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Abstract
We investigate the quasinormal modes of a class of static and spherically symmetric
black holes with the derivative coupling. The derivative coupling has rarely been paid
attention to the study of black hole quasinormal modes. Specifically, we study the
effect of derivative coupling on the quasinormal modes for four kinds of black holes.
They are Reissner–Nordström black holes, Bardeen black holes, noncommunicative
geometry inspired black holes and dilaton black holes. These black holes are not
the solutions of vacuum Einstein equations which guarantees the effect of derivative
coupling is not trivial. We find the influence of derivative coupling on the quasinormal
modes roughly mimics the overtone numbers. In other words, there is a qualitative
similarity in the trend of quasinormal modes frequencies due to increasing either the
coupling constant and the overtone number.

Keywords Black hole · Quasinormal modes · Derivative coupling

1 Introduction

Recent detections of gravitational waves at LIGO and VIRGO [1–8] mark the begin-
ning of the astronomical era of gravitational waves. The dominating contribution to
gravitationalwaveswhen a black hole is perturbed comes from the quasinormalmodes.
This is a long period of damping proper oscillations whose frequencies only depend
on the parameters of the black hole. Thus it is called the “character sound” of black
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holes. Making perturbations to a black hole can be performed in two ways. One is by
adding matter fields of different spins to the black hole spacetime and the other is by
perturbing the black hole metric itself. Either way, the black hole undergo damped
oscillations at the intermediate stage with complex frequencies. The real part of the
frequency describes the oscillation rate and the imaginary part describes the damped
rate. These oscillations are called quasi-normal modes (QNMs).

Black hole QNMs are in the first place studied in the gravitational and electro-
magnetic perturbations around black hole spacetimes, late-time evolution of fields in
the black hole spacetime and numerical simulations of stellar collapse [9–16]. And
then it is found that black hole QNMs can be associated with the restoration of ther-
mal equilibrium for the perturbed state in ADS/CFT [17]. Thirdly, it is revealed there
is a connection between QNMs and spacetime geometries with the Choptuik scal-
ing [18–20]. Finally, QNMs have also become relevant to quantum gravity for some
different reasons. It arises from Hod’s proposal of describing quantum properties of
black holes from their classical oscillation spectrum [21]. So far, black hole QNMs
have been extensively studied from different perspectives. For an incomplete list see
[22–50] and references therein.

On the other hand, in order to explain the acceleration of the Universe, many
extensions of general relativity have been proposed. In particular, a lot of work has
been devoted to Horndeski theories [51] which is derived by Horndeski forty years
ago and independently re-derived by [52–54] recently. Horndeski theories are themost
general scalar–tensor theories with second order equation of motion. Thus they are
free of ghosts. It is found that the Horndeski theories play important role in both
cosmological and astrophysical scenarios, for example, inflationary cosmology [55],
dark energy cosmology [56–60] neutron stars [61–64] and other astrophysical objects
[65–72].

One of the many interesting features of Horndeski theories is the coupling between
the derivative of the scalar field and the Einstein tensor. In the aspect of cosmology,
this term leads to cosmic speed-up without the need of any scalar potential. This is
firstly pointed out in [73]. The studies on this coupling have attracted much interest in
both inflationary [74–76] and late time cosmology [77,78]. However, rare attention of
this coupling has been paid to the black hole quasinormal modes so far. Some studies
in this aspect are as follows. Ref. [79] studied the QNMs and the dynamical evolution
of a scalar field with the derivative coupling for charged black hole. Ref. [80] studied
the QNMs of a massive scalar field with the derivative coupling for a regular black
hole. Ref. [81] investigated the QNMs of a scalar perturbation with this derivative
coupling in the warped ADS black hole spacetime. Ref. [82] investigated the QNMs
and dynamical evolution of the scalar perturbation with this derivative coupling in de
Sitter spacetimes. Finally, Ref. [83] investigated the long-lived quasinormal modes
and instability problem of a massive non-minimally coupled scalar field in Reissner–
Nordström spacetime.

Thus the goal of this paper is to investigate the quasinormal modes of a massive
scalar fieldwith derivative coupling in themost general, static and spherically symmet-
ric black hole spacetimes. The analysis of the QNMs in our calculations may provide
a hint for the identification of derivative coupling in the scalar field from the future
observations of gravitational waves. To this end, we shall start from the Klein–Gordon
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equation with the derivative coupling and derive the effective potential in the back-
ground of most general, static and spherically symmetric black hole spacetimes. The
effective potential plays a key role in the calculation of QNMs. Then four black hole
spacetimes are considered. They are Reissner–Nordström black holes (RN), Bardeen
black holes [84], noncommunicative geometry inspired (NGI) black holes [85] and
dilaton black holes [86,87]. Why do we consider these four black holes? We notice
that in order to illustrate the effect of derivative coupling, Gμν must not be vanishing.
So the solutions of vacuum Einstein equations, such as the Schwarzschild solution, the
Kerr solution and their de Sitter extension, would present us trivial results. Therefore
we consider above four black holes with non-vanishing Einstein tensors.

The paper is organized as follows. In Sect. 2, we derive the effective potential
in general, static and spherically symmetric black hole spacetimes and describe the
third-order WKB method. It is perhaps the most popular method for the calculation
of black hole QNMs which is devised by Schutz, Will and Iyer [88–90]. In Sect. 3,
we study the effect of derivative coupling on the effective potential. The expression of
effective potential for Bardeen black holes, NGI black holes and dilaton black holes
are rather lengthy. Therefore, we do not explicitly write them here and only make
their plotting. There are two phases for RN, Bardeen and NGI black holes. One is for
the extreme black holes and the other is for the non-extreme case. The extreme black
holes have only one horizon and the non-extreme have two horizons. So the effect of
derivative coupling on these two scenarios are discussed. In Sect. 4, we tabulate and
make an analysis on the corresponding QNMs for four kinds of black holes. Finally,
Sect. 4 gives the conclusion and discussion. Throughout the paper, the system of units
is G = c = � = 1 and the metric signature is (−, +, +, +).

2 Effective potential and theWKBmethod

In this section, we derive the effective potential for the scalar field with derivative
coupling in the background of general static and spherically symmetric black hole
spacetimes. The corresponding metric is given by

ds2 = − f (r) dt2 + f (r)−1dr2 + R(r)2d�2, (1)

where d�2 = dθ2 + sin2θdϕ2 is the line element for a unit sphere. We consider the
scalar field with derivative coupling which has the equation of motion as follows

�� + βGμν∇μ∇ν� + m2� = 0. (2)

Herem is themass of scalar particle,β is the coupling constantwhichhas the dimension
of square of length. In the absence of β term, it restores to the usual Klein–Gordon
equation. The β term has attracted much interest in both inflationary [74–76] and late
time cosmology [77,78]. However, rare attention of this term has been paid to the black
hole quasinormal modes. Making separation of the field �(t, r , θ, ϕ) as follows

�(t, r , θ, ϕ) = e−iωt Ylm(θ, ϕ)K (r), (3)
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we obtain the radial equation for the scalar perturbation

AK ′′ + BK ′ +
(
ω2C − Ṽ

)
K = 0, (4)

where K ′′ = ∂2K
∂r2

, K ′ = ∂K
∂r , and A, B,C, Ṽ are defined by

A ≡ g11 + βG11, (5)

B ≡ 1

R(r)2

[
R(r)2

(
g11 + βG11

)]′
, (6)

C ≡ −
(
g00 + βG00

)
, (7)

Ṽ ≡ m2 + l (l + 1)
(
g22 + βG22

)
. (8)

Here l = 0, 1, 2, . . . and ′ denotes the derivative with respect to r . Ylm is the spherical
harmonics. In order to analyse the frequencies of quasinormal modes, we should
transform the radial equation into the standard form

F,r∗r∗ +
[
ω2 − V (r)

]
F = 0, (9)

where F , r∗ and V are the new radial function, the new radial coordinate and the
effective potential, respectively. “,” denotes the derivative with respect to r∗. To this
end, we introduce a function E and replace the radial function K with F defined by

F ≡ CEK , (10)

then Eq. (4) becomes

{
d2

d2r∗
+ ω2 − Ṽ

C
+

[
(A + B) E

d2

d2r

(
1

CE

)]}
F = 0, (11)

provided that

1

2

(
AE

CE

)′
= BE

CE
+ 2AE

(
1

CE

)′
. (12)

This equation determines the expression of function E . r∗ is defined by

r∗ ≡
∫ √

C

A
dr . (13)

Then we obtain the effective potential

V = Ṽ

C
− E

[
A

(
1

CE

)′′
+ B

(
1

CE

)′]
. (14)
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Eliminating E by using Eq. (12), we obtain

V = −Aζ ′ + ζ

{
AC

[(
1

C

)′
− ζ

]
− B

}
+ Ṽ

C
, (15)

where

ζ ≡ 1

2A

[
1

2

(
A

C

)′
− B

C

]
. (16)

This result is useful since it can be applied to arbitrary static spherically symmetric
black hole spacetimes. We note that for the RN black hole, the potential was firstly
derived by Chen and Jing [79]. In the next sections, we shall study the quasinormal
modes of Reissner–Nordström black holes, dilaton black holes, Bardeen black holes
and noncommunicative geometry inspired black holes, respectively.

To calculate the QNMs of black holes, various numerical methods have been
proposed in literature. They are Mashhoon method [91], Chandrasekhar–Detweiler
and shooting methods [92], WKB method [88–90], continued fraction method [93],
Pöschl–Teller approximation [94], and phase integral method [95,96]. In this paper,
we shall evaluate the quasinormal modes of black holes by using the third-order
WKB method. It is perhaps the most popular method. This method has been used
extensively in evaluating quasinormal frequencies of various black holes. For an
incomplete list see [22–50] and references therein. We note that even higher order
WKB method [97,98] could produce much more accurate results than the third-
order method. But for simplicity in calculations, we shall adopt the third-order WKB
method.

The frequency of QNMs given by the third-order WKB method [88,89] takes the
form

ω2 =
(
V0 +

√
−2V0′′�

)
− i

(
n + 1

2

) √
−2V0′′ (1 + �) , (17)

where � and � are determined by the overtone number n and the derivatives of
the effective potential at the peak. The bulky expressions of � and � can be found
in [88,89]. n = 0, 1, 2, . . . are the overtone numbers and rp is the position for the
peak of effective potential. It is pointed that [99,100] the accuracy of the WKB
method depends on the multipolar number l and the overtone number n. The WKB
approach is consistent with the numerical method very well provided that l > n.
Therefore we shall present the quasinormal frequencies of scalar perturbation for
n = 0 and l = 1, 2, 3, respectively. In the next sections, we analyse the effect
of derivative coupling on the potential and calculate the quasinormal modes of
Reissner–Nordström black holes, dilaton black holes, Bardeen black holes and non-
communicative geometry inspired black holes, respectively while assume the mass m
of scalar is zero.

123



16 Page 6 of 25 S. Yu, C. Gao

3 Potential of the four kinds of black holes

3.1 RN black holes

For RN black holes, we have the metric functions f (r) and R(r) as follows

f (r) = 1 − 2M

r
+ Q2

r2
, (18)

R (r) = r , (19)

where M and Q are the mass and charge of the black hole, respectively. Using
Eqs. (15, 16) and Eqs. (5–8), we obtain the corresponding effective potential

V = r2 − 2Mr + Q2

r6
(
r4 + βQ2

)2
{
Q4β2

[
4Q2 + r2

(
2 − l2 − l

)
− 6Mr

]

+βr4Q2
(
6Q2 + 6r2 + m2r4 − 12rM

)

+ r8
(
−2Q2 + r4m2 + r2l2 + 2Mr + r2l

)}
. (20)

Then we are ready to compute the QNMs by using Eq. (17). Observing this potential,
we find the coupling constant β can not be negative. Otherwise, the potential would be
divergent at r = 4

√−βQ2. The divergence of the potential would lead to the presence
of ghosts. This has been verified byGermani andKehagias at the level of theHorndeski
models [76,102]. Therefore we shall consider positive β in the following. In general,
there are two horizons in the RN spacetime. They are the outer event horizon r+ =
M + √

M2 − Q2 and the inner Cauchy horizon r− = M − √
M2 − Q2, respectively.

When M = Q, the two horizons coincide and the situation is called extreme RN
spacetime. In the next subsections, let’s consider the two situations, respectively.

3.1.1 Extreme RN black holes

Setting M = 1 and Q = 1, we get an extreme RN black hole. In Fig. 1, we plot
the effect of coupling constants β on the shape of the potential. We choose the other
parameters as follows: l = 1 and m = 0. The event horizon locates at r∗ = −∞
for the tortoise coordinate. From the figure we see, with the increasing of coupling
constants β, the height of the potential is reduced. Furthermore, the potential become
negative in some regions.

The presence of the potential well implies the instability of the black hole against
scalar perturbations [79]. Actually, Chen and Jing [79] have shown that the instability
always occurs when the coupling constant β is larger than a certain threshold value
βc provided that l > 0. When 0 ≤ β ≤ βc, the potential is always positive and the
black hole is stable against scalar perturbations. For l = 0, there does not exist such a
threshold value and the scalar field is always stable for arbitrary coupling constant. We
will see in the following the potential well also appears for the Bardeen black holes
and the NGI black holes.
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Fig. 1 The effective potential V (r∗) of extreme RN black holes as a function of the tortoise coordinate r∗
assuming M = 1, Q = 1,m = 0, l = 1 for four different cases β = 0, 1, 2, 3, 4, 5, from up to down,
respectively
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Fig. 2 The effective potential V (r∗) of non-extreme RN black holes as a function of the tortoise coordinate
r∗ assuming M = 1, Q = 0.95,m = 0, l = 1 for four different cases β = 0, 1, 2, 3, 4, 5, from up to down,
respectively

Since the horizon locates at r∗ = −∞, we conclude it is only in the vicinity of
event horizon that the potential is significantly affected by the derivative coupling.

3.1.2 Non-extreme RN black holes

When we set M = 1, Q = 0.95, we would get the non-extreme RN black hole. In
Fig. 2, we plot the variation of the effective potential with coupling constants. From
the figure we see the height of the potential is on the decrease with the increasing of
coupling constants. This is the same as the extreme RN black holes. The potential is
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asymptotically vanishing when r∗ = −∞ and r∗ = +∞. In order to give a clear
demonstration of how β influences the evolution of potential, we have put Q = 0.95.
When Q is much small, we find the potential is very insensitive to the variation of the
coupling constant. The reason for this is that the term βGμν∇μφ∇νφ is proportional
to Q2.

3.2 Bardeen black hole

Bardeen black hole [84] is a regular black hole in the absence of a central singularity.
Ayón-Beato and Garcia [103] show that the Bardeen black hole is an exact solution
of the Einstein equations with a magnetic monopole. The functions f (r) and R(r) in
the metric are

f (r) = 1 − 2Mr2(
r2 + Q2

)3/2 ,

R(r) = r , (21)

where M and Q are the mass and charge of black hole, respectively. When r is
sufficiently small, we obtain a de Sitter core for this spacetime. On the other hand,
when r is large enough, we obtain the Schwarzschild solution. Therefore, this is a
regular spacetime. The horizon is determined by

1 − 2Mr2(
r2 + Q2

)3/2 = 0, (22)

which gives the radii of two horizons:

r+ =
[
χ + 2

√
η cos

(
1

3
arccos

ξ

η3/2

)]1/2
,

r− =
[
χ + 2

√
η cos

(
1

3
arccos

ξ

η3/2
− 2π

3

)]1/2
, (23)

where

χ ≡ 4

3
M2 − Q2, η ≡ 16

9
M4 − 8

3
Q2M2,

ξ ≡ 2Q4M2 + 64

27
M6 − 16

3
Q2M4, (24)

provided that

Q2 <
16

27
M2. (25)

Here r+ is the outer event horizon and r− is inner horizon. If Q = 0, we have r+ = 2M
and r− = 0. This is for the schwarzschild solution. If
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Fig. 3 The effective potential V (r∗) of extreme Bardeen black holes as a function of the tortoise coordinate
r∗ assuming M = 1, Q = 4

√
3/9,m = 0, l = 1 for four different cases β = 0, 1, 2, 3, 4, 5, from up to

down, respectively

Q2 = 16

27
M2, (26)

the two horizons coincide and we obtain the extreme Bardeen black hole. On the other
hand, if

Q2 >
16

27
M2, (27)

there would be no horizon in this spacetime. So in the next subsections, let’s consider
the extreme and non-extreme cases, respectively.

3.2.1 Extreme Bardeen black holes

Compared with RN black holes, the expressions of effective potential for Bardeen
black holes, noncommutative geometry inspired Schwarzschild black holes, dilaton
black holes, are rather lengthy. Therefore, we do not explicitly write them here and
only make their plotting. By setting M = 1, Q = 4

√
3/9 	 0.7698, m = 0, l = 1,

we can plot the evolution of the effective potential with β in Fig. 3.

3.2.2 Non-extreme Bardeen black holes

By setting Q = 0.76, M = 1, m = 0, l = 1, we can plot the evolution of the effective
potential with β in Fig. 4. Same as the non-extreme RN black holes, the potential is
insensitive to β for sufficiently small Q because the coupling term βGμν∇μφ∇νφ ∝
Q2. In order to give a clear demonstration of howβ influences the evolution of potential,
we have put Q = 0.76 which is very close to the critical value 0.7698.
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Fig. 4 The effective potential V (r∗) of non-extreme Bardeen black holes as a function of the tortoise
coordinate r∗ assuming M = 1, Q = 0.76,m = 0, l = 1 for four different cases β = 0, 1, 2, 3, 4, 5, from
up to down, respectively

3.3 Noncommunicative geometry inspired Schwarzschild black hole

Noncommunicative geometry inspired (NGI) black hole is derived by Nicolini et al.
[85]. The functions f (r) and R(r) are found to be

f (r) = 1 − 2M

r
erf

(
r

2
√

θ

)
+ 2M√

πθ
e− r2

4θ ,

R(r) = r , (28)

where M is the mass diffused through a region of size
√

θ , and θ is a constant with
dimension of length squared. When r → ∞ (or θ → 0), we have asymptotically
f = 1− 2M/r . It is restored to the Schwarzschild solution. On the other hand, when
r → 0 (or θ → ∞), we have f = 1 − s0r2 (s0 is a constant). It is the de Sitter
solution in the core. Thus the NGI Schwarzschild black hole is a regular black hole
solution without central singularity but the horizons remain. Furthermore, there are
usually two horizons in this spacetime. If

θ < 0.2758M2, (29)

we have two horizons. If

θ = 0.2758M2, (30)

the two horizons coincide and we have one single horizon. This is the extreme NGI
black hole. On the other hand, if

θ > 0.2758M2, (31)
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Fig. 5 The effective potential V (r) of extreme NGI black holes as a function of coordinate r assuming
M = 1, θ = 0.2758,m = 0, l = 1 for six different cases β = 0, 1, 2, 3, 4, 5, from up to down, respectively
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Fig. 6 The effective potential V (r) of non-extreme NGI black holes as a function of coordinate r assuming
M = 1, θ = 0.24,m = 0, l = 1 for six different cases β = 0, 1, 2, 3, 4, 5, from up to down, respectively

there would be no horizon in this spacetime. By putting M = 1 and θ = 0.2758, we
can plot the effective potential of extreme NGI black holes for l = 1 and m = 0 with
different β in Fig. 5.

Similarly, by putting M = 1 and θ = 0.24, we can plot the effective potential for
the non-extreme NGI black holes in Fig. 6.

We emphasise that in order to show the effects of different β on the curves clearly,
we use the physical coordinate r instead of the tortoise coordinate r∗ in the figure. The
outer event horizon locates at r = 1.6 and r = 1.85 for extreme NGI and non-extreme
NGI, respectively. In tortoise coordinate system, they all correspond to r∗ = −∞. As
shown in the figures, the potential is asymptotically vanishing at the event horizons.
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Fig. 7 The effective potential V (r) of dilaton black holes as a function of coordinate r assuming M =
1, D = 0.5,m = 0, l = 1 for six different cases β = 0, 1, 2, 3, 4, 5, from up to down, respectively

3.4 Dilaton black hole

The RN black holes, Bardeen black holes and NGI black holes bear the same feature
of R(r) = r in the line element. In this subsection, we consider the dilaton black holes
which have the different form of R(r). Dilaton black hole was found by Gibbons and
Maeda [86] as well as Garfinkle et al. [87] in string theory. The study on QNMs of
dilaton black holeswithout the derivative coupling can be found inRefs. [20,104–107].

The functions f and R are given by

f (r) = 1 − 2M

r
,

R(r) = √
r(r − 2D), (32)

where M and D are the mass and charge of the black hole. This spacetime has only
one horizon. By setting D = 0.5 and M = 1, we plot the evolution of the effective
potential with β in Fig. 7. Same as the NGI black holes, in order to show the effects of
different β on the curves clearly, we replace the tortoise coordinate r∗ with physical
coordinate r . The outer event horizon locates at r = 2. It corresponds to r∗ = −∞ in
tortoise coordinate system.

Observing the evolution of effective potential for the four kinds of black holes, we
find that they are all reduced with the increasing of coupling constants β except for
the NGI black holes. They are all asymptotically vanishing at the spatial infinity and
the event horizon. It is only for the extreme black holes that the influence of coupling
constant β on the effective potential is significant. For the non-extreme black hole, the
effect of coupling constant is negligible. These observations are consistent with the
findings of Ref. [79]
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4 Quasinormal modes

Before the calculation of black hole QNMs, we emphasize that the WKB method
mentioned previously does not catch possible instabilities which have been indicated
by the effective potentials. In fact, Chen and Jing [79] have found that the scalar field
is unstable in the background of RN spacetime for some range of parameters. This
was also confirmed recently by Konoplya et al. [83]. Specifically, they find that the
effective potential of the extreme RN black hole is always positive-definite within the
following range:

0 ≤ β ≤ 1, (33)

which guarantees stability as shown in Figs. 1 and 2. On the contrary, when

β > 1, (34)

a negative gap emerges in the potential and, according to [108], leads to eikonal
instability. We find above constraints on β also apply to Bardeen black holes and NGI
black holes which can be clearly seen from Figs. 3, 4, 5 and 6. So in the next, we shall
present the QNMs for β ≤ 1.

From Tables 1, 2, 3, 4, 5, 6 and 7, we list the QNMs of four kinds of black holes
with the increasing of coupling constants β for l = 0, 1, 2, 3. In order to exhibit the
difference of frequency with the variation of coupling constant or overtone number, at
least three digits should be kept. So we let all the frequencies having four significant
digits. The data show that the real and imaginary part of QNMs have different trend
of evolutions. Namely, the real part is on the decrease and the imaginary part is on the
increase with the increasing of coupling constant β. The increasing of imaginary part
means the decay of scalar perturbation becomes faster and faster with the increasing
of β. On the other hand, the decreasing of real part means the oscillating of scalar
perturbation becomes slower and slower with the increasing of β. This is closely
related to the fact that the height of potential is greatly reduced with the increasing of
coupling constant.

From Tables 8, 9, 10, 11, 12, 13 and 14 we present the QNMs for different l and
different n with β = 1. Because it is under the condition l > n that theWKB approach
is applicable [99,100], we compute the quasinormal frequencies of scalar perturbation

Table 1 The fundamental
(n = 0) quasinormal frequencies
ω of extreme RN black holes for
different β and different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.3773–0.0959i 0.6264–0.0910i 0.8760–0.0896i

0.2 0.3734–0.0993i 0.6192–0.0941i 0.8658–0.0927i

0.4 0.3698–0.1022i 0.6127–0.0969i 0.8566–0.0954i

0.6 0.3665–0.1049i 0.6068–0.0994i 0.8482–0.0978i

0.8 0.3636–0.1072i 0.6014–0.1015i 0.8404–0.1000i

1.0 0.3608–0.1093i 0.5964–0.1035i 0.8332–0.1019i

We have put M = 1, Q = 1,m = 0
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Table 2 The fundamental
(n = 0) quasinormal frequencies
ω of non-extreme RN black
holes for different β and
different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.3639–0.1010i 0.6014–0.0964i 0.8401–0.0951i

0.2 0.3511–0.1095i 0.5800–0.1035i 0.8102–0.1019i

0.4 0.3417–0.1157i 0.5637–0.1088i 0.7873–0.1069i

0.6 0.3343–0.1205i 0.5506–0.1128i 0.7687–0.1107i

0.8 0.3282–0.1242i 0.5396–0.1160i 0.7530–0.1137i

1.0 0.3229–0.1273i 0.5301–0.1185i 0.7395–0.1160i

We have put M = 1, Q = 0.95,m = 0

Table 3 The fundamental
(n = 0) quasinormal frequencies
ω of extreme Bardeen black
holes for different β and
different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.3337–0.0859i 0.5540–0.0807i 0.7747–0.0792i

0.2 0.3309–0.0888i 0.5491–0.0834i 0.7677–0.0819i

0.4 0.3284–0.0914i 0.5446–0.0858i 0.7614–0.0843i

0.6 0.3261–0.0938i 0.5404–0.0881i 0.7555–0.0864i

0.8 0.3240–0.0960i 0.5366–0.0901i 0.7501–0.0884i

1.0 0.3220–0.0980i 0.5331–0.0919i 0.7451–0.0902i

We have put M = 1, Q = 4
√
3/9,m = 0

Table 4 The fundamental
(n = 0) quasinormal frequencies
ω of non-extreme Bardeen black
holes for different β and
different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.3325–0.0870i 0.5514–0.0819i 0.7708–0.0805i

0.2 0.3298–0.0897i 0.5467–0.0844i 0.7643–0.0829i

0.4 0.3273–0.0921i 0.5424–0.0866i 0.7583–0.0851i

0.6 0.3251–0.0944i 0.5385–0.0887i 0.7527–0.0871i

0.8 0.3230–0.0964i 0.5349–0.0906i 0.7476–0.0889i

1.0 0.3211–0.0984i 0.5315–0.0923i 0.7428–0.0906i

We have put M = 1, Q = 0.76,m = 0

Table 5 The fundamental
(n = 0) quasinormal frequencies
ω of dilaton black holes for
different β and different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.3649–0.1092i 0.5988–0.1051i 0.8328–0.1019i

0.2 0.3632–0.1096i 0.5958–0.1054i 0.8314–0.1041i

0.4 0.3616–0.1099i 0.5929–0.1057i 0.8273–0.1044i

0.6 0.3600–0.1103i 0.5901–0.1061i 0.8233–0.1048i

0.8 0.3585–0.1107i 0.5874–0.1064i 0.8195–0.1051i

1.0 0.3570–0.1111i 0.5847–0.1068i 0.8157–0.1054i

We have put M = 1, D = 0.5,m = 0

for l > n, respectively. However, if the precision required is not high, one may also
calculate the spherical mode l = n = 0 using the WKB method, for example, as done
in Ref. [101]. Similar to the scenario of β, the real part of QNMs is on the decrease and
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Table 6 The fundamental
(n = 0) quasinormal frequencies
ω of extreme NGI black holes
for different β and different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.2806–0.1067i 0.4775–0.0965i 0.6717–0.0939i

0.2 0.2797–0.1085i 0.4770–0.0986i 0.6709–0.0960i

0.4 0.2783–0.1101i 0.4764–0.1004i 0.6701–0.0979i

0.6 0.2765–0.1114i 0.4757–0.1020i 0.6694–0.0997i

0.8 0.2744–0.1126i 0.4751–0.1034i 0.6687–0.1013i

1.0 0.2719–0.1137i 0.4744–0.1049i 0.6680–0.1028i

We have put M = 1, θ = 0.2758,m = 0

Table 7 The fundamental
(n = 0) quasinormal frequencies
ω of non-extreme NGI black
holes for different β and
different l

β ω (l = 1) ω (l = 2) ω (l = 3)

0.0 0.2806–0.1067i 0.4775–0.0965i 0.6717–0.0939i

0.2 0.2797–0.1085i 0.4770–0.0986i 0.6711–0.0978i

0.4 0.2783–0.1101i 0.4764–0.1004i 0.6704–0.1000i

0.6 0.2765–0.1114i 0.4757–0.1020i 0.6696–0.1015i

0.8 0.2744–0.1126i 0.4750–0.1035i 0.6693–0.1020i

1.0 0.2719–0.1137i 0.4744–0.1049i 0.6690–0.1028i

We have put M = 1, θ = 0.24,m = 0

the imaginary part is on the increase with the increasing of coupling constant n. The
increasing of imaginary part means the decay of scalar perturbation becomes faster
and faster with the increasing of n. The decreasing of real part means the oscillating
of scalar perturbation becomes slower and slower for larger β. These features indicate
the QNMs are endowed with a similar property with the presence of coupling constant
β.

5 Discussion and conclusion

The main goal of this paper is to study the influence of derivative coupling on the
black hole QNMs. The derivative coupling is embodied in the term βGμν∇μφ∇νφ.
Therefore, in order to gain non-trivial results, the background spacetime must not be
the solution of vacuumEinstein equations. Sowe take into account the RN black holes,
the Bardeen black holes, the NGI black holes and the dilaton black holes, respectively.
We derive the expression of effective potential with the derivative coupling in the
background of general static and spherically symmetric spacetimes. Thus the potential
can be applied to arbitrary static spherically symmetric black hole spacetimes.Wepoint
that the black holes here are all asymptotically flat in space. For asymptotically de
Sitter spacetimes, our potential is still applicable. Since the WKBmethod can be used
for effective potentials which have the form of a potential barrier and take constant
values at the event horizon and spatial infinity, one should resort to other method
to compute the QNMs of asymptotically de Sitter black holes. The expressions of
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effective potential are rather lengthy except for the RN black holes. Thus we do not
explicitly present them in the paper and only make their plotting.

The RN black holes, NGI black holes and Bardeen black holes have two phases.
One is for the extreme black holes and the other for the non-extreme black holes.
For the extreme black holes, there is one single horizon. For the non-extreme black
holes, there are two horizons. We numerically analyse the potentials, respectively. The
potentials are all asymptotically vanishing at the spatial infinity and the outer event
horizon. The height of the potentials is reduced greater and greater with the increasing
of coupling constant. The influence of the coupling on the potentials is significant for
extreme black holes. For non-extreme black holes, the variation of coupling constant
makes negligible influence on the evolution of the potential. The reason for this point
is that the coupling term βGμν∇μφ∇νφ is proportional to the square of the charge.

We calculate the QNMs of black holes for different coupling constants β and
different overtone numbers n. We find that the real part of QNMs is always on the
decrease with the increasing β and n. This signals the oscillation of QNMs become
slower and slower with the increasing of β. On the other hand, the imaginary part is
always on the increase with the increasing β and n. This signals the decay of QNMs
become faster and faster with the increasing of β. In all, the derivative coupling and
the overtone numbers have the similar effects on the quasinormal modes.

Finally, what we consider throughout the paper is the QNMs of a massless scalar
field. It is found that the QNMs of a massive scalar field possess an important feature:
the arbitrary slowly damped quasinormal modes, called quasi-resonances [109,110].
Since theWKB approach can only indicate some trend to quasi-resonances but fails at
sufficiently large mass of the field [111], one may wonder whether this property will
survive with the derivative coupling for the massive scalar field. This is an interesting
question and worthy of further study.
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