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Abstract
We present an exact solution of Einstein’s equation that describes the gravitational
shockwave of a massless particle on the horizon of a Kerr–Newman black hole. The
backreacted metric is of the generalized Kerr–Schild form and is Type II in the Petrov
classification. We show that if the background frame is aligned with shear-free null
geodesics, and if the background Ricci tensor satisfies a simple condition, then all
nonlinearities in the perturbation will drop out of the curvature scalars. We make
heavy use of the method of spin coefficients (the Newman–Penrose formalism) in its
compacted form (the Geroch–Held–Penrose formalism).
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1 Motivation

Black holes are thermodynamic systemswhosemicroscopic descriptionwe still do not
understand. After the original work on black hole thermodynamics by Christodoulou
[1], Penrose and Floyd [2], Carter [3], Bekenstein [4], and Bardeen, Carter, and Hawk-
ing [5],Hawking justified the analogy between the surface gravity1 α and a temperature
T by predicting that an isolated black hole will radiate as a black body at the expected
temperature T = α

2π [6,7]. About 20 years later, Strominger and Vafa vindicated the
analogy between the horizon area A and an entropy S by enumerating microstates in
string theory to derive the expected result S = 1

4 A for extremal black holes in 4 + 1
dimensions [8].

We will not recount the subsequent history of microstate counting. Suffice it to say
that the calculations from string theory, while eminently laudable, are restricted to
black holes near extremality and may not provide enough insight into the statistical

1 We use “α” instead of the more conventional “κ” for surface gravity because “κ” has been commandeered
by Newman and Penrose (see Sect. 2.4).
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mechanics behind the conventional black holes of general relativity for generic values
of their parameters. It would be helpful to establish a complementary strategy for black
hole statistical mechanics tailored to an expansion around the Schwarzschild solution.

One such alternative is the S-matrix approach of ’t Hooft [9,10]. Motivated by this
and by Shenker and Stanford’s investigation of the butterfly effect [11,12], Kitaev
recently proposed a quantum field theory in 0+ 1 dimensions [13] whose low-energy
effective action is that of dilaton gravity in 1 + 1 dimensions [14,15]. Details of this
model were explored further by Maldacena and Stanford [16]. Since the equations of
motion derived from the effective action admit the AdS2 black hole as a solution [17],
Kitaev’s calculation demonstrates that the thermodynamic limit of a quantummechan-
ical model2 can produce a bona fide black hole horizon, albeit in lower-dimensional
scalar-tensor gravity, not in (3 + 1)-dimensional Einstein gravity.

Foundational to all of this is an exact solution of Einstein’s equation that describes
the gravitational backreaction of a massless particle on the future horizon of a
Schwarzschild black hole: the Dray–’t Hooft gravitational shockwave [19].3

That solution was generalized to the Reissner–Nordström (RN) black hole by
Alonso and Zamorano [22] and by Sfetsos [23], who also adapted the shockwave
to other static backgrounds. Kiem, Verlinde, and Verlinde [24] used a perturbative
variant of the Dray–’t Hooft result to see how gravitational interactions might affect
black hole evaporation. And Polchinski [25] revisited the solution to refine ’t Hooft’s
“relation between a given black hole S-matrix element and another with an additional
ingoing particle,” culminating in a reformulated argument for the firewall [26,27].

In his exposition of the S-matrix framework, ’t Hooft did not concern himself with
more general black hole backgrounds, opining that “[c]onceptually, generalization
of everything we say to these cases should be straightforward” [10]. Perhaps, but in
this paper our principal ambition is to galvanize the search for a statistical mechanics
underlying astrophysical black holes [28], whose equilibrium field configurations are
described by the Kerr geometry. So if we intend to adapt ’t Hooft’s blueprint and
Kitaev’s recent insights to the microscopics of rotating black holes, then our very first
preliminary step must be to generalize ’t Hooft’s formula for the transition amplitude.

That is what we do here: We generalize the Dray–’t Hooft gravitational shockwave
to the Kerr–Newman background, which is the most general asymptotically flat black
hole in four spacetimedimensions.Readers familiarwith gravitational shockwaves and
the method of spin coefficients could skip to our metric ansatz described by Eqs. (3.1)
and (3.7), and then to our main results: the Ricci tensor in Eq. (7.3), the Ricci scalar
�22 in Eq. (7.11), and the differential operator in Eq. (7.12). We acknowledge that
this provides only the most tentative intimation toward a microscopic theory of the
Kerr–Newman spacetime, but it is a new exact solution of Einstein’s equation and
therefore deserves to be studied in its own right.

2 As remarked byWitten, “the average of a quantum system over quenched disorder is not really a quantum
system” [18]. Strictly speaking it is only a quantum mechanical model if the average captures the physics
of a single realization with fixed couplings J jk�m . We thank Yonah Lemonik for a discussion about this
important point.
3 This solution can be viewed as the generalization of the Aichelburg–Sexl shockwave [20] to curved
spacetime or as an application of Penrose’s “scissors-and-paste”method for gluing together known solutions
of Einstein’s equation to form new solutions [21].

123



25 Page 4 of 42 Y. BenTov, J. Swearngin

Only late in our venture did we learn that Balasin generalized the Ricci tensor for
the Dray–’t Hooft solution with the express aim of including rotation in the formalism
[29].4 But he did not complete the calculation, stating only that “it would be interesting
to apply it to a rotating, i.e. Kerr black hole” and that “[w]ork in this direction is
currently in progress.” Similar comments were made by Alonso and Zamorano [22]
and by Taub [30]. We have not found later articles by any of those authors that contain
our results.

In Sect. 2, we review everything required to follow the calculation—those unfa-
miliar with null frames will likely have to supplement this with standard references
like Chandrasekhar [31] and Penrose and Rindler [32]. In Sect. 3 we recast the Dray–
’t Hooft geometry as a shift of the null frame, explain how to include rotation, and
compute the spin coefficients for generalized Kerr–Schild metrics. In Sects. 4 and 5
we specialize to shear-free geodesic congruences and compute the shifted curvature
scalars. Section 6 is where the heavy lifting begins: We engage the rotating shockwave
and compute somepreliminary identities for derivatives of the shift function. This leads
to Sect. 7, where we complete the calculation and announce the differential equation
for the shockwave’s angular profile. We offer some closing thoughts in Sect. 8, and
we explain in the appendix how to change metric signature from mostly-minus to
mostly-plus.

2 The Kerr–Newman black hole

To enable the reader to work through this document, we will first describe the Kerr–
Newman black hole using the method of spin coefficients.

This method was invented by Newman and Penrose (NP) [33] and refined into a
“compacted” version by Geroch, Held, and Penrose (GHP) [34], a refinement that has
since fallen by the wayside but that we found indispensable. Beside our primary aim
of generalizing the gravitational shockwave, our secondary aim is to provide a detailed
example of how to use the formalism. As far as rotating black holes are concerned,
the flip side of the method of spin coefficients is the madness without it.

2.1 Null frame

Our account of the spacetime will begin with a collection of frame field 1-forms

ea ≡ e a
μ dxμ ≡ (− l ′, − l, m′, m), (2.1)

in terms of which the line element is

ds2 = −2ll ′ + 2mm′. (2.2)

4 We found Balasin’s paper after we had already computed the Ricci tensor but before we managed to
express it in the relatively compact and geometrical form described by Eqs. (7.3), (7.11), and (7.12).
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A tactical advantage of deploying a frame formulation is to never have to look at a
line element, so we will not show ds2 explicitly—we will always work directly with
the frame. To gain our footing we will start with the “Schwarzschild-like” coordinates
(t, r , θ, ϕ) of Boyer and Lindquist [35], which are applicable outside the black hole.

Kerr–Newman black holes have a mass M , a charge Q, and an angular momentum
J . It is customary to trade J for the ratio a ≡ J/M and to define the “horizon function”
[31]


 ≡ r2 − 2Mr + a2 + Q2 ≡ (r − r+)(r − r−). (2.3)

The inner horizon r− ≡ M − √
M2 − a2 − Q2 and the outer horizon r+ ≡ M +√

M2 − a2 − Q2 are defined as the solutions to 
 = 0. It is useful to note that
M = 1

2 (r+ + r−) and ||(a, Q)|| ≡ (a2 + Q2)1/2 = (r+r−)1/2.
We will be concerned exclusively with the region r ≥ r+, so when we refer to “the”

horizon, we will always mean the outer one.
Since time immemorial Newman has emphasized that rotating black holes are

“complex translations” of nonrotating ones [36]. Regardless of whether that means
anything, it is convenient to define the complex functions

R ≡ r + ia cos θ, R0 ≡ r + ia. (2.4)

In the above notation, the following null 1-forms describe the Kerr–Newman black
hole:

l = −dt + |R|2



dr + a sin2 θ dϕ, l ′ = 


2|R|2
(

−dt − |R|2



dr + a sin2 θ dϕ

)
,

m = 1

R
√
2

(
|R|2 dθ + i |R0|2 sin θ dϕ − ia sin θ dt

)
, m′ = m∗. (2.5)

Given those 1-forms, we solve the matrix inversion problem

e a
μe ν

a ≡ δ ν
μ, e μ

a e b
μ ≡ δ b

a (2.6)

for the vectors e μ
a ≡ (lμ, l ′μ, mμ, m′μ). By royal mandate we then introduce the

Newman–Penrose directional derivatives:

D ≡ lμ∇μ, D′ ≡ l ′μ∇μ, δ ≡ mμ∇μ, δ′ ≡ m′μ∇μ. (2.7)

Without loss of generalitywe can replace the covariant derivatives bypartial derivatives
and treat the operators D, D′, δ, δ′ as ordinary vector fields.5 In Schwarzschild-like
coordinates, we have:

5 Once the equations of differential geometry are cast in spin coefficient form, all of the dynamical variables
will be invariant under coordinate transformations on the base space, thereby becoming scalar fields.
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D = lμ∂μ = |R0|2



∂t + ∂r + a



∂ϕ, D′ = l ′μ∂μ = 


2|R|2
( |R0|2



∂t − ∂r + a



∂ϕ

)
,

δ = mμ∂μ = 1

R
√
2

(
∂θ + i

sin θ
∂ϕ + ia sin θ ∂t

)
, δ′ = δ∗. (2.8)

We will refer to the forms in Eq. (2.5) and the vectors in Eq. (2.8) as the “standard”
frame. Its ubiquity derives from its utility: It is a principal basis (see Sect. 2.11) whose
outgoing and ingoing null congruences are geodesic, twisting, and shear-free [see
Eq. (2.33)]. Students acquainted with Reissner–Nordström but hesitant about Kerr–
Newman should fiddle with the standard frame until the geometry feels less foreign.

2.2 Spin coefficients

There are two ways to express the classical field theory of gravity, distinguished by
whether local invariance under SO(3, 1) is imposed or inferred. Drastically oversim-
plifying a complicated history, we will say that the former is Cartan’s approach, while
the latter is Einstein’s.6

We favor the former. First introduce a frame ea
μ and demand invariance of the action

under local SO(3, 1) transformations:

ea(x) → Oa
b(x) eb(x), Oa

c(x) Ob
d(x) ηab ≡ ηcd . (2.9)

Then introduce an SO(3, 1) gauge field ωa
b, called the spin connection, to turn ordi-

nary derivatives into covariant derivatives. As for any nonabelian gauge field, the
required transformation law is

ωa
b(x) → Oa

c(x)
(
δc

d d + ωc
d

)
(O−1)d

b(x). (2.10)

By birthright the spin connection is antisymmetric:

ωab = −ωba . (2.11)

The variables ea(x) and ωa
b(x) are the independent classical fields in the action.

Because we find it productive to work entirely within the internal, we follow Newman
and Penrose and define the spin coefficients [33]

γabc ≡ (ωμ)ab e μ
c . (2.12)

Varying the action with respect to the spin connection in a world without fermions
implies the torsion-free condition

dea = γabc eb ∧ ec. (2.13)

6 Penrose and Rindler [32] refer to what we call “Cartan’s approach” as the “Einstein–Cartan–Sciama–
Kibble theory” (see their Sect. 4.7).
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Solving this gives the spin coefficients in terms of the frame:

γabc = 1
2 (λabc + λcab − λbca), λabc ≡ −(eμ

a eν
c − eμ

c eν
a)∂μebν . (2.14)

While this expression is standard, the path to it depends on one’s taste in formalism.

2.3 Partial gauge fixing

After Newman and Penrose invented the method of spin coefficients, Geroch, Held,
and Penrose recognized that specifying a frame e μ

a = (lμ, l ′μ, mμ, m′μ) that satisfies
the normalization conditions in Eq. (2.6) only partially fixes the gauge in SO(3, 1).

The remaining ambiguity comprises a boost along the outgoing congruence, the
corresponding inverse boost along the ingoing congruence, and a rotation of the trans-
verse plane:

lμ → r(x) lμ, l ′μ → 1

r(x)
l ′μ, mμ → e iϑ(x) mμ, m′μ → e−iϑ(x) m′μ.

(2.15)

We will say that this transformation generates the GHP group. It is convenient to
define the complex function

λ ≡ r1/2e iϑ/2 (2.16)

and to rewrite Eq. (2.15) as

lμ → λλ∗ lμ, l ′μ → λ−1λ∗−1 l ′μ, mμ → λλ∗−1 mμ, m′μ → λ−1λ∗ m′μ.

(2.17)

We will say that a function fh,h̄ transforms as the representation7 (h, h̄) of the GHP
group if its transformation law under Eq. (2.17) has the form:

fh,h̄ → λ2hλ∗ 2h̄ fh,h̄ . (2.18)

As shorthand for this, we will use the standard notation of representation theory:

fh,h̄ ∼ (h, h̄). (2.19)

The numbers (h, h̄) are called the weights8 of the function fh,h̄ , and such a function
is accordingly said to be “weighted.” Borrowing group-theoretic jargon from field
theory, we will say that weighted quantities transform as matter fields. An object that

7 The bar is part of the name of the weight and does not denote any sort of conjugation.
8 Penrose and Rindler define p ≡ 2h and q ≡ 2h̄. Either way, the “boost weight” and the “spin weight”
are defined as 1

2 (p + q) = h + h̄ and 1
2 (p − q) = h − h̄ respectively [34].

123
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cannot be assigned a transformation law of the form in Eq. (2.18) for any values of
(h, h̄) will be called “nonweighted.”9 In the language of Eq. (2.19), we summarize
Eq. (2.17) as

lμ ∼ ( 1
2 ,

1
2

)
, l ′μ ∼ (− 1

2 ,− 1
2

)
, mμ ∼ ( 1

2 ,− 1
2

)
, m′μ ∼ (− 1

2 ,
1
2

)
. (2.20)

Manifest covariance under the GHP group is what defines the compacted formalism:
All explicitly written quantities transform according to Eq. (2.18) for some values of h
and h̄. Only objects with the same weights can be added, and the weights of a product
of objects are the sums of the weights of each object:

fh1,h̄1 ∼ (h1, h̄1), gh2,h̄2 ∼ (h2, h̄2) �⇒ fh1,h̄1gh2,h̄2 ∼ (h1 + h2, h̄1 + h̄2).

(2.21)

From Eq. (2.18) we deduce that complex conjugation exchanges the weights:

fh,h̄ ∼ (h, h̄) �⇒ ( fh,h̄)∗ ∼ (h̄, h). (2.22)

Beside complex conjugation, there are two discrete transformations under which the
compacted formalism is covariant. The first is the priming transformation, which is
defined to exchange primed and unprimed quantities:

lμ ↔ l ′μ, mμ ↔ m′
μ. (2.23)

In this way the notation from Eq. (2.1) becomes an operation. From Eq. (2.17) we
deduce that priming flips the signs of the weights:

fh,h̄ ∼ (h, h̄) �⇒ ( fh,h̄)′ ∼ (− h,−h̄). (2.24)

The second discrete transformation is the Sachs operation, which is an analog of
Hodge duality:

(lμ, l ′μ, mμ, m′
μ) → (mμ,−m′

μ,−lμ, l ′μ). (2.25)

Unlike priming, the Sachs operation does not commute with complex conjugation. It is
extremely convenient to streamline the spin coefficient formalism by using a notation
that is manifestly covariant under priming. The Sachs operation will instead help us
establish geometrical meaning.

2.4 Matter fields and gauge fields

Based on their behavior under Eq. (2.17), the 12 independent γabc fall naturally into
three sets: weighted quantities associated with lμ, weighted quantities associated with
l ′μ, and nonweighted quantities that transform as gauge fields.

9 Something invariant under Eq. (2.18) is considered to be weighted with weight zero, not nonweighted.
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The weighted spin coefficients associated with lμ, along with their weights, are

κ ≡ γ311 ∼ ( 3
2 ,

1
2

)
, τ ≡ γ312 ∼ ( 1

2 , − 1
2

)
,

σ ≡ γ313 ∼ ( 3
2 , − 1

2

)
, ρ ≡ γ314 ∼ ( 1

2 ,
1
2

)
. (2.26)

The weighted spin coefficients associated with l ′μ are defined by priming, which flips
the signs of the weights10:

κ ′ ≡ γ422 ∼ (− 3
2 , − 1

2

)
, τ ′ ≡ γ421 ∼ (− 1

2 ,
1
2

)
,

σ ′ ≡ γ424 ∼ (− 3
2 ,

1
2

)
, ρ′ ≡ γ423 ∼ (− 1

2 , − 1
2

)
. (2.27)

The gauge fields of the spin coefficient formalism are defined as

ε ≡ 1
2 (−γ121 + γ341), β ≡ 1

2 (−γ123 + γ343),

ε′ ≡ 1
2 (−γ212 + γ432), β ′ ≡ 1

2 (−γ214 + γ434). (2.28)

These are gauge fields in the sense that they combine with the NP derivatives of
Eq. (2.8) to form weighted derivatives:

þ ≡ D + 2h ε + 2h̄ ε∗, ð ≡ δ + 2h β − 2h̄ β ′∗,
þ′ ≡ D′ − 2h ε′ − 2h̄ ε′∗, ð′ ≡ δ′ − 2h β ′ + 2h̄ β∗. (2.29)

We will refer to the operators þ, þ′, ð, and ð′ as GHP-covariant derivatives. Typically
the covariant derivative of a matter field transforms as the same representation as the
field itself, but not so here. For a weighted function fh,h̄ ∼ (h, h̄), we have:

þ fh,h̄ ∼ (h + 1
2 , h̄ + 1

2 ), þ′ fh,h̄ ∼ (h − 1
2 , h̄ − 1

2 ),

ð fh,h̄ ∼ (h + 1
2 , h̄ − 1

2 ), ð′ fh,h̄ ∼ (h − 1
2 , h̄ + 1

2 ). (2.30)

Evidently the covariant derivatives themselves carry charge:

þ ∼ ( 1
2 ,

1
2

)
, þ′ ∼ (− 1

2 ,− 1
2

)
, ð ∼ ( 1

2 ,− 1
2

)
, ð′ ∼ (− 1

2 ,
1
2

)
. (2.31)

2.5 Null Cartan equations

Expressed in the NP hieroglyphs of Eqs. (2.26)–(2.28), the torsion-free condition of
Eq. (2.13) becomes four fundamental relations:

10 Priming acts on the SO (3,1) indices by exchanging 1 ↔ 2 and 3 ↔ 4. Complex conjugation leaves 1
and 2 fixed while exchanging 3 ↔ 4.
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dl = −2Re(ε) l ∧ l ′ + 2i Im(ρ) m ∧ m′

+ [ (
τ − β + β ′∗) m′ ∧ l + κ m′ ∧ l ′ + c.c.

]
,

dm = (β + β ′∗) m ∧ m′ − (τ − τ ′∗) l ∧ l ′

+ [
(ρ − 2i Im(ε)) m ∧ l ′ + σ m′ ∧ l ′ + c.c.′

]
, (2.32)

and their primes. We will call these the null Cartan equations.
By computing the exterior derivatives of the forms in Eq. (2.5), arranging them to

match the right-hand sides in Eq. (2.32), and solving the resulting equations, we can
find the Kerr–Newman spin coefficients:

κ = κ ′ = σ = σ ′ = 0, ρ = 1

R∗ , ρ′ = − 


2|R|2
1

R∗ ,

τ = ia sin θ√
2|R|2 , τ ′ = ia sin θ√

2(R∗)2
,

ε = 0, ε′ = ρ′ + 2r − r+ − r−
4|R|2 ,

β = − cot θ

2
√
2R

, β ′ = τ ′ + β∗. (2.33)

Because of their noncovariance under Eq. (2.17), the above ε′ and β ′ should be under-
stood strictly numerically. Also note that |τ |2 = |τ ′|2, which will be useful later.

2.6 Timelike expansion and timelike twist

Every bard recounts legends of refraction (κ), expansion (Re ρ), twist (Im ρ), and
shear (σ ), but nary a soul tells tales of τ .11

We would like to elevate the standing of τ and τ ′ to match the renown of their
colleagues, because these neglected spin coefficients convey the relativistic effects of
rotating bodies at least as directly as Im(ρ) and Im(ρ′) do—a cursory assessment of
Eq. (2.33), for instance, reveals the suggestive factor a sin θ . Our North Star will be
the Sachs operation of Eq. (2.25).

The combinations τ ± τ ′∗, rather than τ and τ ′ separately, will appear front and
center in the subsequent analysis, so let us consider their meaning and christen them
with appropriate names. Sachs conjugation of the expansion and twist provides:

11 Sachs, who pioneered the optical analogy for the spin coefficients, does not explain τ or τ ′ in his
original paper [37]. Szekeres, in the paper from which we extracted the term “refraction” for κ , calls the
spin coefficient τ (which he denotes�) the “angular velocity or rotation of the null congruence,” but he does
not explain why [38]. In a subsequent lecture, Sachs seems to have implicitly recognized this interpretation
of τ by also choosing the symbol � to denote it, but he does not justify the notation [39]. An appraisal
of the null Cartan equations within the formal context of lightcone kinematics as originally articulated by
Dirac [40] affirms this interpretation but with τ and τ ′ switched.
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Re(ρ) ≡ 1
2 (ρ + ρ∗) → 1

2 (τ + τ ′∗) = − a2 sin(2θ)

2
√
2|R|2R

,

Im(ρ) ≡ 1
2i (ρ − ρ∗) → 1

2i (τ − τ ′∗) = ra sin θ√
2|R|2R

. (2.34)

Consequently, we will refer to τ + τ ′∗ and τ − τ ′∗ as the timelike expansion and
timelike twist.

Even though we performed the Sachs operation on spin coefficients associated
with lμ, the result involved both τ and τ ′. While this may be jarring at first sight,
GHP covariance requires it: The spin coefficients ρ and ρ∗ have the same weights and
therefore can be added and subtracted at will, but τ and τ ∗ transform differently under
Eq. (2.17). Only τ and τ ′∗ can be added and subtracted.

2.7 Kruskal-like coordinates

To put all this formalism to work, we will need to forge Kruskal-like coordinates. First
recall the known result for the surface gravity:

α = r+ − r−
2(r2+ + a2)

. (2.35)

With that we define the null coordinates U and V outside the black hole:

U ≡ −e−αu, V ≡ +e+αv, u ≡ t − r∗, v ≡ t + r∗, dr∗ ≡ |R0|2



dr . (2.36)

Note thatU < 0, which is the standard convention.We choose the integration constant
in the tortoise coordinate r∗ such that the product of U and V is12

U V = − 


r+r−

(
r

r−
− 1

)−k

e 2αr , k ≡ r2− + a2

r2+ + a2
+ 1. (2.37)

Considered an implicitly defined function of U and V , the coordinate r retains its
desirable property from the nonrotating case of depending only on the product U V .
As written in Eq. (2.37), the ratio 


U V is manifestly finite and nonzero at r = r+:

c ≡ − 


U V

∣∣∣∣
r = r+

= r+r−
(

r+
r−

− 1

)k

e−2αr+ . (2.38)

12 Since we always work with r > r−, we have dropped the absolute values that emerge from integrating
dr∗. Our coordinates are singular at the inner horizon, and a different set of Kruskal-like coordinates must
be established to cross it.
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For later convenience, we also differentiate both sides of Eq. (2.37) and rearrange to
solve for the partial derivatives of r(U , V ):

U∂U r = V ∂V r = 



′(r) +
(
2α − k

r−r−

)



. (2.39)

For any function F(r) that depends only on the radial coordinate, we therefore have:

U∂U F(r) = V ∂V F(r) = F ′(r) U∂U r and U∂U r |r = r+ = 0. (2.40)

We will sometimes use a subscript “+” to label quantities evaluated at the horizon. For
instance, |R+|2 ≡ r2+ + a2 cos2 θ and |R0+|2 ≡ r2+ + a2.

Finally, we define the delayed angular coordinate and the angular velocity at the
horizon:

χ ≡ ϕ − �H t, �H = a

r2+ + a2
. (2.41)

2.8 A smooth frame

Smooth coordinates are not enough—we also need a smooth frame. From the standard
basis written in Kruskal-like coordinates, we perform the following GHP transforma-
tion:

lμ → l̂μ = −Ulμ, l ′μ → l̂ ′μ = −U−1l ′μ, mμ → m̂μ = mμ. (2.42)

This describes the special case

λ = λ∗ = (− U )1/2 (2.43)

of the transformation in Eq. (2.17). A hatted functionwithweights (h, h̄) is then related
to its unhatted counterpart by

f̂h,h̄ = (− U )h+h̄ fh,h̄ . (2.44)

The spin coefficients ρ and ρ′ in the hatted basis,

ρ̂ = 1

R∗ (− U ) and ρ̂′ = 1

2|R|2
(




U V

)
1

R∗ V , (2.45)

go to zero at the future horizon (U = 0) and the past horizon (V = 0) respectively.
These furnish local definitions for each part of the horizon.

Because τ ∼ ( 12 ,− 1
2 ) and τ ′ ∼ (− 1

2 ,
1
2 ), those two spin coefficients are invariant

under the rescaling in Eq. (2.42):

τ̂ = τ, τ̂ ′ = τ ′. (2.46)
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After changing coordinates from (t, r , θ, ϕ) to (U , V , θ, χ) and applying Eq. (2.42),
we obtain the following frame field 1-forms:

l̂ = −1

2α

(
1 + |R|2

|R0|2 − �H a sin2 θ

)
dU

− U

V

(
1 − |R0+|2

|R0|2
)

a2 sin2 θ

2α|R0+|2 dV − Ua sin2 θ dχ,

l̂ ′ = 


2|R|2
[
1

2α

(
1 + |R|2

|R0|2 − �H a sin2 θ

)
dV

U V

+ 1

U 2

(
1 − |R0+|2

|R0|2
)

a2 sin2 θ

2α|R0+|2 dU − a sin2 θ

U
dχ

]
,

m̂ = 1

R
√
2

[
|R|2 dθ + i |R0|2 sin θ dχ

+ ia sin θ

2α|R0+|2
r + r+
r − r−




U V
(U dV − V dU )

]
. (2.47)

The corresponding directional derivatives are

D̂ = −2α |R0|2 U V



∂V − a

U




(
1 − |R0|2

a
�H

)
∂χ ,

D̂′ = 


2|R|2
[
2α

|R0|2



∂U − a

U


(
1 − |R0|2

a
�H

)
∂χ

]
,

δ̂ = 1

R
√
2

[
∂θ + i

sin θ

|R+|2
|R0+|2 ∂χ + iα a sin θ (−U ∂U + V ∂V )

]
. (2.48)

We will refer to the forms in Eq. (2.47) and the vectors in Eq. (2.48) as the “horizon”
frame (or simply as the “hatted” one). Each component of the 1-forms in Eq. (2.47)
and of the vectors in Eq. (2.48) is finite at U = 0 for fixed V , and at V = 0 for fixed
U .

2.9 Spacelike and timelike curvatures

Commutators of covariant derivatives beget curvature. By composingGHP derivatives
on a test function ξh ∼ (h, 0), we define the spacelike and timelike curvatures K and
Ks :

K ξh ≡ − 1

2h

([ð, ð′] + 2i Im(ρ)þ′ − 2i Im(ρ′)þ
)
ξh,

Ks ξh ≡ 1

2h

([þ, þ′] + (τ − τ ′∗)ð′ + (τ ∗ − τ ′)ð
)
ξh . (2.49)

Twice the real part of K is the ordinary notion of intrinsic (or “Gaussian”) curvature
in Riemannian geometry. The imaginary part is an extrinsic quantity that we will call
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the extrinsic curvature.13 For Kerr–Newman, the intrinsic and extrinsic curvatures
are

Re(K) = 1

2|R|6
{

r2(r2 + a2) +
[
(r2+ + a2) − 4(r+r + a2) − (r2 − r2+)

]
a2 cos2 θ

+ 4α (r2+ + a2)(r − r+) a2 cos2 θ
}

(2.50)

and

Im(K) = a cos θ

|R|6
{
(r − r+) r+ r + (2a2 + r2) r − r+a2 cos2 θ

+α(r2+ + a2)
[
(2r+ − r) r + a2 cos2 θ

]}
. (2.51)

At the horizon, the intrinsic curvature is [41]

Re(K)|r = r+ = |R0+|2
2|R+|6 (r2+ − 3a2 cos2 θ). (2.52)

Only at r = r+ should the denominations “intrinsic” and “extrinsic” be taken literally,
because only there do mμ and m′μ form a surface. In contrast, the real and imaginary
parts ofKs can never be interpreted that way, because lμ and l ′μ never form a surface.14

So we leave the Kerr–Newman timelike curvature as a complex quantity:

Ks = −2(3r+ − 2r)rr+ + 2iar+(4r − r+)cos θ + a2[5r − 2r+ − (2r+ − r)cos(2θ)] + 2ia3 cos3 θ

4R∗|R|4

+ α (r2+ + a2)
(3r+ − r)r − ia(2r − r+) cos θ + a2 cos2 θ

R∗|R|4 . (2.53)

Next we will summarize those remaining aspects of curvature that are pertinent but
more or less standard.

2.10 Curvature scalars

The Riemann tensor in the NP frame is

Rabcd = ∂cγabd − ∂dγabc − γ e
ab (γced − γdec) + γaecγ

e
bd − γaedγ e

bc. (2.54)

13 This is not to be conflated with what numerical relativists call the extrinsic curvature, which is part of the
spin connection. See, for example, the discussion of contorted surfaces on p. 400 of Spinors and Spacetime
[32].
14 Take the hatted basis and consider the commutators of covariant derivatives on a test function of
weight (0, 0): We have [ð̂, ð̂′] = (ρ̂ − ρ̂∗)þ̂

′ − (ρ̂′ − ρ̂′∗)þ̂ and [þ̂, þ̂′] = (τ̂ − τ̂ ′∗)ð̂
′ + (τ̂∗ − τ̂ ′)ð̂.

The right-hand side of the former vanishes at U = V = 0, while the right-hand side of the latter never
vanishes except at the poles. We thank Leo Stein for emphasizing this to us.
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From the corresponding Ricci tensor, Rab ≡ Rc
acb, Newman and Penrose define a

traceless matrix

φab ≡ 1
2 (Rab − 1

4ηab ηcd Rcd). (2.55)

For spinorial reasons of no concern to us, they then define the Ricci scalars as

�00 ≡ φ11 ∼ (1, 1), �01 ≡ φ13 ∼ (1, 0), �02 ≡ φ33 ∼ (1,−1),

�22 ≡ �′
00 = φ22 ∼ (− 1,− 1), �21 ≡ �′

01 = φ24 ∼ (− 1, 0),

�20 ≡ �′
02 = φ44 = �∗

02 ∼ (− 1, 1), �10 ≡ �∗
01 = φ14 ∼ (0, 1),

�12 ≡ �∗
21 = φ23 ∼ (0,− 1), �11 ≡ 1

2 (φ12 + φ34) ∼ (0, 0). (2.56)

In the notation of the compacted formalism, we have15

�00 = −þρ − ρ2 − |σ |2 + ð′κ +τ ′κ + τ κ∗,
�02 = −ðτ − τ 2 − κκ ′∗ + þ′σ +ρ′σ + ρ σ ′∗, (2.57)

�01 = 1
2

[−þτ + þ′κ − ðρ + ð′σ − (τ − τ ′∗)ρ − (τ ∗ − τ ′)σ
− (ρ − ρ∗)τ + (ρ′ − ρ′∗)κ

]
. (2.58)

The remaining Ricci scalars of nonzero weight can be defined by priming and conju-
gating the definitions already listed:�22 = �′

00,�21 = �′
01,�10 = �∗

01,�12 = �∗
21,

and �20 = �∗
02. Meanwhile, the Ricci scalar of weight (0, 0) is defined in terms of

the spacelike and timelike curvatures:

�11 = 1
2

(
K − Ks − κκ ′ + ττ ′ − σσ ′ + ρρ′) . (2.59)

Tradition compels a fanciful notation for a factor times the trace of the Ricci tensor:

� ≡ 1
12 (R12 − R34) = − 1

24η
ab Rab. (2.60)

Because of its role as the gravitational Lagrangian, we refer to this as the Einstein–
Hilbert curvature. In GHP notation, it reads

� = 1
6

[
2

(
ρρ′∗ − |τ |2 + þ′ρ − ð′τ

)
+ K + Ks − κκ ′ − ττ ′ + σσ ′ + ρρ′] .

(2.61)

Finally we are left with the completely traceless part of the curvature:

Cabcd ≡ Rabcd + ηad φbc + ηbc φad − ηac φbd − ηbd φac

+2 (ηac ηbd − ηad ηbc)�. (2.62)

15 The expression for �00 is in fact real but not manifestly so.
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This is the Weyl tensor in the NP frame, and from it Newman and Penrose define the
Weyl scalars:

�0 ≡ C1313 ∼ (2, 0), �1 ≡ C1312 ∼ (1, 0), �2 ≡ C1342 ∼ (0, 0),

�3 ≡ � ′
1 = C2421 ∼ (− 1, 0), �4 ≡ � ′

0 = C2424 ∼ (− 2, 0). (2.63)

In GHP notation, the first three of these are16

�0 = − [
þ + (ρ + ρ∗)

]
σ + [

ð + (τ + τ ′∗)
]
κ, (2.65)

�1 = 1
2

{−þτ + þ′κ + ðρ − ð′σ − (τ − τ ′∗)ρ − (τ ∗ − τ ′)σ
+ (ρ − ρ∗)τ − (ρ′ − ρ′∗)κ

}
, (2.66)

�2 = 1
3

[
ρρ′∗ − |τ |2 + þ′ρ − ð′τ − (K + Ks)

− 2κκ ′ + ττ ′ + 2σσ ′ − ρρ′] . (2.67)

The remaining two are defined by priming.

2.11 Gravitational compass and Petrov classification

Szekeres conjured an elegant theoretical apparatus called the gravitational compass
to interpret the Weyl scalars [42]. Following his insight, we will say that �2 describes
a Coulomb field, �4 describes a transverse outgoing wave, and �3 describes a longi-
tudinal outgoing wave. The primed quantities, �0 ≡ � ′

4 and �1 ≡ � ′
3, describe the

corresponding ingoing waves.17

The Weyl scalars are not gauge invariant: A local SO(3, 1) transformation ea →
Oa

b eb results in �α → ∑4
β = 0 Qαβ�β for some matrix Qαβ . We can ask how many

�α can be simultaneously gauged away, and we can classify spacetimes based on the
answer. This is Chandrasekhar’s [31] account of the Petrov classification [43] of the
Weyl tensor. A desire to elucidate the physics behind each Petrov type is what drove
Szekeres to engineer the gravitational compass.

We will only study two Petrov types: Type D, in which all of the Weyl scalars
beside�2 can be gauged away, and Type II, in which all of theWeyl scalars beside�2
and�4 can be gauged away.18 Extending the standard terminology slightly beyond its

16 Having defined�1 and�01, we can compose þ and ð on an arbitrarily-weighted test function and deduce
the mixed commutator relation

[þ, ð] + ρ∗ð + σð′ − τ ′∗þ − κþ′ = −2h(ρ′κ − τ ′σ + �1) − 2h̄(σ ′∗κ∗ − ρ∗τ ′∗ + �01). (2.64)

17 The Coulomb component is self-prime.Wemight also suggest an alternative notation tomake Szekeres’s
interpretation manifest: �⊥ ≡ �4, �‖ ≡ �3, �C ≡ �2, �

′⊥ ≡ �0, and � ′‖ ≡ �1.
18 For a Type II spacetime, we can rotate the frame to trade a nonzero �4 for a nonzero �3. This resolves
the superficial discrepancy between Chandrasekhar’s [31] and Penrose and Rindler’s descriptions [32].
Szekeres [42] and Griffiths [44] use the terminology of Penrose and Rindler.
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ordinary usage, we will define a principal frame as any basis in which as many Weyl
scalars as possible for a given geometry are gauged away.

The Kerr–Newman black hole is Type D, and its nonzero Weyl scalar is

�2 = − 1

(R∗)3

(
M − Q2

R

)
. (2.68)

Because it carries charge, this black hole is not a vacuum solution—the Weyl scalars
are no longer the whole story. Local sources of energy induce Ricci curvature, and in
this case the electromagnetic field induces

�11 = Q2

2|R|4 . (2.69)

2.12 Energy scalars

In the relativistic zeitgeist, the Ricci scalars are considered a stand-in for the energy
tensor by means of Einstein’s equation. But we find this confusing and will briefly
suggest a refined presentation.

To match Penrose’s traceless Ricci tensor from Eq. (2.55), we define a traceless
energy tensor

Tab ≡ 1
2

(
Tab − 1

4ηab ηcd Tcd

)
. (2.70)

From that, we define “energy scalars” analogously to the Ricci scalars: t00 ≡ 8πT11,
and so on, such that Einstein’s equation becomes

�i j = ti j and � = t�, (2.71)

with i, j ∈ {0, 1, 2}. For the Kerr–Newman solution, the only nonzero entry is t11,
which can be expressed in terms of a complex number ϕ1 called a Maxwell scalar19:

t11 = |ϕ1|2, ϕ1 = Q√
2(R∗)2

. (2.72)

Our point is that the equation t11 = |ϕ1|2 is the statement Tμν = Fμρ F ρ
ν −

1
4gμν Fρσ Fρσ in the internal, and the equation �11 = t11 is Einstein’s equation in
the internal. The typically stated relation �11 = |ϕ1|2 combines both.

Having traipsed through the background geometry, we are now ready to perturb it.

19 The Maxwell scalars are defined as the components of the electromagnetic curvature contracted with
the vectors of the null frame:

ϕ0 ≡ Fμν lμmν , ϕ1 ≡ 1
2 Fμν (lμl ′ν + m′μmν), ϕ2 ≡ Fμν m′μl ′ν .

Note that because Fμν = −Fνμ, we have ϕ2 = −ϕ′
0 and ϕ′

1 = −ϕ1.
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3 Shifted frame and Kerr–Schild form

Relative to the standard frame of the Kerr–Newman background, and in terms of a
general function S(t, r , θ, ϕ), we define the shifted frame20

l̃ ≡ l, l̃ ′ ≡ l ′ + S l, m̃ ≡ m. (3.1)

It cannot be emphasized enough that the meaning of l̃ ′ in components is

l̃ ′ = l̃ ′μ dxμ = (l ′μ + Slμ) dxμ, (3.2)

not l̃ ′μ dx̃μ for some shifted coordinate basis dx̃μ. Otherwise the shift would describe
a change of coordinates, not a physical perturbation.

Recalling Eq. (2.2), we define the shifted line element as

ds̃2 ≡ −2l̃ l̃ ′ + 2m̃m̃′ = ds2 − 2Sll. (3.3)

Since we have chosen lμ to be tangent to a shear-free geodesic congruence of the
unshifted spacetime, the shifted line element is of the generalized Kerr–Schild form,
as defined by Taub [30]. If we turn off the angular momentum and the charge and
choose the ansatz

S = 


2r2
U

V
δ(U ) f (θ, ϕ) (a = Q = 0) (3.4)

then we will reproduce exactly the Dray–’t Hooft metric [19]. If we turn off the
angular momentum but leave the charge nonzero and use the same functional form for
the ansatz, we will reproduce the metric of Alonso–Zamorano [22] and Sfetsos [23].

3.1 From Reissner–Nordström to Kerr–Newman

To generalize to a rotating background, we will scrutinize the factors that appear in
Eq. (3.4).

First, by revisiting our conventions for the unshifted frame and staring at the defini-
tion of the shifted one, we conclude that the factor 


2r2
compensates for the asymmetric

normalization of lμ relative to l ′μ. So the generalization of this factor to the rotating
case is clear:




2r2
→ 


2|R|2 . (3.5)

Second, we have defined the Kruskal-like coordinates so that they mimic the coor-
dinates in the nonrotating case: The future horizon is still at U = 0, and the radial

20 Only during revisions did we find the apropos work by Fels and Held [45]. While their shift is like ours,
their analysis differs. Strikingly, they consider shifting Type D backgrounds but conclude that “as seeds
they are not very fruitful.” We disagree.
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function r depends only on the product U V . So we might hope that the factor U
V δ(U )

could remain unmodified.
Third,we recognize that the function f (θ, ϕ) is definedonly at the origin ofKruskal-

like coordinates (U = V = 0). Extrapolating to the Kerr–Newman spacetime should
therefore entail the generalization

(θ, ϕ) → (θ, χ). (3.6)

This cross-examination of the Dray–’t Hooft solution coupled with the clear geomet-
rical underpinning of the Newman–Penrose formalism led us to the conviction that
the perturbed Kerr–Newman geometry should be described by the shifted frame in
Eq. (3.1) with the following ansatz:

S = 


2|R|2
U

V
δ(U ) f (θ, χ). (3.7)

We will call S the shift function, and we will call f (θ, χ) the horizon field. When
we calculate the curvature scalars, we will work directly with the rescaled frame in
Eq. (2.48), thereby enlisting the rescaled shift function

Ŝ = (− U )−2S = 1

2|R|2



U V
δ(U ) f (θ, χ). (3.8)

Like everything else in the hatted basis, this shift function is finite at the horizon.
By comparing the GHP representations l ′μ ∼ (− 1

2 ,− 1
2 ) and lμ ∼ (+ 1

2 ,+ 1
2 ) in the

context of Eq. (3.1), we deduce that the shift function must transform as

S ∼ (− 1,− 1). (3.9)

When interpreting the formulas Eqs. (3.7) and (3.8) in the GHP formalism, we assign
the horizon field f (θ, χ) the weights of the shift function:

f (θ, χ) ∼ (− 1,− 1). (3.10)

The remaining factors are to be treated as ordinary functions, not physical degrees of
freedom, and are therefore assigned weights (0, 0).

By explicit calculation, we will indeed find that the ansatz in Eq. (3.7) results in a
shifted Ricci tensor of the form

R̃μν = Rμν + R shift
UU δ U

μ δ U
ν (3.11)

and therefore correctly generalizes theDray–’tHooft solution to a rotating background.
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3.2 Preliminary commentary

Before focusing on RUU , we wish to preview a miracle: If the unshifted frame is
aligned with shear-free null geodesics (κ = σ = κ ′ = σ ′ = 0) and if the unshifted
�00 is zero, the shifted Ricci tensor will depend only linearly on the shift function
S.21

We will proceed step by step through the spin coefficient formalism to understand
why this happens. A practical reason is to derive master formulas for the spin coef-
ficients and curvature scalars of generalized Kerr–Schild spacetimes. For the spin
coefficients we will maintain full generality in the background, but for the curvature
scalars we will restrict to shear-free geodesic congruences.

3.3 Shifted spin coefficients

By shifting both sides of the null Cartan equations [Eq. (2.32)] and solving them, we
can express the shifted spin coefficients in terms of their unshifted values.

Start with the equation for dl, and tilde every term22:

dl̃ = −2Re(ε̃) l̃ ∧ l̃ ′ + 2i Im(ρ̃) m̃ ∧ m̃′

+
[ (

τ̃ − β̃ + β̃ ′∗) m̃′ ∧ l̃ + κ̃ m̃′ ∧ l̃ ′ + c.c.
]
. (3.12)

By inserting into the right-hand side the definition of the shifted frame in terms of the
unshifted frame and recalling that l ∧ l = 0, we find

dl̃ = −2Re(ε̃) l ∧ l ′ + 2i Im(ρ̃) m ∧ m′

+
[(

τ̃ − β̃ + β̃ ′∗ + κ̃ S
)

m′ ∧ l + κ̃ m′ ∧ l ′ + c.c.
]
. (3.13)

Since l̃ = l, we have dl̃ = dl, so the left-hand side can be replaced with the untilded
version of Eq. (3.12). The four basis 2-forms l ∧ l ′, m ∧ m′, m′ ∧ l, and m′ ∧ l ′ are
linearly independent, so we can match their coefficients on both sides to obtain the
first set of shifted spin coefficient equations:

Re(ε̃) = Re(ε), Im(ρ̃) = Im(ρ), τ̃ − β̃ + β̃ ′∗ + κ̃ S = τ − β + β ′∗, κ̃ = κ.

(3.14)

Next up, dl ′. The right-hand side parallels that for dl, but since l ′ = l ′ + Sl the left-
hand side is more complicated. Not only do we require the untilded equations for both
dl ′ and dl, we also require the exterior derivative of the shift function:

d S ≡ dxμ ∂μS = ea ∂a S = −l D′S − l ′DS + m δ′S + m′δS. (3.15)

21 This was in fact noticed by Taub [30] and by Alonso and Zamorano [22].
22 Note that, in keeping with our advisory remark below the definition of the shifted frame [Eq. (3.1)], we
do not tilde the exterior derivative operator.
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Matching the coefficients of the basis 2-forms gives the second set of shifted spin
coefficient equations:

Re(ε̃′) = Re(ε′) − Re(ε)S + 1
2 DS, Im(ρ̃′) = Im(ρ′) − Im(ρ)S,

τ̃ ′ − β̃ ′ + β̃∗ = τ ′ − β ′ + β∗ + κ∗S, κ̃ ′ + (τ̃ ′ − β̃ ′ + β̃∗)S

= κ ′ + (τ ∗ − β∗ + β ′)S + δ′S. (3.16)

Before moving on, it is helpful to take stock of where we are. We have already solved
directly for Re(ε̃), Im(ρ̃), and κ̃ , and may thereby observe that they remain unshifted.
We have also solved for Re(ε̃′) and Im(ρ̃′). By inserting the third equation in Eq. (3.16)
into the fourth one, we obtain the shifted κ ′:

κ̃ ′ = κ ′ + (
δ′ − 2β∗ + 2β ′) S + (τ ∗ − τ ′)S − κ∗S2. (3.17)

Recall that S ∼ (− 1,− 1) and that the GHP-covariant version of δ′ is ð′ = δ′ −
2hβ ′ + 2hβ∗. As expected from GHP covariance, the NP derivatives and gauge fields
appear in just the right combination to form a covariant derivative:

κ̃ ′ = κ ′ + ð′S + (τ ∗ − τ ′)S − κ∗S2. (3.18)

On the other hand, the terms involving D, ε, and ε∗ in Re(ε̃′) do not collect themselves
into a GHP-covariant combination. But that too is expected: While κ̃ ′ is a weighted
quantity, ε̃′ is not. By solving the matrix inversion problem in Eq. (2.6) for the shifted
frame, we obtain the shifted NP derivatives:

D̃ = D, D̃′ = D′ − S D, δ̃ = δ. (3.19)

Wewill see that ε̃′ will in fact combine with D̃′ to create a shifted þ̃′
that can be written

in terms of GHP-covariant quantities. But to prove that, we will need to solve for the
shifted Im(ε̃′), and for that we will need to study dm.

Applying the above procedure to dm, we find the final set of shifted spin coefficient
equations:

β̃ + β̃ ′∗ = β + β ′∗, τ̃ − τ̃ ′∗ = τ − τ ′∗, ρ̃ − 2i Im(ε̃) = ρ − 2i Im(ε),

ρ̃′ + 2i Im(ε̃′) + (ρ̃ − 2i Im(ε̃))S = ρ′ + 2i Im(ε′), σ̃ ′∗ + σ̃ S = σ ′∗. (3.20)

By solving Eqs. (3.14), (3.16), and (3.20), we learn that the weighted spin coefficients
and gauge field associated with lμ do not receive corrections:

κ̃ = κ, τ̃ = τ, σ̃ = σ, ρ̃ = ρ, ε̃ = ε. (3.21)

While it should not be surprising that κ, σ, ρ, and ε do not receive corrections, it may
be unexpected that τ does not shift. It turns out that τ ′ also remains unshifted:

τ̃ ′ = τ ′. (3.22)
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So the timelike expansion τ + τ ′∗ and the timelike twist τ − τ ′∗ remain unshifted.
The weighted spin coefficients and gauge field associated with l ′μ do receive cor-

rections:

κ̃ ′ = κ ′ + [
ð′ + (

τ ∗ − τ ′)] S − κ∗S2, σ̃ ′ = σ ′ − σ ∗S, ρ̃′ = ρ′ − ρ S,

ε̃′ = ε′ − ε∗S + 1
2 DS − i Im(ρ) S. (3.23)

In general, the transverse gauge fields also receive corrections:

β̃ = β + 1
2κ S, β̃ ′ = β ′ − 1

2κ
∗S. (3.24)

From Eqs. (3.21)–(3.24) we conclude that if we align lμ with background geodesics—
namely if κ = 0—then not only do the formulas simplify considerably, but all
nonlinearity in the shift function drops out of the spin coefficients.

This already implies R̃abcd = Rabcd + S R(1)
abcd + S2 R(2)

abcd , i.e., there are no terms
of O(S3) or higher. Furthermore, if the geodesics to which lμ are aligned can also be
taken shear-free—namely if σ = 0—then we get σ̃ ′ = σ ′ as well. Finally, if we also
align l ′μ with background shear-free geodesics, then

κ̃ ′ = [
ð′ + (

τ ∗ − τ ′)] S, ρ̃′ = ρ′ − ρ S, ε̃′ = ε′ − ε∗S + 1
2 DS − i Im(ρ) S.

(3.25)

In this case, the only GHP-covariant derivative that shifts is þ′. The shifted version
acting on a function fh,h̄ ∼ (h, h̄) is

þ̃
′
fh,h̄ = [

þ′ − Sþ − (h + h̄)(þS) + 2i(h − h̄)Im(ρ)S
]

fh,h̄ . (3.26)

This vindicates the discussion below Eq. (3.18) and completes our derivation of the
shifted spin coefficients.

Dray and ’t Hooft explained [19] that test particles crossing the shockwave get
translated and refracted. (See also the work by Matzner [46].) In the spin coefficient
formalism, these effects are described by the shifted versions of ρ′ and κ ′—to the
physics we now turn.

3.4 Shifted horizon

Cartography of the horizon requires the hatted basis. Aswe discussed back in Sect. 2.8,
the future horizon can be defined locally as the subspace ofKruskal-like coordinates on
which the expansion of the outgoing congruence vanishes (ρ̂ = 0). Similarly, the past
horizon is the subspace on which the expansion of the ingoing congruence vanishes
(ρ̂′ = 0).

Recalling the unshifted ρ̂ and ρ̂′ fromEq. (2.45) and the shift described inEq. (3.25),
we find that the coordinate V receives a correction while the coordinate U does not:
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˜̂ρ = ρ̂ �⇒ Ũ = U ,

˜̂ρ′ = ρ̂′ − ρ̂ Ŝ =
(
1 + U

V
δ(U ) f (θ, χ)

)
ρ̂′ ≡

[
1

2|R|2
(




U V

)
1

R∗

]
Ṽ

�⇒ Ṽ − V = U δ(U ) f (θ, χ). (3.27)

This last expression implies that smooth functions of U will experience no coordinate
shift, while functions that go as 1

U near U = 0 will experience a discontinuity in
the coordinate. To see this, interpret Eq. (3.27) as a differential equation in U in the

vicinity of U = 0, i.e., d(Ṽ −V )
dU = limU→0

Ṽ −V
U = δ(U ) f (θ, χ). Integration then

gives

Ṽ = V + �(U ) f (θ, χ). (3.28)

This is the shift as described by Dray and ’t Hooft [19] and by Sfetsos [23].

3.5 Refraction

Since every acolyte of Penrose knows that κ and κ ′ describe the refraction of light
rays, the result that κ ′ becomes nonzero after the shift speaks for itself.

4 Petrov classification for the Kerr–Newman shockwave

Let the games begin. We will first shift the Weyl scalar �4 ∼ (− 2, 0), or more
conveniently its complex conjugate �∗

4 ∼ (0,− 2). Since this is just our opening act,
we will reserve intricate computational details for the main event, the shifted Ricci
scalars.

4.1 Shifted�4 and physical interpretation

Aligning the background frame with shear-free geodesic congruences but assuming
an arbitrary shift function S, we find:

�̃∗
4 = �∗

4 + ððS + 2τ ðS. (4.1)

To obtain this we used the complex conjugate and the prime of �02 from Eq. (2.57)
in the forms ð′τ ∗ = −τ ∗2 and ð′τ ′ = −τ ′2, which hold when �02 = 0.

To specialize to the shockwave, hat everything and insert the ansatz of Eq. (3.8)
for the shift function. Since the calculation is laborious, it is advantageous to first
enumerate conceivable terms.

Remember that the horizon field f (θ, χ) has weights (− 1,− 1). Since �∗
4 has

weights (0,−2), we will have to find operators of weights (1,−1). Fortunately, the
list of such operators that are nonzero at the Kerr–Newman horizon is short:
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ðð ; τð, τ ′∗ð ; τ 2, τ ′∗ 2, ττ ′∗. (4.2)

In principle we would also need ðτ and ðτ ′∗, but again when �02 = 0 those can be
traded for −τ 2 and −τ ′∗2. So the result must have the form

ˆ̃
�∗

4 = k0 δ(U )
[
ðð f + (k1 τ + k2 τ ′∗)ð f + (k3 τ 2 + k4 τ ′∗ 2 + k5 ττ ′∗) f

]
(4.3)

for some functions ki (θ) that will depend on the parameters r+, a, and α. Whether by
hand or by machine we ultimately find:

k0 = − c
2|R|2 , k1 = α|R|2

r , k2 = −2
(
1 + α|R|2

2r

)
, k3 =

(
α|R|2
2r

)2
,

k4 = 1 +
(
1 + α|R|2

2r

)2
, k5 = − α|R|2

r

(
1 + α|R|2

2r

)
. (4.4)

On the way to this result, we encounter terms involving ∂U δ(U ) and ∂ 2
U δ(U ).23 We

interpret them according to the distributional edict of integrating by parts against an
arbitrary smooth test function F(U ):

∫
dU F(U ) ∂ n

U δ(U ) =
∫

dU (− 1)n ∂ n
U F(U ) δ(U ). (4.5)

It should also be understood, as required by the overall factor δ(U ), that all instances
of r in Eq. (4.4) actually denote r+. Also note that numerically we have

τ ′ = − R

R∗ τ ∗, (4.6)

so it is possible to shuffle terms among the coefficients k3, k4, and k5. The particular
form shown inEq. (4.4) iswhatwe exhumeduponperforming the rituals to be disclosed
in Sect. 6.

Invoking the gravitational compass fromSect. 2.11, we interpret Eqs. (4.3) and (4.4)
as describing a transverse “outgoing” gravitational wave stuck to the horizon.24

4.2 Nonrotating limit

It is worth pausing to consider the nonrotating limit, a → 0, in which case only the
ðð f term in Eq. (4.3) survives.

As far as we know, the Weyl scalars for the shifted Reissner–Nordström geometry
have not been calculated explicitly, so we will unpack the definitions of the GHP

23 We also stumble upon the gargantuan notational implosion “ðδ(U ) = δδ(U ).”
24 We cannot help calling the reader’s attention to the following famous quotation: “Now, here, you see, it
takes all the running you can do, to keep in the same place.” This is originally from Through the Looking-
Glass by Lewis Carroll, but we first encountered its application to the horizon of a black hole from the
textbook on the Kerr geometry by O’Neill [47].
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derivatives at the horizon. Remembering that f ∼ (− 1,− 1) and therefore ð f ∼
(− 1

2 ,− 3
2 ), and that in the nonrotating limit we have β = β ′ = β∗ = β ′∗, we find:

ðð f |a = 0 = δδ f − 2β δ f . (4.7)

4.3 Shifted�3 and Petrov type

Our debt to �4 settled, we turn to �3. Shifting the frame (with κ = σ = κ ′ = σ ′)
seemingly produces this Weyl scalar:

�̃∗
3 = �∗

3 + 1
4 (þð + ðþ)S + 1

4 (2τ − τ ′∗)þS + 1
4 (2ρ − 5ρ∗)ðS

− 1
2 [(2τ − τ ′∗)ρ∗ + ðρ∗]S. (4.8)

But by hatting and specializing to Eq. (3.8), we find that each term in Eq. (4.8) goes
to zero at U = 0 for fixed nonzero V :

ˆ̃
�∗

3 = 0. (4.9)

Since the unshifted geometry already had a nonzero �2, we conclude that the shock-
wave is Petrov Type II:

ˆ̃
�0 = ˆ̃

�1 = ˆ̃
�3 = 0, ˆ̃

�2 �= 0, ˆ̃
�4 �= 0. (4.10)

To quote Szekeres: “[I]t can be viewed as a Coulomb field with an outgoing wave
component superimposed” [42].

4.4 Curvatures of submanifolds

Shifting both sides of the GHP commutator equations [see Eq. (2.49)], we find

K̃ = K + Im(ρ)
[
2 Im(ρ) S + i (þS)

]
, K̃s = Ks − 1

2 (þ
2S) + i þ [Im(ρ)S] .

(4.11)

But if we hat everything and specialize to the shockwave ansatz, we will find that all
of the corrections in Eq. (4.11) go to zero. Curiously enough, the shockwave does not
alter the spacelike and timelike curvatures.

4.5 Shifted�2

Inserting Eq. (4.11) into Eq. (2.67) provides the shifted Weyl scalar of weight zero:

�̃2 = �2 + 1
6þ

2S − 1
3 (2ρ − ρ∗)þS + 1

3

[
(3ρ − 2ρ∗)ρ + �00

]
S. (4.12)
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To arrive at this expression, we used the relation25

�00 = −(þρ + ρ2) (if κ = σ = 0) (4.13)

along with �∗
00 = �00. Just as we found for the shifted �3, we find upon disbursing

hats and availing ourselves of Eq. (3.8) that the correction to �2 is zero.
Appealing again to the gravitational compass [42], we say that the Coulomb field

remains unchanged by the presence of a massless particle on the future horizon.

5 Shifted Ricci scalars

Show time. We will first present the shifted Ricci scalars for the generalized Kerr–
Schild geometry under the assumption κ = κ ′ = σ = σ ′, and then we will specialize
to the shockwave.

5.1 Ricci scalar of weight (− 1,− 1): absence of nonlinearity

After the shift from Eq. (3.1), three of the Ricci scalars will become nonzero. Of these,
the apple of our eye will be �22 ∼ (− 1,− 1).

This quantity is defined by priming the definition of �00 in Eq. (2.57):

�22 = −
(
þ′ρ′ + ρ′ 2) + ðκ ′ + τκ ′ + τ ′κ ′∗ − |σ ′|2. (5.1)

Using the shifted ρ′ from Eq. (3.25) and the shifted þ′ from Eq. (3.26), and using
h = h̄ = − 1

2 for ρ′ [recall Eq. (2.27)], we find:

þ̃
′
ρ̃′ = þ′ρ′ + (ρ′þ − ρþ′)S − (þ′ρ + þρ′)S + (þρ)S2,

ρ̃′2 = ρ′2 − 2ρρ′S + ρ2S2. (5.2)

It is worth keeping in mind the formula for�00 under the shear-free geodesic assump-
tion [Eq. (4.13)]. Next, for σσ ′ = κκ ′ = 0, we have26:

�2 + 2� = −(ð′τ + |τ |2) + þ′ρ + ρ′∗ρ (5.3)

= −(ðτ ′ + |τ ′|2) + þρ′ + ρ∗ρ′. (5.4)

It is a matter of some discretion which variables to keep and which to trade away.
We are guided by comparison with the nonrotating limit, which suggests we should

25 This is Raychaudhuri’s equation for null shear-free geodesic congruences.When�00 = 0, it tells us that
þρ = −ρ2. Given the standard interpretation of Re(ρ) as the expansion, we recognize this as the focusing
theorem.
26 Attentive readers have every right to be confused by the second equality: Indeed it turns out that the
combination of derivatives and products of spin coefficients inEq. (5.3) equals its primed version inEq. (5.4).
This must be so, since both �2 = C1342 and � = 1

12 (R12 − R34) are self-prime.
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express as much as possible in terms of τ and τ ′ and their derivatives. So we will use
Eqs. (5.3) and (5.4) to evict þ′ρ and þρ′ from Eq. (5.2).

With our shifted κ ′ from Eq. (3.25), we find:

ðκ̃ ′ = ðð′S + (τ ∗ − τ ′)ðS + (ðτ ∗ − ðτ ′)S,

τ κ̃ ′ + τ ′κ̃ ′∗ = (τð′ + τ ′ð)S + (|τ |2 − |τ ′|2)S. (5.5)

Equations (5.2)–(5.5) then supply the preliminary expression:

�̃22 = �22 + (ρþ′ − ρ′þ)S + �00S2 + ðð′S + τð′S + τ ∗ðS

+
[
2ρρ′ − (ρρ′∗ + ρ∗ρ′) + ð′τ + ðτ ∗ + 2|τ |2 + 2(�2 + 2�)

]
S. (5.6)

Behold: For a background in which �00 = 0, all nonlinear dependence on the pertur-
bation drops out of the curvature scalars. Terms of O(S2) could not possibly show up
elsewhere, because the only curvature scalar with the appropriate weight to include a
product of shifted quantities (in this case þ′ and ρ′) is �22.

To make sense of Eq. (5.6) we will rewrite it in a manifestly real form:

�̃22 = Re(�̃22) = �22 + Re
[
(ρþ′ − ρ′þ)S

] + �00S2

+ 1
2

[
ðð′ + ð′ð + (τ + τ ′∗)ð′ + (τ ∗ + τ ′)ð + (τ − τ ′∗)ð′ + (τ ∗ − τ ′)ð

]
S

+
{
(ρ − ρ∗)(ρ′ − ρ′∗) + (ð′τ + c.c.) + 2|τ |2 + 2 [Re(�2) + 2�]

}
S.

(5.7)

Experts in the compacted formalism should recognize the combination ðð′ + (τ +
τ ′∗)ð′ +c.c. as part of the generalized Laplacian (we will get to this in Sect. 6). Before
elaborating on this, we will vanquish the remaining curvature scalars.

5.2 Other Ricci scalars

The Ricci scalar of weight (− 1, 0) is corrected by the general shift27:

�̃21 = �21 + 1
4 (þð

′ + ð′þ)S + 1
4 (2τ

∗ − τ ′)þS + 1
4 (3ρ − 2ρ∗)ð′S

+ 1
2 (τ

′ρ − 2τ ∗ρ∗ + ð′ρ)S. (5.8)

For the Kerr–Newman background, we have �21 = 0. After hatting and specializing
to Eq. (3.8), we find that each would-be contribution from S to Eq. (5.8) is zero.

Next we have the Ricci scalar of weight (0, 0):

�̃11 = �11 + 1
4þ

2S − 1
2

[
|ρ|2 + (ρ − ρ∗)2

]
S. (5.9)

27 The steps leading to this expression parallel closely those that led to �̃∗
3 .
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Here too we find no correction to the unshifted value after hatting both sides of the

equation and specializing to the shockwave: ˆ̃
�11 = �̂11 = �11.

The Einstein–Hilbert curvature also superficially becomes nonzero as a result of
the shift:

�̃ = � − 1
6

{
1
2þ

2S + (ρ + ρ∗)þS + (|ρ|2 − 2�00) S
}

. (5.10)

But we know that � is proportional to the Lagrangian of general relativity, so its first
order variation must comport with the standard formula

SGR[g + h] − SGR[g] = 1
2

∫
d4x | det(g)|1/2 T μνhμν + O(h2). (5.11)

The shift from Eq. (3.1) effects the metric variation

hμν = −2S lμlν . (5.12)

So varying the action with respect to S will result in something proportional to
T μνlμlν = T μνlμlν = (8π)−1 t00 (recall Sect. 2.12). Because the only nonzero energy
scalar for the background spacetime is t11 ∝ (lμl ′ν + l ′μlν + mμm′

ν + m′
μmν)T μν , we

know that t00 = 0 and thereby expect the O(S) term in Eq. (5.11) to equal zero.28

The nonzero O(S) term in Eq. (5.10) might invite consternation, but we have been
cavalierly ignoring possible boundary terms in the action. So all we require is that the
O(h) term in Eq. (5.11) should be zero, not necessarily that the shift in� itself should
be zero.

For Kerr–Newman, we have29 | det(g)|1/2 = i εμνρσ lμl ′νmρm′
σ = |R|2 sin θ . After

integrating by parts, dropping total derivatives, and using D and ρ from Eqs. (2.8)
and (2.33), we indeed obtain

∫
d4x | det(g)|1/2 �̃ = 0. (5.13)

This completes our account of the shifted curvature scalars for the generalized Kerr–
Schild geometry. (The Ricci scalars not explicitly enumerated in this section do not
shift.) Now we will specialize the shifted �22 to the shockwave.

6 Derivatives of the shift

The spacetime Laplacian ∇2 = ∇μ∇μ finds refuge in the compacted spin coefficient
formalism within a more general operator

� = −�‖ + �⊥, (6.1)

28 We thank Alexei Kitaev for suggesting this check on our work.
29 This expression for | det(g)|1/2 makes clear that it does not receive a correction from Eq. (3.1).
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where

�‖ ≡ [þ + 2Re(ρ)]þ′ + ′, �⊥ ≡ [ð + (τ + τ ′∗)]ð′ + ′. (6.2)

The operator �⊥ will be called the “transverse box.” Evaluating its action on the shift
function is the most technically cumbersome aspect of computing �̃22.

We will do our best to show how the sausage is made without belaboring mindless
algebra.

6.1 Key facts

To set up the calculation we will first collect some useful formulas.
From what may seem like a lifetime ago, we recall that U∂U r = V ∂V r (which

can be traced back to the relation −U∂U + V ∂V = 1
α
∂t ). Therefore, acting on a

weight-(0, 0) function F(r), we have:

ðF(r) = 0. (6.3)

This is our first key fact.
Nextwe recall the explicit formulas for the timelike expansion and the timelike twist

[Eq. (2.34)]. They will compose our basic mnemonic for making sense of complicated
algebraic expressions: The trigonometric functions sin(2θ) and sin θ should evoke
τ + τ ′∗ and τ − τ ′∗ respectively.

We will use this to establish additional useful formulas. Treating δ(U ) as hav-
ing weight (0, 0) and summoning the NP derivatives in Kruskal-like coordinates
[Eq. (2.48)], we find:

ðδ(U ) = −α
ia sin θ

R
√
2

U∂U δ(U ) = − α|R|2
2r

(τ − τ ′∗) U∂U δ(U ). (6.4)

This is our second key fact.
Finally,wemust bear inmind that although functions of r canbe treated as constants,

the generalized radial function R = r + ia cos θ is also a function of θ . Treating this
too as a function of weight (0, 0), we compute the following:

ð

(
1

|R|2
)

= − 1

(|R|2)2 ð
(
|R|2

)
= + a2 sin(2θ)√

2R|R|4 = − 1

|R|2 (τ + τ ′∗). (6.5)

This is our third key fact.

6.2 Integration by parts

Wedescribed back in Eq. (4.5) the standard integration-by-parts procedure that defines
the delta function. Here it will be useful to study two special cases of that formula.
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First consider a distribution O(U ) U∂U δ(U ) (where the conditions on O(U ) will
be specified shortly), and integrate it against a test functionF(U ) that falls off quickly
enough to merit dropping the boundary term:

∫
dU O(U ) U∂U δ(U )F(U ) = −

∫
dU [O(U )F(U )

+U∂U (O(U )F(U ))] δ(U ). (6.6)

If ∂U (O(U )F(U )) ∼ U n with n ≥ 0 near U = 0, then the second term evaluates to
zero. We then obtain the following distributional equality:

O(U ) U∂U δ(U ) = −O(U ) δ(U ). (6.7)

Along similar lines, we will obtain a second distributional equality:

O(U ) U∂U (U∂U δ(U )) = +O(U ) δ(U ). (6.8)

Equipped with the key facts in Eqs. (6.3)–(6.5) and the above distributional equalities,
we are ready to face the transverse box.

6.3 First-derivative terms

We warm up with a first-derivative term. Specializing to the shockwave ansatz in
Eq. (3.8) and applying our key facts, we obtain the preliminary expression

ðŜ = 1
2



U V

[
ð( 1

|R|2 )δ(U ) f (θ, χ) + 1
|R|2 ðδ(U ) f (θ, χ) + 1

|R|2 δ(U )ð f (θ, χ)
]

= 1
2|R|2



U V

{
δ(U )

[
ð − (τ + τ ′∗)

]
f (θ, χ) − α|R|2

2r (τ − τ ′∗) U∂U δ(U ) f (θ, χ)
}

.

(6.9)

Before integrating by parts against a test function, we need to multiply by τ ∗ + τ ′ to
obtain the term (τ ∗ + τ ′)ðŜ that appears in the transverse box.30

Note that since |τ |2 = |τ ′|2 for the Kerr–Newman spacetime, we have

(τ ∗ + τ ′)(τ − τ ′∗) = 2i Im(ττ ′). (6.10)

Using this and the distributional equality in Eq. (6.7), we obtain [also recall c ≡
− 


U V

∣∣
r = r+ from Eq. (2.38)]

(τ ∗ + τ ′) ðŜ = − c

2|R|2 δ(U )
{
(τ ∗ + τ ′) ð − |τ + τ ′∗|2 + i α|R|2

r Im(ττ ′)
}

f (θ, χ).

(6.11)

30 Since τ∗ + τ ′ depends on U and V only through r = r(U V ), and since we have already said such
functions can be treated as constants with respect to U∂U for our calculation, it does not matter in this
particular instance whether we integrate by parts before or after multiplying by τ∗ + τ ′.
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6.4 Second-derivative terms

Returning to Eq. (6.9), we act with ð′ (and skip a few steps now that the method is
presumably clear) to obtain

ð′ðŜ = 1
2|R|2



U V

{
δ(U ) ð′ð f −

[
(τ + τ ′∗) δ(U ) + α|R|2

2r (τ − τ ′∗) U∂U δ(U )
]
ð′ f

−
[
(τ ∗ + τ ′) δ(U ) + α|R|2

2r (τ ∗ − τ ′) U∂U δ(U )
]
ð f + C f

}
, (6.12)

where

C = |τ + τ ′∗|2 δ(U ) − i α|R|2
r Im(ττ ′) U∂U δ(U ) −

(
δ(U ) + α|R|2

2r U∂U δ(U )
)
ð′τ

−
(
δ(U ) − α|R|2

2r U∂U δ(U )
)

(ðτ ′)∗ +
(

α|R|2
2r

)2 |τ − τ ′∗|2 U∂U [U∂U δ(U )] .

(6.13)

Note that in Eq. (6.12) the coefficient of ð′ f is the complex conjugate of the coefficient
of ð f . This did not have to be so, because we are computing ð′ðŜ right now, not
ð′ðŜ + c.c., and in general ð′ð �= ðð′.

This quantity ð′ðŜ will be integrated directly against a test function (because it

appears directly in the transverse box, which in turn appears directly in ˆ̃
�22), so

we can use the distributional equalities in Eqs. (6.7) and (6.8), loosely expressed as
U∂U δ(U ) → −δ(U ) and U∂U [U∂U δ(U )] → +δ(U ). Applying these to Eq. (6.12),
we obtain:

ð′ðŜ = − c

2|R|2 δ(U )

{
ð′ð −

[
(τ + τ ′∗) − α|R|2

2r (τ − τ ′∗)
]
ð′

−
[
(τ ∗ + τ ′) − α|R|2

2r (τ ∗ − τ ′)
]
ð

+ |τ + τ ′∗|2 + i α|R|2
r Im(ττ ′) −

(
1 − α|R|2

2r

)
ð′τ −

(
1 + α|R|2

2r

)
(ðτ ′)∗

+
(

α|R|2
2r

)2 |τ − τ ′∗|2
}

f (θ, χ). (6.14)

6.5 Transverse box

Nowwe can finish the job. Returning to the first-derivative term in Eq. (6.9) and adding
its complex conjugate, we obtain:

(τ ∗ + τ ′)ðŜ + c.c. = − c

2|R|2 δ(U )

×
{
(τ + τ ′∗)ð′ + (τ ∗ + τ ′)ð − 2|τ + τ ′∗|2

}
f (θ, χ).

(6.15)
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Next we obtain the anticommutator of GHP derivatives by taking Eq. (6.12) plus its
complex conjugate:

ð′ðŜ + c.c. = − c

2|R|2 δ(U )

{
(ð′ð + ðð′)

+
[
−

(
2(τ + τ ′∗) − α|R|2

r (τ − τ ′∗)
)
ð′ + c.c.

]

+ 2|τ + τ ′∗|2 −
(
1 − α|R|2

2r

)
(ð′τ + c.c.) −

(
1 + α|R|2

2r

)
(ðτ ′ + c.c.)

+ 2
(

α|R|2
2r

)2 |τ − τ ′∗|2
}

f (θ, χ). (6.16)

We then add Eqs. (6.15) and (6.16) to obtain the transverse box. For reasons morally
unbeknownst to us, the |τ + τ ′∗|2 term will cancel out. Also, for Kerr–Newman, we
have

ðτ ′ = ð′τ. (6.17)

There is probably a good reason for this, but it escapes us. At any rate, it implies that
the α-dependent parts of the coefficients of ð′τ + c.c. and ðτ ′ + c.c. drop out.

Therefore, the transverse box acting on the shift function, expressed in terms of
GHP derivatives at the horizon, simplifies to:

�⊥ Ŝ = − c

2|R|2 δ(U )

{
(ð′ð + ðð′) +

[
−

(
(τ + τ ′∗) − α|R|2

r (τ − τ ′∗)
)
ð′ + c.c.

]

− 2(ð′τ + c.c.) + 2
(

α|R|2
2r

)2 |τ − τ ′∗|2
}

f (θ, χ). (6.18)

This completes the most arduous part of the calculation. It bears repeating that all
quantities in Eq. (6.18) are understood to be evaluated at r = r+, as mandated by the
overall delta function.

6.6 Laplacian on the squashed sphere

We could leave the result for �⊥ Ŝ in the form of Eq. (6.18), but those familiar with
the Dray–’t Hooft solution expect 2d Laplacians.

Our shift function S and our horizonfield f haveGHPweight (− 1,− 1). In general,
a weighted function fh,h ∼ (h, h) has spin-weight s ≡ h − h̄ = h − h = 0. The
shockwave has h = −1, but without much fuss we can understand the situation for
s = 0 but arbitrary h.31

By explicit computation on a function fh,h(θ, χ) of the Kruskal-like angular coor-
dinates only, we find that the following combination of NP derivatives and GHP gauge

31 Since complex conjugation exchanges h and h̄, only functions with s = 0 can be taken real.We therefore
assume f ∗

h,h = fh,h for simplicity.
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fields reproduces the Laplacian on the squashed sphere32:

δ′δ + δδ′ − (β + β ′∗)δ′ − (β ′ + β∗)δ = ∇ 2
2d. (6.19)

So unpacking the GHP derivatives according to their original definitions back in
Eq. (2.29) provides the desired expression:

(ð′ð + ðð′) fh,h(θ, χ) =
{
∇ 2
2d + [

4h(β − β ′∗)δ′ + c.c.
]

+2h
[
(δ′β − δβ ′ + c.c.) + 2(|β ′|2 − |β|2) + 4h|β − β ′∗|2

]}
fh,h(θ, χ). (6.20)

That is how our coveted 2d spatial Laplacian manifests in our story. Its tragedy is that
while we may find temporary solace in a familiar face, this yearning for camaraderie
cost us the guidance of GHP covariance, without which we are hopelessly lost.

7 Ricci tensor

The trace-reversed Ricci tensor, being necessary to the gravitational field of a localized
Source, the propensity of a massless particle to generate Curvature, shall now be
realized.

7.1 Relation to curvature scalars

We emerge from the chrysalis of the internal by translating the usual prescription
Rμν = e a

μ e b
ν Rab into NP notation:

1
2 Rμν = l ′μl ′ν �00 + lμlν �22 + [

m′
μm′

ν �02 − (l ′μm′
ν + m′

μl ′ν)�01

− (lμmν + mμlν)�21 + c.c.
]

+ (lμl ′ν + l ′μlν + mμm′
ν + m′

μmν)�11

+ (lμl ′ν + l ′μlν − mμm′
ν − m′

μmν) 3�. (7.1)

To evaluate the right-hand side, we first need to tilde everything (to calculate shifted
quantities), and then we need to hat everything (to work in the horizon basis).

We will specialize directly to the shockwave, so the only Ricci scalar that will shift
is �22. Meanwhile, the unshifted geometry has only a nonzero �11. Therefore, we
have for the full (i.e., including the unshifted part) Ricci tensor:

32 A squashed sphere of radius r has line element ds2 = |R|2dθ2 + |R0|4
|R|2 sin2 θ dχ2 ≡ hi j dxi dx j ,

and the Laplacian derived from that is ∇ 2
2d = 1

|R|2
[
∂ 2
θ +

(
|R0|2+a2 sin2 θ

|R|2
)
cot θ ∂θ + |R|4

|R0|4
1

sin2 θ
∂ 2
χ

]
.

If R2d
i j is the Ricci tensor derived from hi j , then

1
4 hi j R2d

i j = Re(K)|r = r+ , the intrinsic curvature from
Eq. (2.52).
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1
2 R̃μν = ˆ̃lμ ˆ̃lν ˆ̃

�22 + (
ˆ̃lμ ˆ̃l ′ν + ˆ̃l ′μ ˆ̃lν + ˆ̃mμ

ˆ̃m′
ν + ˆ̃m′

μ
ˆ̃mν)

ˆ̃
�11

= l̂μl̂ν
ˆ̃
�22 + (l̂μ

ˆ̃l ′ν + ˆ̃l ′μl̂ν + mμm′
ν + m′

μmν)�11. (7.2)

In the second line we have removed the tildes for quantities that equal their unshifted
counterparts, and we have removed the hats from quantities that do not get rescaled
by factors of U when passing from the standard frame to the horizon one.33

Recalling from Eq. (3.1) the premise that launched this travail in the first place, we
isolate the part of the Ricci tensor that results from the shift:

R shift
μν = 2 l̂μl̂ν (

ˆ̃
�22 + 2Ŝ �11). (7.3)

Returning to our explicit expressions for the 1-forms in Eq. (2.47), we find:

l̂
∣∣∣
U = 0

= |R+|2
α|R0+|2 dU . (7.4)

So we learn first of all that Rshift
μν = R shift

UU δ U
μ δ U

ν , as promised.

7.2 Relation to energy scalars

Meanwhile, the energy tensor also admits an expansion analogous to Eq. (7.1):

4πTμν = l ′μl ′ν t00 + lμlν t22 + [
m′

μm′
ν t02 − (l ′μm′

ν + m′
μl ′ν) t01

− (lμmν + mμlν) t21 + c.c.
]

+ (lμl ′ν + l ′μlν + mμm′
ν + m′

μmν) t11

+ (lμl ′ν + l ′μlν − mμm′
ν − m′

μmν) 3t�. (7.5)

Anticipating the required energy tensor term by term, we conclude:

8πT shift
μν = 2 l̂μl̂ν ( ˆ̃t22 + 2Ŝ t11). (7.6)

Given that the background Einstein equation is, by construction, �11 = t11 [recall
Eq. (2.71)], all we need is a t22 such that

ˆ̃
�22 = ˆ̃t22. (7.7)

Thewhole point of this tale is that the correction to the left-hand side can be interpreted
as the backreaction from a massless particle on the future horizon, so that is what will
populate the right-hand side. In this paper we focus on the geometry instead of the
field theory, so let us leave that aside and press on.

33 There is no need to place a hat on the Ricci tensor, because by construction it is invariant under GHP
transformations of the frame.
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7.3 Final result for822

Returning to our earlier calculation of ðŜ [Eq. (6.9)],multiplying by τ ∗−τ ′, integrating
by parts, and adding the complex conjugate, we obtain the remaining first-derivative
terms:

(τ − τ ′∗)ð′ Ŝ + c.c. = − c

2|R|2 δ(U )
{
(τ − τ ′∗)ð′ + (τ ∗ − τ ′)ð

+α|R|2
r |τ − τ ′∗|2

}
f (θ, χ). (7.8)

Next take the general shifted �22 from Eq. (5.7), hat it, and recognize that ρ̂′ þ̂Ŝ and
(ρ̂ − ρ̂∗)(ρ̂′ − ρ̂′∗) go to zero at U = 0.

But ρ̂ þ̂
′
Ŝ is more subtle, since within D̂′ lurks ∂U . Applying Eq. (6.7), we obtain

Re(ρ̂ D̂′ Ŝ) = αr+
|R0+|2
|R+|4 Ŝ = − 1

2

[
ðτ + ð′τ ∗ + 2|τ |2 + 2Re(�2)

]∣∣∣
r = r+

Ŝ. (7.9)

Because ρ̂
∣∣
U = 0 = 0, the terms involving ε̂′ and ε̂′∗ drop out, leaving us with

Re(ρ̂þ̂
′
Ŝ) = Re(ρ̂ D̂′ Ŝ) = −Re(þ̂

′
ρ̂)Ŝ.

Putting all this together (and using �00 = � = 0), we reduce our shifted �22 to
the relatively compact form:

ˆ̃
�22 = 1

2

{
�⊥ + (τ − τ ′∗)ð′ + (τ ∗ − τ ′)ð + (ð′τ + c.c.) + 2|τ |2 + 2Re(�2)

}
Ŝ.

(7.10)

Enlisting our result for�⊥ Ŝ inEq. (6.18) and the relation 4|τ |2 = |τ+τ ′∗|2+|τ−τ ′∗|2,
we finally obtain the beautiful, exquisite, magical expression

ˆ̃
�22 = − c

4|R|2 δ(U )D f (θ, χ), (7.11)

where the differential operator D is

D = ð′ð + ðð′ +
[
−(τ + τ ′∗) +

(
1 + α|R|2

r

)
(τ − τ ′∗)

]
ð′

+
[
−(τ ∗ + τ ′) +

(
1 + α|R|2

r

)
(τ ∗ − τ ′)

]
ð

+ 2Re(�2) − (ð′τ + ðτ ∗) + 1
2 |τ + τ ′∗|2 + 1

2

(
1 + α|R|2

r

)2 |τ − τ ′∗|2. (7.12)

This is our final result.
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It is expressed in terms of quantities that have innate geometrical significance, in
that each operator has a definite GHP weight. When a = 0, we obtain34

D |a = 0 = ð′ð + ðð′ + 2Re(�2). (7.13)

As could be anticipated from the Type D character of the background, we see that it
is part of the Weyl tensor, Re(�2), not the intrinsic curvature, Re(K), that appears
most naturally in the GHP-covariant form of the shifted �22 for generic values of the
angular momentum.

On the other hand, the intrinsic curvature presents itself when we trade the GHP-
covariant derivatives for the 2d Laplacian plus its associated ejecta. We first expand
ð f = [δ + 2(− 1)β − 2(− 1)β ′∗] f and specialize Eq. (6.20) to h = − 1. Then we
shuffle the terms around using numerical relations like35

β ′ − β∗ = τ ′ (Kerr–Newman) (7.14)

and

|β ′|2 − |β|2 = a2

2|R|4 (Kerr–Newman). (7.15)

In this way we obtain the following alternative form for Eq. (7.12):

D = ∇ 2
2d + 1−αR

r (τ − τ ′∗)R∗ δ′ + 1−αR∗
r (τ ∗ − τ ′)R δ

+ 2rα

{

− 2

( |R|2
|R0|2 Re(K) + 2a2

|R|4
)

+ |τ + τ ′∗|2

+
[

1 + rα

( |R|2
2r2

)2
]

|τ − τ ′∗|2
}

. (7.16)

Wewill refer to the coefficient of f (θ, χ) in ˆ̃
�22, encapsulated by the term inEq. (7.16)

without any derivatives, as the “mass term.” It is organized in terms of the intrinsic
curvature at the horizon [recall Eq. (2.52)] and quantities proportional to some power
of the angularmomentum.Expressed in thisway, themass term reeks ofKaluza–Klein,
but we will leave that for another day. Regardless, this form shows clearly which terms
go to zero as we turn off the rotation.

When a = 0 (but Q �= 0), we recover the known spherically symmetric answer36:

ˆ̃
�22

∣∣∣
a = 0

= − c

4r2+
δ(U )

(
∇ 2
2d − 2α

r+

)
f (θ, ϕ). (7.17)

34 At r = r+, we have Re(�2)|a = 0 = − α
r+ .

35 It is possible that these relations embody some hidden meaning. But the two sides of Eq. (7.14) do not
transform in the same way under Eq. (2.17), so we hesitate to dig deeper.
36 At r = r+, we have Re(K)|a = 0 = 1

2r2+
. Also, when a = 0 the delayed angle χ becomes the ordinary

azimuthal angle ϕ.
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While the geometrical significance of themass term inEq. (7.16) eludes us, the physical
significance of the overall factor of α in shockwave geometries has been emphasized
by others.37 In the extremal limit, which in this case is a2 + Q2 = M2 and hence
r− = r+, the surface gravity α goes to zero (as usual), and the entire mass term
vanishes.

As far as we know, the first to point this out in the spherically symmetric situa-
tion was Sfetsos, who interpreted it as a breakdown of the solution [23]. The effect
was recently revisited by Leichenauer in the context of entanglement between the
conformal field theories dual to the asymptotically-AdSgeneralization of theReissner–
Nordström black hole [48]. And in the context of scattering, the vanishing of the mass
term in the operator D is what Maldacena and Stanford call the “β J enhancement”
of the amplitude [16].

But let us not get ahead of ourselves. In this paper we are concerned exclusively
with the single-shockwave geometry and its interpretation within general relativity.
The sun will rise tomorrow, and we will have another opportunity to traverse that
wormhole.

8 Discussion

Inspired by ’tHooft’s S-matrix approach to quantumgravity andKitaev’s recent revival
thereof, we have generalized the Dray–’t Hooft gravitational shockwave to the Kerr–
Newman black hole using the method of spin coefficients.

We have not solved the resulting Green’s function equation, D f ∝ δ2(x⊥). Since
D is analytic near a = 0, we could perturb around the Dray–’t Hooft integral formula
[19]. Or maybe we should expand in spheroidal harmonics, but we would probably
have to resort to numerics for anything beyond a rudimentary understanding.38 On a
different tack, we could perturb other backgrounds by shifting the frame: Shockwaves
on Kerr–AdS might eventually lead to precise statements about chaos in a putative
dual field theory.39

We will conclude with a pedantic remark about the effective action for the horizon
field. Given a classical equation of motion, we should ask what variational principle
could lead to it. Since the Ricci tensor is linear in f (θ, χ), our equation of motion is
linear in the field, so we might expect a quadratic action.

But the Lagrangian is proportional to the Einstein–Hilbert curvature �, which we
have already seen is linear in f . What to make of this? Recall that if the “equa-
tion of motion” is actually a constraint—which in this case it is—then it should be
implemented in the calculus of variations by introducing a Lagrange multiplier.

37 We thank Douglas Stanford for explaining this to us.
38 Dray and ’t Hooft themselves “have not attempted to perform the integration explicitly” for their result
[19]. Sfetsos, for his part, did elaborate somewhat on his solutions in Appendix D of his paper [23].
39 We thank Nick Hunter-Jones for encouragement in this direction.
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Consider a path integral over all classical fields f (θ, χ) that satisfy D f = 040:

Z ≡
∫

D f δ (D f ) =
∫

D f D f ′ e i
∫

d2x f ′D f . (8.1)

We have used the Fourier representation of the delta function and thereby concocted
a classical field f ′, which serves as a Lagrange multiplier for the equation D f = 0.

The argument of the exponential in Eq. (8.1) is ’t Hooft’s effective action [9].
This straightforward interpretation of the constraint for the horizon field provides a
path-integral sense in which the two shockwaves are canonically conjugate variables.
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A Signature change

In this appendix we sail fromWest to East, scrupulously marking all signs in our wake.
Relics will be tagged by overbars.

A.1 Basic assumptions

We begin by flipping the signs of both the base space and internal metrics:

gμν ≡ ζ ḡμν, ηab ≡ ζ η̄ab, ζ ≡ −1. (A.1)

In terms of the corresponding frames, we have gμν = ηab ea
μeb

ν , ḡμν = η̄ab ēa
μēb

ν ,
ηab = gμνeμ

a eν
b , and η̄ab = ḡμν ēμ

a ēν
b . Defining eaμ ≡ ηab eb

μ and ēaμ ≡ η̄ab ēb
μ, we

obtain from Eq. (A.1):

ea
μeaν = ζ ēa

μēaν, eμ
a ebμ = ζ ēμ

a ēbμ. (A.2)

Relative to Chandrasekhar [31], our null vectors (lμ, l ′μ, mμ, m′μ) will not flip sign,
in which case our null forms (lμ, l ′μ, mμ, m′

μ) ≡ (gμν lν, gμν l ′ν, gμν mν, gμν m′ν)
will. This is a choice.

From this—with attention to the fact that the basis is null—we infer:

eμ
a ≡ ēμ

a , ea
μ ≡ ēa

μ. (A.3)

40 For the sake of brevity we are only considering the gravitational part of the action. More generally there
should be an f -independent function on the right-hand side of the constraint.
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Neither eμ
a nor ea

μ flips sign. What does flip sign is the quantity with both indices
lowered:

eaμ = ζ ēaμ. (A.4)

A.2 Spin coefficients flip sign

If we insert the above definitions into dea + ωa
b ∧ eb = 0, we will find that the spin

connection with one index up and one index down does not flip sign:

ωa
b = ω̄a

b. (A.5)

So ωab does flip sign. Unpacking the 1-form index and recognizing that dxμ = dx̄μ,
wefind (ωμ)ab = ζ (ω̄μ)ab. RecallingEq. (2.12),we conclude that the spin coefficients
flip sign:

γabc = ζ γ̄abc. (A.6)

Meanwhile, because of Eq. (A.4), the null Cartan equations are the same in either sig-
nature. So Eq. (2.32) looks exactly the same as Eq. (4.13.44) in Spinors and Spacetime
[32].

A.3 Curvature scalars do not flip sign

Next up, curvature. Sinceωa
b does not flip sign, neither does�a

b ≡ dωa
b+ωa

c∧ωc
b:

�a
b = �̄a

b. (A.7)

So �ab does flip sign. As an unavoidable consequence, the Riemann tensor in the
internal with all indices down, Rabcd ≡ (�μν)ab e μ

c e ν
d , flips sign:

Rabcd = ζ R̄abcd . (A.8)

It is misleading to simply assert that the Newman–Penrose equations remain fixed
upon changing the metric signature, as if it were to follow as night the day.

Crucially, the Weyl scalars are defined from Cabcd , which in turn is defined from
Rabcd [recall Eq. (2.62)]—this quantity flips sign under a change of signature:

Cabcd = ζ C̄abcd . (A.9)

Shouldwe fashion an extra sign in the definition of theWeyl scalars to obviate this?No.
Beside the sign fromEq. (A.8), there is also anoverall sign choice in thedefinitionof the
curvature scalars—by sheer happenstance, our conventions in Eq. (2.63) automatically
cancel this additional sign compared to theGHP equations as traditionallywritten [34].
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Meanwhile, since Ra
bcd = ηae Rebcd and Rabcd = ζ R̄abcd , the Ricci tensor in the

internal does not flip sign:

Rab ≡ Rc
acb = R̄c

acb ≡ R̄ab. (A.10)

For the Ricci scalars in Eq. (2.56) we do commission a sign relative to the standard
references.

The Einstein–Hilbert curvature sprouts yet another sign:

ηab Rab = ζ η̄ab R̄ab. (A.11)

To maintain the sanctity of the GHP equations, we must begrudgingly define

� ≡ − 1

24
ηab Rab = −ζ

1

24
η̄ab R̄ab = +�̄. (A.12)

A.4 Extra sign in GHP derivatives

Before docking we must ensure that the Icelandic runes make sense. Consider the
GHP derivatives as defined by Penrose and Rindler [32]:

þ̄ ≡ D̄ − 2h ε̄ − 2h̄ ε̄∗, ð̄ ≡ δ̄ − 2h β̄ + 2h̄ β̄ ′∗,
þ̄
′ ≡ D̄′ + 2h ε̄′ + 2h̄ ε̄′∗, ð̄

′ ≡ δ̄′ + 2h β̄ ′ − 2h̄ β̄∗. (A.13)

Explicitly verifying their GHP covariance on a weighted test function, we see that a
certain crucial sign emerges as a result of whether lμl ′μ = −mμm′

μ is + 1 or − 1. It is
this sign that determines the extra signs in Eq. (A.13) relative to those in Eq. (2.29).
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