technology, the implementa-
tions of computer programs to find numerical solutions become a vogue [20].However,
approximate solutions are still important to extract astrophysical information fromNS
[17]. Moreover, a fourth order HTmetric for the exterior of neutron stars was obtained
in [21].
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There are several techniques to find solutions of the Einstein field equations (EFE).
Among them, the Ernst formalism has played an important role in finding new exact
and approximate solutions. This formalism is employed in [14,17,18]. In this contri-
bution, however, we include features like mass quadrupole, spin octupole and mass
hexadecapole to the Kerr metric perturbatively. This is achieved easily by means of
perturbing the Lewis metric form of the Kerr spacetime [7,8]. The form of the per-
turbations due to spin octupole and mass hexadecapole has the structure proposed by
Ryan [19]. Then, one is certain that these features are introduced in the right manner.
This metric has the advantage that it reduces to the Kerr metric which is an exact
solution with mass and angular momentum. Moreover, it is simple to implement com-
putationaly.

The HT spacetime does not have spin octupole, mass hexadecapole, and the inter-
actionsmass-quadrupole, quadrupole-quadrupole, and spin-quadrupole. Nevertheless,
this metric gives excellent results of the inner most stable circular orbit (ISCO) of par-
ticles around NS [2]. Adding these interactions, and the spin octupole and the mass
hexadecapole to this metric would improve considerably its applicability in compu-
tational calculations. One can guess an approximate HT metric with these features
from our deformed Kerr spacetime, by finding a transformation between them from
the post-linear forms of thesemetrics and solving the EFE. Both spacetimewere tested
to be solutions of the EFE by means of REDUCE programs, and these programs are
available upon request.

This paper is organized as follows. The perturbation method of the Kerr metric
using the Lewis spacetime is discussed in Sect. 2. In Sect. 3, the construction of the
HT version is presented via a series transformation for the first order in spin octupole
andmass hexadecapole. The inclusion of the interactions of the spin octupole andmass
hexadecapole with the mass, spin, quadrupole and with each other is also found in this
section. The relativistic multipole structure is found using the Fodor–Hoenselaers–
Perjés method [6] in Sect. 4. In Sect. 5, the Pappas metric [17] is compared with the
ones presented here. In the last section some conclusions are presented.

2 Generating themetric

The Lewis metric [13] was successfully applied to find approximate solutions of the
EFE using the Erez–Rosen metric and the Kerr as seed metrics [7,8]. It is given by

ds2 = − Vdt2 + 2Wdtdφ + Xdρ2 + Ydz2 + Zdφ2 (1)

where the chosen canonical coordinates are x1 = ρ and x2 = z. The potentials
V , W , X , Y and Z are functions of ρ and z with ρ2 = V Z + W 2.

The transformation that leads to the Kerr metric is

ρ = √
� sin θ and z = (r − m) cos θ, (2)

where � = r2 − 2mr + a2, m and a are the mass and the rotational parameter. The
angular momentum or spin is given by S1 = J = ma.
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The Ansatz for the Lewis potentials to include the spin octupole parameter, S3 and
the mass hexadecapole parameter, M4, is

V = VK e−2ψ,

W = WK + Wms,

X = (XK + Xms) e
2χ , (3)

Y = (YK + Yms) e
2χ ,

Z = (ZK + Zms) e
2ψ,

where the potentials VK , WK , XK , YK , ZK are the Lewis potentials for the Kerr
metric. The perturbation terms are Wms, Xms, Yms, Zms which include terms with
M4 and S3, and interaction of these parameters with the other ones.

The functions ψ, χ, Wms, Xms, Yms , and Zms are chosen as follows

ψ = ψq + ψms,

χ = χq + χms,

Wms =
(

ξ0
Jq

r4
+ ξ1

S3
r3

)
h31 + ξ2

mS3
r4

h32

+ ξ3
qS3
r6

h33 + ξ4
M4S3
r8

h34 + ξ5
JM4

r6
h35,

Xms = μ1
mM4

r6
h41 + μ2

qM4

r8
h42 + μ3

M2
4

r10
h43,

Yms = ι1
mM4

r4
h51 + ι2

qM4

r6
h52 + ι3

M2
4

r8
h53 + ι4

S23
r6

h54,+ι5
J S3
r4

h55,

Zms =
(

ζ1
mM4

r4
h51 + ζ2

qM4

r6
h52 + ζ3

M2
4

r8
h53 + ζ4

S23
r6

h54 + ζ5
J S3
r4

h55

)
sin2 θ,

(4)

where

ψq = q

r3
P2 + 3

mq

r4
P2,

χq = qP2
r3

+ 1

3

mq

r4
(5P2

2 + 5P2 − 1) + 1

9

q2

r6
(25P3

2 − 21P2
2 − 6P2 + 2),

ψms = γ1
M4

r5
h11 + γ2

mM4

r6
h12 + γ3

qM4

r8
h13 + γ4

S23
r8

h14 + γ5
J S3
r6

h15,

χms = η1
M4

r5
h21+η2

mM4

r6
h22 + η3

qM4

r8
h23+η4

M2
4

r10
h24+η5

S23
r8

h25+η6
J S3
r6

h26.

In [10], ψq and χq were found. The functions hi j are functions of θ only. The first
order terms ofψms, χms andWms are taken from [19]. The term Jq ofWms represents
the interaction of the spin with the quadrupole, which was not considered in [10].
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From this Ansatz, the perturbative terms can be determined by solving the EFE. The
functions hi j are combinations of Legendre polynomials, Pn(cos θ), n = 1, . . . , 8,
and an associated Legendre polynomial, P1

3 (cos θ) = (5P2 + 1) sin θ. After solving
the EFE, the functions hi j are given by

h11 = P4,

h12 = P4,

h13 = P7,

h14 = 7

64
+ 7

48
P2 + 63

352
P4 + 175

528
P6 + 16

429
P7,

h15 = −3

4
P2 − P4,

h21 = P4,

h22 = 45

11
P4,

h23 = P7,

h24 = −
(

5

99
+ 625

9009
P2 + 90

1001
P4 + 250

1683
P6 + 12250

24453
P8

)
,

h25 = − 287

1728
− 91

528
P2 − 7

416
P4 + 175

144
P6 + 16

429
P7, (5)

h26 = 5

4
P2 − 3P4,

h31 = P1
3 sin θ,

h32 = 5

2
P2 − 8

63
P3 − 5

2
P4 + 8

63
P5,

h33 = − 1

10
− 1

6
P2 − 27

55
P4 + 25

33
P6,

h34 = − 5

33
P2 − 25

143
P4 − 35

66
P6 + 245

286
P8,

h35 = 20

11
(P4 − P6),

h41 = P3,

h42 = −24

7
P2 + 600

77
P4 + 300

143
P6,

h43 = P4,

h51 = 2

33
− 2

5
P1 + 10

33
P2 + 2

5
P3 + 6

11
P4,

h52 = − 3

26
+ 47

26
P2P4 − 303

182
P2 − 5

182
P4,

h53 = 33191

4157010
+ 33191

831402
P2 + 165259

692835
P4 + 882

3553
P6 + 882

2717
P8,

h54 = 125293

247104
+ 35315

82368
P2 − 581

9152
P4 − 6125

6336
P6,

h55 = 3(P4 − P2).
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The constants are found to be

γ1 = 1, γ2 = 5, γ3 = γ4 = γ5 = 1,

η1 = η2 = η3 = η4 = η5 = η6 = 1,

ξ0 = 1, ξ1 = 7

12
, ξ2 = ξ3 = ξ4 = ξ5 = 1,

μ1 = 4, μ2 = μ3 = 1,

ι1 = ι2 = ι3 = ι4 = ι5 = 1,

ζ1 = ζ2 = ζ3 = ζ4 = ζ5 = −1.

The new metric potentials are

V = 1

2

[
� − a2 sin2 θ

]
e−2ψ,

W = −2Jr

2 sin2 θ + Wms,

X =
(

2

�
+ Xms

)
e2χ , (6)

Y =
(
2 + Yms

)
e2χ ,

Z =
(

1

2

[
(r2 + a2)2 − a2� sin2 θ

]
− Yms

)
e2ψ sin2 θ,

where 2 = r2 + a2 cos2 θ .
This metric is valid up to third order in all parameters, including the interactions of

all parameters with each other.
A post-linear expansion of the metric can be written as

V �
(
1 − 2U − 2

ma2

r3
cos2 θ

)
e−2ψ,

W � −2
J

r
sin2 θ + Wms, (7)

X �
(
1 + 2U + 4U 2 − a2

r2
sin2 θ − 2

ma2

r3
(1 + sin2 θ)

− 4
m2a2

r4
(2 + sin2 θ) + Xms

)
e2χ ,

Y = r2
(
1 + a2

r2
cos2 θ + Yms

r2

)
e2χ ,

Z � r2 sin2 θ

(
1 + a2

r2
+ 2

ma2

r3
sin2 θ − Yms

r2

)
e2ψ,

where U = m/r . In [10] is the complete expansion without the S3 and M4 terms.
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3 Constructing a new Hartle–Thornemetric

Adding perturbatively some features, for example the spin octupole and the mass
hexadecapole to the HT metric would be interesting, because this metric is still used
as a comparison with more realistic metrics. The HTmetric is an approximate solution
of the EFE with three parameters, mass, angular momentum and mass quadrupole. It
is given by

ds2 = − F1dt
2 + F2dR

2 + R2F3
[
dθ2 + sin2 θ(dφ − ωdt)2

]
(8)

= − VHT dt
2 − 2WHT dtdφ + XHT dR

2 + R2YHT

[
dθ2 + sin2 θdφ2

]
,

where

F1 =
(
1 − 2U + 2

J 2

R4

)
[1 + 2K1P2]

�
(
1 − 2U + 2

J 2

R4

)
e2ψ1 ,

F2 = [1 − 2K2P2]

(
1 − 2U + 2

J 2

R4

)−1

(9)

� e−2ψ2

(
1 − 2U + 2

J 2

R4

)−1

,

F3 = 1 − 2K3P2 � e−2ψ3 ,

ω = 2
J

R3 .

The functions K1, K2, and K3 are given by

K1 = J 2

mR3 (1 +U ) + 5

8

(
q

m3 − J 2

m4

)
Q2

2

(
R

m
− 1

)
,

K2 = K1 − 6
J 2

R4 = K1 − 6
J 2

m4U
4, (10)

K3 =
(
K1 + J 2

R4

)
+ 5

4

(
q

m3 − J 2

m4

)
U√

1 − 2U
Q1

2

(
R

m
− 1

)
,

where U = M/R. The functions Q1
2 and Q2

2 are Legendre functions of the second
kind

Q1
2(x) =

√
x2 − 1

(
3

2
x ln

(
x + 1

x − 1

)
− (3x2 − 2)

(x2 − 1)

)
,

Q2
2(x) = (x2 − 1)

(
3

2
ln

(
x + 1

x − 1

)
− (3x3 − 5x)

(x2 − 1)2

)
.
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The metric potencials are

VHT �
(
1 − 2U − 2

3

J 2

R4

)
e2α1 ,

WHT = −2
J

R
sin2 θ,

X �
(
1 − 2U + 2

J 2

R4

)−1

e−2α2 , (11)

YHT � e−2α3 ,

where

α1 =
(
K1 + 4

3

J 2

R4

)
P2,

α2 = K2P2, (12)

α3 = K3P2.

The Taylor expansion of K1, K2 and K3 are

K1 = q

R3 + 3
mq

R4 − 2
J 2

R4 ,

K2 = q

R3 + 3
mq

R4 − 8
J 2

R4 ,

K3 = q

R3 + 5

2

mq

R4 − 1

2

J 2

R4 .

The complete expansion of the HT including the second order terms in q was found
in [9,10].

To guess an improvement of the HT metric, we have to find a solution of the EFE
compatible with HT metric. In order to do it, we will propose an Ansatz. In [9], the
second order in q for the post-linear HT was found perturbatively. A transformation
that converts the post-linear Kerr-like metric (7) without S3 and M4 into an improved
HT was obtained in [10]. The same transformation can be used to transform the post-
linear Kerr-like metric (7) with S3 and M4 at first order into an improved HT in the
post-linear form of (11) with S3 and M4 at first order, changing q → ma2 − q. This
transformation is [10]

r = R

[
1 + mq

R4 f1 + q2

R6 f2 + a2

R2

(
h1 + m

R
h2 + m2

R2 h3

)]
, (13)

θ = � + mq

R4 g1 + q2

R6 g2 + a2

R2

(
h4 + m

R
h5

)
,
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where

f1 = 1

9
(5P2

2 − 4P2 − 1),

f2 = 1

72
(40P3

2 − 24P2
2 − 43),

g1 = 1

6
(2 − 5P2) cos� sin�,

g2 = 1

6
P2(2 − 5P2) cos� sin�, (14)

h1 = −1

2
sin2 �,

h2 = −1

2
sin2 �,

h3 = 1 − 3 cos2 � = −2P2,

h4 = −1

2
cos� sin�,

h5 = − cos� sin�,

with P2 = P2(cos�)

Now, considering this fact, the Jq interaction term and the terms due to the spin
octupole S3 and the mass hexadecapole M4 at second order, the Ansatz of an improved
HT metric functions is from (7)

V �
(
1 − 2U − 2

3

J 2

R4

)
e2ψ1 ,

W � −
[
2
J

R
+

(
Jq

R4 − 7

12

S3
R3

)
(5P2 + 1)

]
sin2 � + W̃ms,

X �
(
1 − 2U + 2

J 2

R4

)−1

e−2ψ2 , (15)

Y � R2 e−2ψ3 ,

Z � R2 e−2ψ3 sin2 �,

where

ψ1 = q

R3 P2 + 3
mq

R4 P2 − 2

3

J 2

R4 P2 + M4

R5
P4 + ψ1ms,

ψ2 = q

R3 P2 + 3
mq

R4 P2 + 1

24

q2

R6 [8P2
2 − 16P2 − 77] − 8

J 2

R4 P2 + M4

R5
P4 + ψ2ms,

ψ3 = q

R3 P2 + 5

2

mq

R4 P2 + 1

72

q2

R6 [28P2
2 − 8P2 + 43] − 1

2

J 2

R4 P2 + M4

R5
P4 + ψ3ms,

(16)
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with

ψ1ms = mM4

r6
h̃12 + qM4

r8
h̃13 + J S3

r6
h̃14 + S23

r8
h̃15,

ψ2ms = mM4

r6
h̃22 + qM4

r8
h̃23 + J S3

r6
h̃24 + M2

4

r10
h̃25 + S23

r8
h̃26, (17)

ψ3ms = mM4

r6
h̃32 + qM4

r8
h̃33 + J S3

r6
h̃34 + M2

4

r10
h̃35 + S23

r8
h̃36,

W̃ms = mS3
r4

h̃42 + qS3
r6

h̃43 + M4S3
r8

h̃44 + J S3
r5

h̃45 + JM4

r6
h̃46.

The h̃i j are found solving the EFE perturbatively. These functions are

h̃12 = 3P4,

h̃13 = P7,

h̃14 = 3

4
P2 + P4,

h̃15 = − 7

48
P2 − 63

352
P4 − 175

528
P6 − 7

64
,

h̃22 = 5P4 − 110

27
,

h̃23 = −20

21
P2 + 36

77
P4 + 16

33
P6 + P7 − 7,

h̃24 = −15

4
P2 + 11

2
P4 − 5,

h̃25 = 1000

693
P2 + 360

1001
P4 + 20

99
P6 + 280

1287
P8 + 5

18
,

h̃26 = −679

144
P2 − 1505

1056
P4 − 1085

792
P6 − 637

96
,

h̃32 = 245

27
P2
2 − 70

27
P2 − 1,

h̃33 = 5

21
P2 + 12

77
P4 + 47

132
P6 + P7 + 1, (18)

h̃34 = 7

3
P4 + 1,

h̃35 = − 50

693
P2 + 45

1001
P4 + 8

99
P6 + 217

1287
P8,

h̃36 = 259

576
P2 − 35

264
P4 − 10255

12672
P6 + 1,

h̃42 = 5

2
(P2 − P4),

h̃43 = 1

6
P2 + 27

55
P4 − 25

33
P6 + 1

10
,
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h̃44 = 5

33
P2 + 25

143
P4 + 35

66
P6 − 245

286
P8,

h̃45 = 0,

h̃46 = 4P2P4 − 8

7
P2 − 20

7
P4.

This metric is solution of the EFE up to the third order in all parameters
(m, q, M4, J , S3).

4 Relativistic multipole moments

To determine if two metric are isometric, one has to compare its multipole structure.
It is useful to find this structure for our spacetime. At first glance, our metric has 5
complex multipoles (M0 = m, S1 = J = ma, M2 = q − ma2, S3, andM4). To
see if it is true, one has to construct the Ernst potential for this metric. This potential
is given by [5]

E = f + i�, (19)

where f = V = VK e−2ψ and � is the twist scalar. To get this scalar, the following
equation has to be solved

∂α� = εαβμνk
β∇μkν, (20)

where kβ is the Killing vector, ∇μ is the contravariant derivative and εαβμν =√−gεαβμν (g is determinant of the metric tensor). Let us take the Killing vector
as in the Kerr metric kβ = (1, 0, 0, 0). Then, the approximate solution of (20) is

� = −2
J

ρ2 cos θ + H, (21)

where

H = S3
r4

h61 + Jq

r5
h62 + mS3

r5
h63 + qS3

r7
h64 + JM4

r7
h65 + M4S3

r9
h66, (22)

with

h61 = 7

12
(5P2 − 2) cos θ,

h62 = 4P2 cos θ,

h63 = 1

420
(490(5P2 − 2) cos θ − 96P4), (23)

h64 = 1

6
(4P2 − 18P4 − 7) cos θ,
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h65 = 4P4 cos θ,

h66 = 1

66
(−110P2 + 54P4 − 175P6) cos θ.

Now, the Ernst function is given by

ξ = 1 + E
1 − E . (24)

It is easy to show that this Ernst function and its inverse are solutions of the Ernst
equation [5]

(ξξ� − 1)∇2ξ = 2ξ�[∇ξ ]2.

To calculate the relativistic multipole moments, it is better to employ the inverse
function [5]. Moreover, it is custumary to employ the prolate spheroidal coordinates
(t, x, y, φ). The transformation to these coordinates is achieved by means of

σ x = r − M, (25)

y = cos θ,

where σ 2 = M2 − a2.
The method to obtain the relativistic multipole moments is the following [6]

(1) use the inverse Ernst function ξ−1 in prolate coordinates,
(2) set y = cos θ = 1 into ξ−1,
(3) change σ x → 1/z into ξ−1,
(4) expand in Taylor series of z the inverse Ernst function, and finally,
(5) employ the Fodor–Hoenselaers–Perjés (FHP) formulae [6].

A REDUCE program that calculates the multipole moment was written with this
recipe. The first ten complex moments Pn = Mn + iSn are

P0 = M0 = m,

P1 = iS1 = i J = ima,

P2 = M2 = q − ma2,

P3 = iS3 = −i

(
ma3 + 7

8
S3

)
,

P4 = M4 + iS4 = ma4 + M4 + i

(
−2Jq + 4

35
mS3

)
,

P5 = M5 + iS5 = 7

4
J S3 − 4mM4 + ima5, (26)

P6 = M6 + iS6 = −ma6 + i

(
7

4
qS3 − 2JM4

)
,

P7 = M7 + iS7 =
(
1

5
qM4 + 16

429
S23

)
− ima7,
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P8 = M8 + iS8 = ma8 + i
7

4
M4S3,

P9 = iS9 = ima9,

P10 = M10 = −ma10.

The real parts are the massive multipoles, Mi and the imaginary parts are the
spin multipoles, Si . If one eliminates mixed terms and S23 ∼ 0 in (26) the multipole
structure becomes simpler.

For neutron stars, the form of the first five multipole moments are [16,17,21]

M0 = m,

S1 = S = J = ma,

M2 = −αma2, (27)

S3 = −βma3,

M4 = γma4,

where α, β, and γ are parameters.
It is easy to see that if one sets

q = (1 − α)ma2,

S3 = −7

8
(β + 1)ma3, (28)

M4 = (γ − 1)ma4,

a similar multipole structure is obtained from (26).
Now, let us determine the multipole structure of the new HT spacetime. The twist

scalar for this HT metric is

� =
[
−2Ju2 + 7

12
S3(5P2 − 2)u4 + 1

6
(−24JqP2 + 7MS3(5P2 − 2))u5 (29)

+1

6
(−24JM4P4 + qS3(−4P2 + 18P4 + 7))u7

+ 1

66
M4S3(110P2 − 54P4 + 175P6)u

9
]
cos θ.

After using (15) and (29) to construct the Ernst functions, we find that the relativistic
multipole moments for this HT metric are

M0 = M,

S1 = J ,

M2 = − q, (30)

S3 = −7

8
S3,

M4 = M4.
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Obviously, from this multipole structure, it is possible to calculate the multipole
moments of a neutron star, as well.

5 Comparison with the Pappasmetric

Pappas found an approximate solution of the EFE by means of the Ernst method [17].
This spacetime has 5 parameters M, M2, M4, S1 = J , S3, which, by construction,
represent the relativistic multipole moments. The metric is given in cylindrical Weyl–
Papapetrou coordinates by

ds2 = − f (dt − ωdφ)2 + 1

f

[
e2γ (dρ2 + dz2) + ρ2dφ2

]
, (31)

where

f = 1 − 2
M

η
+ 2

M2

η2
+ 1

η5

[
(M2 − M3)ρ2 − 2(M3 + M2)z

2
]

+ 1

η6

[
2z2(M4 − J 2 + 2MM2) − 2MM2ρ

2
]

+ A

28η9
+ B

14η10
,

ω = − 2
J

η3
ρ2 − 2

MJ

η4
ρ2 + F

η7
+ H

2η8
+ G

4η11
, (32)

γ = 1

4η8
ρ2

[
J 2(ρ2 − 8z2) + M(M3 + 3M2)(ρ

2 − 4z2)
]

− M2

2η4
ρ2,

with

η =
√

ρ2 + z2,

A = 8ρ2z2(24MJ 2+17M2M2+21M4)+ρ4(7M5 − 10MJ 2+32M2M2 − 21M4)

+ 8z4(−7M5 + 20MJ 2 − 22M2M
2 − 7M4),

B = ρ4(10M2 J 2 + 10M3M2 + 21MM4 + 7M2
2 )

+ 4z4(7M6 − 40M2 J 2 − 14J S3 + 30M3M2 + 14MM4 + 7M2
2 )

− 4ρ2z2(7M6 + 27J 2M2 − 21J S3 + 48M3M2 + 42MM4 + 7M2
2 ),

F = ρ4(S3 − M2 J ) − 4ρ2z2(M2 J + S3), (33)

G = ρ2(−J 3(ρ4 + 8z4 − 12ρ2z2) + MJ ((M3 + 2M2)ρ
4

− 8(3M3 + 2M2)z
4 + 4(M3 + 10M2)ρ

2z2) + M2S3(3ρ
4 − 40z4 + 12ρ2z2)),

H = 4ρ2z2(J (M2 − 2M3) − 3MS3) + ρ4(JM2 + 3MS3).

To see which form has this metric in spherical-like coordinates, we use the Kerr
mapping (2) with a = 0. Then, the function η2 is

η2 = � + (M2 − a2) cos2 θ = r(r − 2M) + M2 cos2 θ. (34)
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Substituting (34) in the metric functions (32) and expanding in Taylor series up to
O(r−6), the metric potentials take the form

V = f

= 1 − 2Mu − 2M2P2u
3 − 2

3

[
J 2(2P2 + 1) + 3MM2P2

]
u4

+ 1

63

[
−3MJ 2(14P2

2 + 20P2 + 14) − MM2(70P
2
2 + 88P2 − 14)

+ 7M4(−35P2
2 + 10P2 + 7)

]
u5,

W = f ω

=
[
−2Ju − 2

3
S3u

3(5P2 + 1) + 1

3
[3JM2 − 5MS3] u

4(5P2 + 1)

+ 1

3

[
J 3(−7P2

2 + 8P2 + 5) + 6MJM2(−3P2
2 + 7P2 + 2)

+ M2S3(7P
2
2 − 50P2 − 11)

]
u5

]
sin2 θ,

X = 1

f �
[(r − M)2 sin2 θ + � cos2 θ ] e2γ

= 1 + 2Mu + 4M2u2 + 2(4M3 + M2P2)u
3

+2

3

[
24M4 + 3J 2P2

2 + MM2(5P
2
2 + 11P2 − 1)

]
u4 (35)

+ 1

63

[
2016M5 + 3MJ 2(266P2

2 − 36P2 − 14)

+M2M2(1330P
2
2 + 1096P2 − 266) + 7M4(35P

2
2 − 10P2 − 7)

]
u5,

Y = 1

f
[(r − M)2 sin2 θ + � cos2 θ ] e2γ

= r2
[
1 + 2M2u

3P2 + 2

3

[
3J 2P2

2 + MM2(5P
2
2 + 5P2 − 1)

]
u4

+ 1

63

[
3MJ 2(182P2

2 − 36P2 − 14) + M2M2(910P
2
2 + 172P2 − 182)

+ 7M4(35P
2
2 − 10P2 − 7)

]
u5

]
,

Z = ρ2

f
− f ω2

= r2 sin2 θ
[
1 + 2M2P2u

3 + 2(J 2(2P2 − 1) + 3MM2P2)u
4

+ 1

63

[
3MJ 2(14P2

2 + 188P2 − 70) + M2M2(70P
2
2 + 844P2 − 14)

− 7M4(35P
2
2 − 10P2 − 7)

]
u5

]
,

where u = 1/r . By means of a REDUCE program, we checked that the metric poten-
tials fulfill the EFE. According to Pappas the multipole structure of his spacetime is
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M2n = M, M2, M4 for n = 0, 1, 2 and S2n+1 = S1, S3 for n = 0, 1. The twist
potential for the expanded Pappas spacetime is

� = −1

3

[
6Ju2 + S3u

4(10P2 − 4) + u5 (12JM2P2 + MS3(20P2 − 8))
]
cos θ.

(36)

Using (35) and (36) in our program, the multipole structure is as expected

M0 = M,

S1 = J ,

M2 = M2, (37)

S3 = S3,

M4 = M4.

Then, our metric (3) have not the same multipole structure, therefore they are not
isometric. The multipole structures of the new HT and the Pappas metrics are similar.
Setting q = −M2 and rescaling S3 in (30) both metrics become isometric. From (35),
the Pappas metric contains the post-linear versions of the Schwarzschild, Erez–Rosen
(up to MM2) and the Lense–Thirring metrics. Our metric contains the Kerr metric and
the post-linear version of the Erez–Rosen metric (up to second order in q).

6 Conclusions

We have found an approximate solution of the EFE by means of perturbing the Kerr
metric. This approximate solution has five parameters, mass, angular momentum,
mass quadrupole, spin octupole and mass hexadecapole. The mass quadrupole, spin
octupole and mass hexadecapole were included perturbatively. It is valid up to the
third order in these parameters.

By finding the twist scalar, we found the multipole structure employing the FHP
formalism. It is possible to choose the multipole parameters, so that the first five
multipolemoments of a neutron star are similar. The simple formof our spacetime does
it easy to implement computationaly. Includingmore relativisticmultipolemoments to
ourmetric is easy using the procedure described here.Ourmetric presents an advantage
over the Pappas metric, because it does not contain the Kerr spacetime as a limiting
case.

Through a transformation we guessed an improved HT metric at first order in the
spin octupole and mass hexadecapole. Solving the EFE, a new version of the HT,
including mixed and cuadratic terms was also found. This is important, because the
original HT can be matched with interior solutions and is used to validate spacetimes.
The twist scalars and the multipole structures were also found for this improved HT
and the Pappas metric. A comparison reveals that this HT metric is isometric with the
Pappas metric after doing a transformation.
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Our spacetime has potentialy many applications. It could be used to infer the prop-
erties of the structure of a neutron star from astrophysical observations. Another task
is to find the ISCO as a function of the mass, mass quadrupole, mass hexadecapole,
spin and spin octupole, as an extention of [4]. An interesting future work is to find an
interior solution for our spacetime.
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