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Abstract
In the context of canonical quantum gravity in 3+1 dimensions, we introduce a
new notion of bubble network that represents discrete 3d space geometries. These
are natural extensions of twisted geometries, which represent the geometrical data
underlying loop quantum geometry and are defined as networks of SU(2) holonomies.
In addition to the SU(2) representations encoding the geometrical flux, the bubble
network links carry a compatible SL(2,R) representation encoding the discretized
frame field which composes the flux. In contrast with twisted geometries, this extra
data allows to reconstruct the frame compatible with the flux unambiguously. At the
classical level this data represents a network of 3d geometrical cells glued together. The
SL(2,R) data contains information about the discretized 2d metrics of the interfaces
between 3d cells and SL(2,R) local transformations are understood as the group of
area-preserving diffeomorphisms. We further show that the natural gluing condition
with respect to this extended group structure ensures that the intrinsic 2d geometry
of a boundary surface is the same from the viewpoint of the two cells sharing it.
At the quantum level this gluing corresponds to a maximal entanglement along the
network edges. We emphasize that the nature of this extension of twisted geometries
is compatible with the general analysis of gauge theories that predicts edge mode
degrees of freedom at the interface of subsystems.
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Introduction

The goal of quantum gravity is to create a mathematically-consistent description of the
space-time geometry unifying the visions of general relativity and quantum theory.
Here we work in a canonical framework relying on a decomposition of the four-
dimensional space-time as a 3d space geometry evolving in time. The operational
perspective we are developing is to decompose the 3d geometry into 3d cells, similarly
to the decomposition of a manifold into charts. This consists in defining the state of
geometry for each chunk of 3d geometry and describing the consistency conditions
necessary to glue those 3d cells together in order to form the overall 3d geometry.

The central challenge of such a procedure is to understand what could be the geo-
metrical elements one should keep at the most fundamental discrete level in order to
capture the key symmetry of the theory, that is diffeomorphisms.While the full answer
to that question is still awaiting, there has been important recent progress in that direc-
tion. The key idea is to first relate the process of discretizing a gravitational system as
being dual to the process of subdividing a continuum gravitational system into sim-
pler elements [1,2]. The second point is the understanding that, when one subdivides a
gauge theory, the gauge symmetries are then promoted to local boundary symmetries
[3–5] . The mechanism behind this is that the presence of gauge symmetry in the total
system reveals boundary degrees of freedom—edge modes—along the subdivision
cut and these edge modes form a representation of the boundary symmetry group [4].
At the discrete level, this boundary symmetry group is attached to each 2d interface
between 3d cells (or equivalently the dual link) as a remnant of the continuous gauge
symmetry. The question is then to understand what is the proper boundary symmetry
group for gravitational edge modes.

In the context of the first order formulation of general relativity, as used e.g. in
loop quantum gravity, it has been clear for a while that the boundary symmetry group
should include the local SU(2) group descending from the local Lorentz gauge trans-
formations. More recently, it has further been understood that the boundary symmetry
should also include the group of area-preserving diffeomorphisms of the boundary,
which is isomorphic to a local SL(2,R) group. More precisely, it has been shown
in [3] that the generators of this SL(2,R) group are given by the components of the
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Fig. 1 Example of a bubble
network, experimentally realized
with soap bubbles: bubbles fill
up the 3d space and are glued
along surface patches

2-dimensional metric on each 2d interface between 3d cells. From this perspective,
the extension from SU(2) to SU(2) × SL(2,R) appears necessary in order to include
diffeomorphisms at the fundamental level. In this work we show how to implement
this idea at the level of discrete 3d geometries and how it can naturally be viewed
as an extension of the notion of twisted geometry [6] and its spinor implementation
[7–10]. Conversely we show that one recovers twisted geometries when one fixes the
conformal gauge for the 2d metrics of the two dimensional interfaces.

Refining our description of the 3d geometry, we advocate to consider every 3d cells
as bubbles, meaning that we will describe the 3d geometry of each cells as the state of
the 2d geometry of its boundary. Then the 3d cells are glued along shared boundary
surfaces and consistency conditions turn into matching constraints between the two
descriptions of the geometry of the boundary from the perspective of the two 3d cells
sharing it. This picture leads to 3d geometry as a networks of bubbles, see Fig. 1,
similar in spirit to the cellular decompositions used to formulate discrete topological
quantum field theories and topological state-sums.

On the one hand, such a description fits with the idea of a quasi-local holography in
quantumgravity: the dynamically-relevant degrees of freedomof the 3d bulk geometry
within a cell would be entirely encoded in the state of 2d geometry on the cell’s
boundary. On the other hand, it can also be interpreted from a coarse-graining point
of view. The 3d space is thought as made of elementary chunks of a fixed given 3d
geometry, e.g. flat or homogeneously curved 3d geometry, so that the only remaining
degree of freedom is the embedding data of the 2d boundary surface within this 3d
geometry. Then as one would merge those bubbles together to define a coarse-graining
flow towards a description of this 3d geometry at larger scale, one would define larger
bubbles from gluing smaller bubbles together, coarse-grain the bulk geometry of those
bubbles and derive the 2d geometry state of the larger bubble surfaces. For instance,
this is the standard interpretation of spin network states for 3d geometry defined in
loop quantum gravity and interpreted as the quantum counterpart of discrete twisted
geometries [6]. Finally, once we have a consistent definition of bubble networks, the
goalwould be to formulate a quantumversion of relativity, i.e. understand howchanges
of observers, through diffeomorphisms and scale transformations, translate to changes
in the bubble network, as modifying the atlas of the 3d geometry and coarse-graining
or refining the bubbles.

In the present paper, we present the definition of bubble networks as extended
twisted geometries. Twisted geometries were introduced as a generalization of Regge
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triangulations to describe the discrete classical geometry of spin network states in
loop quantum gravity [6,11]. They describe the geometry of a graph dressed with
SU(2) group elements on its edges. The data associated with each graph node can
be interpreted in terms of a chunk of 3d volume whose geometry is encoded into
the area flux of its surface elements. In this framework an edge linking two nodes is
dual to the boundary surface between the two corresponding 3d cells, and the SU(2)
group element living on that edge gives the mapping between the associated two
3d reference frames. In the twisted geometry interpretation, part of the SU(2) group
element ensures the matching of the normal vector to the boundary surface between
two neighboring 3d cells, while the remaining degree of freedom, called “twist angle”,
is understood to encode the extrinsic curvature [12–14]. This allows to represent the
phase space of loop quantum gravity where the Ashtekar–Barbero connection, used
as configuration variable, actually mixes the intrinsic geometry (through the 3d spin-
connection) and the extrinsic curvature. In this context, the identification of the twist
angle has been crucial in understanding the embedding of the canonical discrete 3
geometry into the 4d space-time geometry and was translated into an embedding of
the SU(2) group structure into SL(2,C) specially useful to clarify the reformulation
of the dynamics of loop quantum gravity in terms of spinfoam path integrals [15].
Besides these achievements, one major drawback of the twisted geometry picture is
that although geometrical flux agrees, it generally gives inconsistent frame geometries
[16] across the boundaries.1

In order to correct this inconvenient feature of twisted geometry, we propose to
extend the SU(2) structure to a SU(2) × SL(2,R) structure, where the new SL(2,R)

sector will encode the 2d geometry state of each bubble, i.e. the discrete frame field,
while the SU(2) sector still encodes the area geometry and its transport from one
bubble to the neighboring bubbles. The matching constraints resulting the gluing of
bubbles which expresses that the area derived form the frame agrees with the area
derived from the flux, translate into a Casimir balance equation, between the SU(2)
sector and the SL(2,R) sector. This relates natural algebraic condition on Casimirs
with the compatibility condition between the intrinsic and extrinsic geometries of each
bubble.

From the point of view of loop quantum gravity, this consists in an extension of
the classical phase space in order to take seriously the dual surface interpretation of
intertwiners for spin network states. Indeed, the nodes of a spin network states carry
intertwiners, i.e. SU(2)-invariant tensors, which are interpreted as quantum (convex)
polyhedra (embedded in flat 3d space) [17–20]. Nevertheless, when coarse-graining
loop quantum gravity, curvature naturally builds up at the spin network nodes [21–
23] and it becomes necessary to allow for “curved nodes”, corresponding to quantum
curved polyhedra (e.g. embedded in spherical or hyperbolic space) [24,25], and to
allow for the 3d embedding of the boundary surface to fluctuate, thereby allowing for
bubbles with arbitrary geometry. The line of research we pursue in the present work
parallels the logic developed in [3,26], which couples surface geometry degrees of
freedom to the Ashtekar triad-connection variables leading to coupled spin networks

1 We can think of fluxes as discrete analog Lie algebra valued 2-forms, while frames are the discrete analog
of Lie algebra valued 1-form.
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and conformal field theories at the quantum level. Nevertheless, we start with discrete
surface geometries for the bubbles, so that the framework we propose is much simpler,
though less rich, than the “loop gravity string ” picture introduced in [26]. It neverthe-
less admits a clear geometrical interpretation and a clear mapping back to the usual
twisted geometry framework through a straightforward gauge-fixing procedure.

In the first section, we start with a quick review of twisted geometries. Then based
on the canonical analysis of the symplectic structure for the 2d geometry on boundary
surfaces worked out in [3], we will introduce a discretized version of the 2d geometry
for the bubbles and define the phase space for the bubble networks. In the second
section, we will show how a symplectic reduction of the bubble network phase space
leads back to twisted geometries. We will further interpret this as the choice of the
conformal gauge for the 2d geometry on the bubble surfaces.

1 Discrete bubble networks

The goal of this section is to introduce the discretized geometry of bubble networks
and provide a clean mathematical definition of gluing bubbles. As a reference, we start
by recalling the algebraic structure of twisted geometries in loop quantum gravity and
their phase space. We then turn to bubble networks, describe the phase space of the
2d geometry on the bubbles’ surfaces and construct bubble networks. They will turn
out to be realized as twisted geometries augmented with the intrinsic geometry data
of the bubbles’ surface. This provides the discrete network version of the metric-flux
algebra introduced in [3] as an upgrade for the holonomy-flux algebra underlying loop
quantum gravity.

1.1 A quick review of twisted geometry and spin (or) networks

Twisted geometries are the discrete geometrical structure underlying loop quantum
gravity. They are networks of SU(2) holonomies encoding changes of reference frames
and parallel transport from one point of space to another. They form the classical
structure for spin network states of quantumgeometry.More precisely, they are defined
with reference to a graph, or network, dressed with algebraic data. Let us consider an
oriented (closed) graph�. The twisted geometry phase space on the graph� is defined
as one copy of the T ∗SU(2) phase space attached to each link of the graph, together
with closure constraints generating a SU(2) gauge invariance at each node. For each
edge e, we write s(e) and t(e) respectively for the source and target nodes of the edge.
Then we introduce one SU(2) group element he ∈ SU(2) for each edge e and a pair
of 3-vectors �J se and �J te on each edge corresponding to respectively to its source and
target vertices. The SU(2) group elements are considered as 2×2 matrices. From the
viewpoint of a vertex v, we therefore have one vector �J v

e for each edge e attached to
v. We endow those variables with the T ∗SU(2) Poisson brackets:
∣
∣
∣
∣
∣
∣

{(

J se
)a

,
(

J se
)b
}

= εabc
(

J se
)c

,
{(

J te
)a

,
(

J te
)b
}

= −εabc
(

J te
)c

,

∣
∣
∣
∣
∣
∣

{ �J se , he
}

= i
2he �σ ,

{ �J te , he
}

= i
2 �σhe,

∣
∣
∣
∣
∣

{ �J se , �J te
}

= 0,

{he, he} = 0,
(1)
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where εabc is the rank-3 totally antisymmetric tensor and the σ a’s are the Pauli matri-
ces, normalized such that they square to the identity, (σa)2 = I2, andwith commutation
relations [σa, σb] = 2iεabcσc. We supplement these brackets with two sets of con-
straints:

• a matching constraint along each edge e, imposing that each target vector is the
transport of the source vector by the group element along the edge:

�J te = he � �J se , or �J te · �σ = he
( �J se · �σ

)

h−1
e (2)

• a closure constraint around each vertex v, imposing that the oriented sum of all
the vectors vanishes:

�Cv =
∑

e�v

εev
�J v
e = 0, (3)

where the sign εev = ± registers the relative orientation of the edge with respect
to the vertex, positive if the edge is outgoing v = s(e) and negative if the edge is
incoming v = t(e).

The matching constraints effectively reduce the variables attached to each edge to
the T ∗SU(2) phase space, while the closure constraint at a vertex v generates SU(2)
gauge transformations exp{�u · �Cv, •} acting on all the vectors around that vertex:

∀e such that v = s(e), �J v
e �−→ kv � �J v

e , he �−→ hek−1
v

∀e such that v = t(e), �J v
e �−→ kv � �J v

e , he �−→ kvhe
(4)

The standard geometrical interpretation of the closure constraint is that N vectors
�J1, . . . , �JN ∈ R

3 whose sum vanishes uniquely determine a convex polyhedra in the
flat space R3 with N faces such that the �Ji are the normal vectors to each face of the
polyhedron with their norm giving the area of the corresponding face (see e.g. [17]).
The twisted geometry is then the collection of such polyhedra glued together by the
matching constraints. The gluing of two neighboring polyhedra is loose in the sense
that it only requires amatching of the area of the glued faces but not an actual matching
of their precise shape.

The spinning geometry interpretation of this structure is more flexible and sidesteps
the shape mismatch issue [2]. The 3d geometry is constructed as a cellular complex
from 3d flat cells whose boundary 2-cells are minimal surfaces between 1-cells. The
“normal vectors” �J ’s of the surfaces are defined as an integrated angular momentum,
computed as the holonomy of a specific connection around the surfaces (see also [25]).
This holonomy is matched across the boundary when gluing two bubbles and is not
generically the normal vector to a flat 2d face.

A useful reparametrization of the twisted geometry phase space is in terms of spinor
networks [9–11,27,28]. This spinorial parametrization of twisted geometries led to a
systematic construction of coherent intertwiners [7,8] and semi-classical spin network
states [29,30] and remarkable exact computations of spinfoam transition amplitudes
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[31,32]. One introduces a complex 2-vector, or spinor, zve ∈ C
2 on each half-edge.

Each spinor is endowed with a canonical Poisson bracket:

{zA, z̄B} = − iδAB, (5)

while spinor components living on different half-edges commute with each other. We
use the standard ket notation for the spinors, writing |z〉 ∈ C

2 with the corresponding
dual spinor denoted |z]:

|z〉 =
(

z0
z1

)

, 〈z| = ( z̄0 z̄1
)

, |z] =
(

0 − 1
1 0

)

|z̄〉 =
(−z̄1

z̄0

)

,

[z| = (−z1 z0
)

. (6)

We can define both the vectors and the SU(2) group elements in terms of the spinors:

�J se = 1

2

〈

zse|�σ |zse
〉

, �J te = 1

2

[

zte|�σ |zte
] = − 1

2

〈

zte|�σ |zte
〉

,

he =
∣
∣zte
] 〈

zse
∣
∣− ∣∣zte

〉 [

zse
∣
∣

√
〈

zse|zse
〉 〈

zte|zte
〉

. (7)

Upon assuming a norm-matching condition along every edge, 〈zse|zse〉 = 〈zte|zte〉, this
definition ensures that the he’s lay in SU(2), i.e. h†e = h−1

e , and that these group
elements maps the source spinors onto the dual of the target spinors, he |zse〉 = |zte],
thus mapping the source vector onto the target vectors, he � �J se = �J te . Moreover,
one can check that these definitions imply that the T ∗SU(2) Poisson brackets (1)
between the he and the vectors �J v

e are weakly satisfied assuming the norm-matching
conditions for spinors [11]. This means that the symplectic quotient of the spinorial
phase space (C4)×E (where E is the number of edges of the graph �) by the norm-
matching conditions gives (T ∗SU(2))×E . Then we still impose the closure constraints
and quotient by the resulting SU(2) gauge invariance at every node of the graph. In
this sense, the spinors provide Darboux coordinates for the twisted geometry phase
space.

Finally, one can quantize these spinor networks and define wave-functions as holo-
morphic polynomials in the spinors satisfying the SU(2)-gauge invariance at every
node. This leads to the spin networks of loop quantum gravity, with SU(2) represen-
tations along the graph edges and SU(2) intertwiners at the nodes [9,27,30].

1.2 Discretization of the surface geometry: SU(2)× SL(2,R) and the Casimir
balance equation

Now we will start with the phase space for surface degrees of freedom in general
relativity, introduce a discretized version of this phase space of 2d geometries on
the bubbles’ surface and glue them consistently to define the phase space for bubble
networks, which will turn out to be the twisted geometry phase space augmented
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with an additional sl2 structure encoding the 2d intrinsic geometry of the bubbles
boundaries.

As worked out in [3], the symplectic structure of general relativity in its first order
formulation in terms of theAshtekar–Barbero variables induces a boundary symplectic
structure on a 2d boundary surface S (on the space-like canonical slice) such that the
two components of the triad tangent to the surface are conjugate to one another:

{

ea1(x), e
b
2(y)

}

= δabδ(2)(x, y), x, y ∈ S. (8)

One of the main point shown in [3] is that this data allow the reconstruction of an
SU (2) flux field by taking the wedge product of frames and a local metric on the
sphere by considering the scalar products of those two vectors.

Xa(x) ≡ εabc

(

eb1e
c
2 − eb2e

c
1

)

(x), qAB(x) ≡
3
∑

a=1

eaAe
b
B(x). (9)

Moreover the flux field generate an SU (2) algebra and the metric generates an
SL(2,R) algebra. The goal is to understand how one can naturally discretize this
structure and embed it into the loop gravity phase space. It will be convenient to
express the 2d metric in terms of a matrices of scalar product:

2dq =
( |�e1|2 �e1 · �e2

�e1 · �e2 |�e2|2
)

. (10)

We apply this to each bubble, considered as a piecewise-linear surface made of
several flat 2d patches. Then bubbles will be glued together through those patches.
Each 2d patch thus carries a pair of vectors in R3, given by the surface integral of the
triad projected onto the surface. Let us look at a bubble with N patches, and thus with
N pairs of vectors ((�e1)i , (�e2)i )i=1...N . Since the �e1’s are canonically conjugate to the
�e2’s, we find it convenient to write them as �x ≡ �e1 and �p ≡ �e2, explicitly reflecting
the phase space structure on the bubble:

{

xai , pbj

}

= δi jδ
ab. (11)

Let us focus on a single surface patch and drop its i label. This is exactly the phase
space of a three-dimensional particle, parametrized by the two vectors �x and �p. We
introduce the angular momentum observables:

Jab = xa pb − xb pa, Jc = εabcxa pb, {Ja, Jb} = εabc Jc. (12)

These are the generators of the Lie algebra su2 ∼ so3 of 3d rotations, which act as
usual as 3 × 3 matrices on 3d vectors:

∣
∣
∣
∣

{Ja, xb} = εabcxc,
{Ja, pb} = εabc pc,

∣
∣
∣
∣
∣

e{�u· �J , · } �x = O �x,
e{�u· �J , · } �p = O �p, O ∈ SO(3). (13)
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The Casimir of the su2 algebra is the norm of the angular momentum:

C = �J 2, {C, Ja} = 0. (14)

We further introduce rotation-invariant observables, given by the norms of �x and �p
and their scalar product:

�0 = �x · �p, �− = �x2, �+ = �p2, {Ja, �β} = 0. (15)

We label the �’s with Greek indices to emphasize the difference with the vec-
tor indices.The observable �0 is the generator of dilatations on the phase space,
(�x, �p) → (e+λ �x, e−λ �p). These scalar product observables turn out to form a sp2
algebra:

{�0, �±} = ±2�±, {�+, �−} = 4�0. (16)

This algebra is also isomorphic to the sl(2,R) Lie algebra, explicitly realized through
a simple change of basis:

j3 = 1

2
(�− + �+), k1 = �0, k2 = 1

2
(�− − �+),

∣
∣
∣
∣
∣
∣

{ j3, k1} = 2k2,
{ j3, k2} = − 2k1,
{k1, k2} = − 2 j3.

(17)

Theseobservables generate linear canonical transformations on the (�x , �p)phase space2
( �x

�p
)

→ 	

( �x
�p
)

, det
2×2

	 = 1, 	 ∈ Sp(2) = SL(2,R). (18)

It is convenient to repackage the �’s in a 2 × 2 matrix,

D =
( �x

�p
)
( �x �p ) =

(

x2 �x · �p
�x · �p �p2

)

=
(

�− �0
�0 �+

)

. (19)

Canonical transformations acts by conjugation on this matrix, D → 	D t	. The
Casimir of the sl2 algebra is the determinant of the D matrix.

D = det D = �−�+ − �20 = j23 − k21 − k22, {D, �α} = 0. (20)

2 The explicit exponentiated action of the �’s is easily computed as:

e{λ0�0+λ+�−+λ−�+, · }
( �x

�p
)

=
(− λ0 − λ−

λ+ λ0

) ( �x
�p
)

=M

( �x
�p
)

, trM=0, M2 = (λ20 − λ+λ−) I = � I,

	 = eM = cosh
√

� I + sinh
√

�√
�

M if � > 0 or cos
√−� I + sin

√−�√−�
M if � < 0.
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Since the Poisson brackets of the angular momentum with the scalar product observ-
ables vanish, {Ja, �β} = 0, the canonical transformations 	 ∈ Sp(2) = SL(2,R)

actually commute with the 3d rotations O ∈ SO(3). Moreover these two sets of
observables satisfy a Casimir balance equation:

�J 2 = |�x ∧ �p|2 = �x2 �p2 − (�x · �p)2 = det D. (21)

Keeping in mind that the two vectors �x and �p are in fact the integrated components
of the triad on the surface, �e1 and �e2, the �’s observables encode the surface intrinsic
metric data: the matrix D is the integrated induced 2d metric q on the patch and the
determinantD is the squared density factor (det q). The vector �J is the normal vector
to the surface patch and encodes the extrinsic curvature describing the embedding
of the surface into 3d space. In this approach, the normal vectors are truly angular
momenta, as in the spinning geometry interpretation described in [2]. The area of
the patch can be derived from either the intrinsic surface geometry or the extrinsic
geometry as A = | �J | = √

det D, with this Casimir balance equation playing the role
of a Gauss–Codazzi equation expressing the compatibility of the intrinsic and extrinsic
geometries of the surface.

Finally, as the vectors encode the 2dmetric, the SL(2,R) transformations, realizing
canonical transformations of the pair of vectors (�x, �p), are to be understood as area-
preserving diffeomorphisms of the discretized bubble surface.

1.3 Gluing bubbles and the bubble network phase space

Once we have the phase space structure for each bubble, we would like to consider
a network of bubbles glued with each other forming the 3d space. We describe the
combinatorics of the bubble network by its dual 1-skeleton, introducing the graph �

whose nodes represent the bubbles and whose edges link pairs of bubble glued with
each other. Every edge is thus dual to a surface patch of the two corresponding glued
bubbles. We will consider a compact 3d space, corresponding a closed graph �.

Let us now dress this graph with the surface variables introduced above encoding
the 2d boundary geometry of the bubbles. This leads to a network of vectors. Around
each vertex v ∈ �, that is for each bubble, we dress each edge e attached to the
vertex v ∈ e with a pair of vectors (�xv

e , �pv
e ) ∈ (R3)×2. In order to properly define

the symplectic form and transports between the bubbles, it is convenient to orient the
graph �. Each edge e thus has one canonical vector pair attached to its source vertex
s(e) and one attached to its target vertex t(e). We need flip to the symplectic structure
at the target of every edge e:

{(

xse
) a,
(

pse
) b
}

= δab,
{(

xte
) a,
(

pte
) b
}

= −δab. (22)

This sign flip corresponds to exchanging the role of the position and conjugatemomen-
tum, which corresponds geometrically to an orientation flip (switching between the
interior and exterior of the bubble). We then impose a vector constraint around each
vertex and a symplectic constraint along each edge:
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�e s
1

�e s
2

�e t
1

�e t
2

he ∈ SO(3)

Ds
e = Dt

e

Fig. 2 Gluing of two bubbles imposing the matching of the 2d geometry of the corresponding surface
patches through the symplectic constraints Ds

e = Dt
e , equating the norms |�e s1 | = |�e t1 |, |�e s2 | = |�e t2 | and the

scalar product �e s1 · �e s2 = �e t1 · �e t2 , resulting in the existence of a unique SO(3) transport between the two
bubbles given by the group element he

• Around each vertex v, one considers the angular momentum vectors of each of the
particles and defines the closure constraint:

∑

e�v

εev
�J ev = 0, �J v

e = �xv
e ∧ �pv

e , (23)

where the sign εev = ± registers the relative orientation of the edge with respect
to the vertex, positive if the edge is outgoing v = s(e) and negative if the edge is
incoming v = t(e). This constraint generators generate SO(3) gauge transforma-
tions simultaneously rotating all the vectors around each vertex.

• Along each edge e, one considers the symplectic generators �, or equivalently the
Gram matrix D, of both pairs of vectors at the source and target vertices of the
edge and defines the matching constraint:

∀α, Ds
e = Dt

e, (24)

meaning that the norms and scalar product of the vectors �x and �p at both ends of
the edge must match. As illustrated on Fig. 2, this simply amounts to matching
the 2d geometry of the surface patch dual to the edge from the viewpoint of
the two bubbles sharing it. In particular, the determinant of the D-matrices must
match, i.e. | �J se | = | �J te | which is the standard matching constraint for twisted
geometries. Here we introduce a more general symplectic matching for each edge.
This matching constraint generates a SL(2,R)-gauge invariance along each edge,
which is physically interpreted as a gauge invariance of the bubble network under
2d surface diffeomorphisms.

At this stage, the bubble networks is dressed only with the discretized veirbein on
the surfaces, given by the pairs of vectors (�xv

e , �pv
e ). These variables not only encode

the intrinsic 2d geometry of the surfaces, but we can further recover the 3d transport
between bubbles as SO(3) group elements along the network’s edges. Indeed, assum-
ing the matching conditions given above, we can reconstruct a unique SO(3) group
element mapping the canonical pair of vectors (�xse , �pse) at the edge’s source vertex to
the other pair (�xte, �pte) living at its target. Let us drop the index e for this analysis.
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9 Page 12 of 25 L. Freidel, E. R. Livine

The matching conditions impose that the norms and scalar product of the position and
momentum at the source equal those at the target:

�− = |�xs |2 = |�x t |2, �+ = | �p s |2 = | �p t |2, �0 = �x s · �p s = �x t · �p t ,

D =
(

�−�+ − �20

)

= |�x s ∧ �p s |2 = |�x t ∧ �p t |2, (25)

so that, as long as D �= 0 (ensuring that the coordinate and momentum are not
collinear), there exists a unique rotation he along the edge e mapping the pair of
vectors at the source onto their target counterpart. This SO(3) holonomy is explicitly
given by:

∣
∣
∣
∣

he � �x s = �x t ,

he � �p s = �p t ,

(he)ab = 1

D
[

�+xtaxsb + �− pta p
s
b − �0

(

ptax
s
b + xta p

s
b

)+ (xt ∧ pt )a(x
s ∧ ps)b

]

,

(26)

with averaged expressions for all the norm factors on the edge:

D = |xs ∧ ps | |xt ∧ pt |, �+ = |ps | |pt |, �− = |xs | |xt |,
�0 = √(xs · ps) (xt · pt ). (27)

Thematrix hemaps the vector �x s to �x t , the vector �p s to �p t , and the direction (�x s∧ �p s)

to (�x t ∧ �p t ). Since the scalar products xs · ps and xt · pt are equal, this is enough to
ensure that he is an orthogonal matrix (see in “Appendix A” for more details).

Modifying the relative weight of the source and target factors in the formulae
above does not change their actual value once the symplectic matching conditions are
enforced. This would nevertheless affect the Poisson brackets of the holonomy he.
To obtain the correct Poisson brackets and recover twisted geometries as we show in
the next section, the averaged choice given above ensures that the holonomy com-
mutes with itself and that the symplectic reduction by the matching conditions works
smoothly.

Jumping ahead to the quantum level, imposing constraints between the two sys-
tems living on an edge of the network essentially creates entanglement along the edge.
Here we can understand the symplectic matching constraints as leading to, in quantum
information terms, a maximal entanglement along each edge e, i.e. at the 2d interfaces
between bubbles, compatible with the symmetry group structure. Indeed, an uncon-
strained edge would carry uncorrelated pairs of vectors at its source and target.Written
in term of quantum vectors, such a “naked edge” would be represented3 by a pair of
states |vs〉 ⊗ |vt 〉, where vs and vt respectively encode the classical data (xs, ps) and

3 To be more precise, let us sketch a quantization scheme in terms of coherent states. We use the Segal–
Bargmann representation for the pair of conjugate vectors (�x, �p) ∈ (R3)×2. For i running from 1 to 3,
we quantize each vector component (xi , pi ) as a harmonic oscillator and represent them at the quantum
level as acting on holomorphic wave-functions φ(zi ), with zi being the label of the coherent state and the
annihilation (resp. creation) operator represented as the multiplication operator ai = zi (resp. the derivation
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(xt , pt ) at the source and target of the edge. Each end of the edge carries an action of the
SO(3) × SL(2,R) Lie group. Imposing the sl(2,R) symplectic matching constraints
then relates the states at the source and target of the edge by a SO(3) transformation: a
basis of states solving the constraint aremaximally entangled states,

∫

dk k|v〉⊗hk|v〉,
depending on the rotation h ∈ SO(3) and defined by a group averaging over SO(3).
One could then glue bubble boundary states using those maximally entangled states
along the edges. The precise quantization of the bubble network phase space should
nevertheless be carried out in detail in order to realize this intuition explicitly.

2 From bubble networks back to twisted geometries

2.1 Symplectic reduction by the sl(2,R)matching constraints

Let us put aside the closure constraints, generating the local gauge invariance under
3d rotations at every node of the network, and focus on the matching constraints along
the edges. We showed above how to reconstruct SO(3) group elements describing the
transport between bubbles along the graph edges. Here we actually show that if we
take into account the sl(2,R)matching constraints and quotient the vector phase space
by the associated SL(2,R) gauge transformations, we exactly recover the T ∗SO(3)
phase space of twisted geometries. The closure constraints at the vertices do not play
any role at this stage and can be imposed a posteriori without interfering with this
symplectic reduction.

Footnote 3 continued
operator a†i = ∂zi . Group transformations in SO(3) act as 3d rotations on the complex vector (z1, z2, z3),

while the sl(2,R) algebra is generated by the total energy
∑

i (a
†
i ai + 1/2) and the squeezing operators

∑

i a
2
i and

∑

i a
†
i
2:

⎡

⎣
∑

i

a†i ai ,
∑

i

a2i

⎤

⎦ = − 2
∑

i

a2i ,

⎡

⎣
∑

i

a†i ai ,
∑

i

a†i
2

⎤

⎦ = + 2
∑

i

a†i
2,

⎡

⎣
∑

i

a†i
2,
∑

i

a2i

⎤

⎦ = −2
∑

i

(

a†i ai + 1

2

)

.

Considering an edge, we have two copies of this structure, one at its source in terms of coherent state label zi
with operators ai , a

†
i and one at its target in terms of label wi with operators bi , b

†
i . The sl(2,R) matching

constraints are:

∑

i

zi ∂zi =
∑

i

wi ∂wi ,
∑

i

z2i =
∑

i

∂2wi
,
∑

i

∂2zi =
∑

i

w2
i .

It is straightforward to check that a basis of solutions to these constraints is given by the entangled states
cosh[zi hi jw j ] and sinh[zi hi jw j ] labeled by a group element h ∈ SO(3), which are exactly the even and
odd superpositions of all coherent states at the source and target such that the two states differ that the
given rotation h. In order to realize the explicit quantization of the bubble network phase space in terms
of extended spin networks, we would need to refine this analysis using irreducible representations of the
symmetry group SU(2) × SL(2,R).

123



9 Page 14 of 25 L. Freidel, E. R. Livine

Proposition 2.1 The symplectic quotient of the vector network phase space (R6)×2E

by the symplectic matching constraints is the twisted geometry phase space T ∗SO(3)E

parametrized by �J s,te ∈ R
3 and he ∈ SO(3):

(R6)×2E//SL(2,R)E ∼ T ∗SO(3)E . (28)

Proof We start with a simple dimension counting:

dim(R6)×2E − 2 dim SL(2,R)E = 6E = dim T ∗SO(3)E . (29)

Next, the angular momenta �J s,te and the SO(3)-holonomies he are both invariant under
symplectic transformations on each edge andPoisson-commutewith thematching con-
straints (Ds

e − Dt
e) = 0. Finally, a straightforward though lengthy calculation allows

to check that their Poisson brackets (weakly) satisfy the brackets of the T ∗SO(3)E

phase space once the matching constraints are imposed:

{(

J se
)

a ,
(

J se
)

b

} = εabc
(

J se
)

c ,
{(

J te
)

a ,
(

J te
)

b

} = − εabc
(

J te
)

c , (30)

{he, he} ∼ 0,
{ �J se , he

}

∼ he �J ,
{ �J te , he

}

∼ − �J he, (31)

where the J ’s are the so(3)-generators, defined as 3 × 3 matrices:

(J a)bc = εabc.

So that the source angular momentum generates 3d rotations on the right of the holon-
omy he while the target angular momentum generates rotations on the left. ��

2.2 Map to twisted geometries and twist angle

Focusing on a single surface patch, we started with the phase space parameterized by
a canonical pair of 3-vectors (xa, pa) with a total of 6 real independent variables. We
mapped them on another pair of 3-vectors (Ja, �α), which now commute with each
other, {Ja, �α} = 0. Fromapractical point of view, themapdown to twisted geometries
from bubble networks is to drop the �’s and focus on the J ’s. There is however an
important subtlety. The pair of vectors (Ja, �α) satisfy the Casimir balance equation.
This means that they encode only 5 independent parameters and we need one extra
variable to fully parametrize the phase space and reconstruct the initial coordinate and
momentum vectors.

What’s missing is the choice of a direction orthogonal to the angular momentum
vector �J . Indeed both coordinate and momentum vectors are orthogonal to the angular
momentum, �x · �J = �p · �J = 0, and we need to specify the direction of at least one
of them. For instance, we can start with �J and the �α , satisfying the balance equation�J 2 = det D, and further specify the direction p̂ ∈ S2 on the unit sphere with p̂ · �J = 0.
This is enough to reconstruct the vector �p:

�p = | �p| p̂ = √

�+ p̂, (32)
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and then recover the coordinate vector �x by a cross product4:

�p ∧ �J = �p ∧ (�x ∧ �p) = �p2 �x − ( �p · �x) �p = �+�x − �0 �p
⇒ �x = 1

�+
( �p ∧ �J + �0 �p). (33)

This reconstruction only works when �+ = �p2 does not vanish. Otherwise, if the
momentum vanishes, �p = 0, then the angular momentum vanishes too �J = 0 and the
whole reconstruction issue becomes degenerate.

Specifying the direction p̂ ⊥ �J is equivalent to specifying an angle θ ∈ [0, 2π ] in
the plane orthogonal to �J .We choose for example the z-direction, then the vector êz∧ �J
lays in the plane orthogonal to �J and we can choose θ to be the angle5 between this
reference direction and p̂. This gives a bijection between the pair of vectors (xa, pa)
and the variables (Ja, �α, θ) satisfying the balance equation �J 2 = ��2.

This angle θ allows to recover the twist angle of the twisted geometry interpretation.
More precisely, the bubble network data on a graph � consist in dressing each graph
edge e with two pairs of vectors (�xse , �pse) and (�xte, �pte), living at its two extremities. For
each half-edge, we define the angular momentum �J v

e = �xv
e ∧ �pv

e and the symplectic
observables ��v

e (or equivalently the matrix Dv
e encoding the 2d surface metric data),

which satisfy the balance equation ( �J v
e )2 = (��v

e )
2. Then, assuming that the vectors

satisfy the symplectic matching constraints, ��se = ��te, they allow to define a SO(3)
group element he.

To make the link between the bubble networks and the twisted geometries, we
keep the angular momentum vectors for each half-edge �J v

e and make the �’s aside.
From the twisted geometry point of view, the SO(3) holonomy he sends �J se onto �J te ,
but is not fully determined by these two vectors. We require the extra data of a twist
angle ϕe to reconstruct a unique SO(3) parallel transport along the edge. From the
new perspective of the bubble networks, as we have explained above, we require the
extra data of an angle θ se at the source vertex to reconstruct the pair of vectors (�xse , �pse)
from the angular momentum and symplectic observables ( �J se , ��se), and similarly at the
target vertex. Then the unique SO(3)-holonomy mapping (�xse , �pse) to (�xte, �pte) not only
depends on �J se and �J te but also on those angles θ

s,t
e . Comparing these two points of

view, the twist angle is simply the difference ϕe = δθe = (θ te − θ se ).
Let us clarify the hierarchy of geometrical structures from Regge geometries to the

extended twisted geometries defined from the bubble network phase space introduced
in the present work. Twisted geometries are defined as networks of holonomies and
fluxes on a graph and are understood as extensions of Regge geometries. Indeed, in
general, one can reconstruct a polyhedron dual to each node of a twisted geometry,

4 This reconstruction of the position vector is actually very similar to the definition of position Dirac
observables for a relativistic particle [33].
5 More technically, wewould normalize êz∧ �J to define v̂x and define the third direction of this orthonormal
frame as v̂y = Ĵ ∧ v̂x , then

p̂ = cos θv̂x + sin θv̂y .
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9 Page 16 of 25 L. Freidel, E. R. Livine

with each edge attached to that node being dual to one of the faces of the polyhedron
[17]. So every edge is understood as linking two polyhedra with the SU(2) holonomy
along that edge encoding the change of frame from one polyhedron to the next. Then
we impose an area-matching constraint across every edge, equating the area of the
faces of the two neighboring polyhedra. Nevertheless this is not a geometric gluing
and the shape of the two faces do not necessarily match. We go further and be more
precise if we restrict ourselves to simplicial 3d geometries, i.e. triangulations, and
thus to 4-valent networks. In that case, one can introduce gluing constraints between
tetrahedra, on top of the area-matching constraints, that enforce the shape-matching of
triangles and not only thematching of their areas [12,34]. This allows to recover Regge
triangulations as a special case of twisted triangulations, when gluing constraints are
imposed.

Thenon-shape-matchingof triangles for twisted geometrieswere further interpreted
in [16] as allowing for torsion. More precisely, considering a triangle defined by two
edge vectors �v1 and �v2, one can deform its shape without changing its area by doing a
SL(2,R) transformation on this pair of vectors. Generic twisted geometries allow for
such a deformation between two neighboring tetrahedra. This deformation must be
taken into account in the definition of a discretized 3d spin-connection, which is not
simply defined by the SU(2) holonomies. This underlines the difference between the
torsionless 3d spin-connection and the Ashtekar–Barbero connection (used to define
the SU(2) holonomies) which has a non-trivial torsion related to the extrinsic curvature
of the 3d slice. When the SL(2,R) transformations are frozen and the shape-matching
of triangles is imposed by requiring that the scalar products �vA · �vB for A, B ∈ {1, 2}
match on both ends of each edge, then we recover Regge triangulations from twisted
triangulations. Finally, these shape-matching constraints can be entirely written in
terms of the triangle normal vectors—the fluxes—in the case of triangulations (but
this does not work as easily for generic cellular decomposition).

Let us see how bubble networks fit in this picture. Compared to twisted geometries,
we add extra data to each face around every node, introducing two frame vectors �e1
and �e2 instead of only the face normal vector �N . The normal vector is recovered as
�N = �e1 ∧ �e2, but we also have access to the 2d metric on the face, gAB = �eA · �eB . We
upgrade the area-matching constraint across edges, equating the norm of the normal
vector onboth ends of each edge | �Ns | = | �Nt |, to a sl2-matching constraint gsAB = gtAB .
Formulated as such, bubble networks look very similar to twisted geometries with the
shape matching constraints, but they are not. To start with, bubble networks are intro-
duced to be able to account for non-flat boundary surfaces with non-trivial 2d metric,
thereby generalizing both Regge geometries and twisted geometries. More precisely,
the identification of the shape matching constraints to the symplectic matching con-
straints, in the restricted case of triangulations, would rely on the identification of the
edge vectors of the triangulation with the frame vectors, �eA = �vA in the notations
above. Not only this means providing the triangulation edge vectors with a Poisson
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bracket (and choosing a root vertex6 for each triangle to select the two vectors �v1 and
�v2 as the frame vectors entering the matching constraints), it also implicitly means that
we are working with flat faces and that we define the surface frame fields on each face
from the 1d data living on each face boundary. Note that, in the present work and the
bubble network framework, we have not yet considered the algebraic and geometric
data carried by 1-cells but focused instead of the geometric data carried by 3-cells and
2-cells.

So, we have two complementary perspectives. On the one hand, if the case of
triangulations, if we identify the face frame vectors to the triangulation edge vectors
(if this can be done in a consistent way), then the sl2-matching constraints of bubble
networks coincide with the shape-matching constraints of twisted geometries and we
recover Regge triangulation directly from bubble networks. This is due to the fact
that SL(2,R) transformations allows to explore the whole space of triangle shapes
at fixed area. On the other hand, we should include the 1d graph structure drawing
the contours of the faces on the 2d boundary of every 3-cells, and understand the
geometric and algebraic data carried by these 1-cells, in order to study in which
case we can reconstruct the frame vectors from the 1d data and to characterize more
precisely in which situations we can identify the frame vectors to the triangulation
edge vectors. This is exactly a question to investigate in the framework of spinning
geometries [2,25], in which the normal vectors (the fluxes) to the faces are constructed
as holonomies of a specific connection along the 1d boundary of those faces.

At the end of the day, bubble networks are twisted geometries extended with the
extra data of frame fields, and the reconstruction of frame vectors for twisted geome-
tries, proposed in [16], seems to be a particular case of bubble networks. To make this
more precise, we would to consider the 1-skeleton of the 2d cellular decomposition on
each bubble and clarify which data is carried by 1-cells, which symplectic structure
are they endowed with and how they fit with the 2d metric data of bubble networks.

2.3 Conformal gauge and spinor parametrization

Above, we have showed how to reconstruct SO(3) holonomies from the vector phase
space of bubble networks and how to recover a T ∗SO(3) phase space. To truly recover
twisted geometries, we would like to reconstruct SU(2) holonomies and recover a
T ∗SU(2) phase space. An efficient way to do so is to directly recover the spinorial
phase space for twisted geometries [9,11,27] from the present construction. More
precisely, we simply need to show how to define spinors from pairs of vectors on each
half-edge.

6 Considering a triangle made of three edges, �v1,2,3 satisfying a closure condition �v1 + �v3 = �v2, with the
normal vector defined as �N = �v1 ∧ �v2 = �v1 ∧ �v3 = �v2 ∧ �v3, we can define a Poisson bracket:

{

va1 , vb2

}

=
{

va1 , vb3

}

=
{

va2 , vb3

}

= δab.

If we choose the pair of vectors (�v1, �v2) as frame fields, then change root vertex and switch to the pair of
vectors (�v1, �v3), this is a simple canonical transformation realized as a SL(2,R) transformation.
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Let us start with the data encoded in a spinor. From e.g. [35], a spinor in C
2 is

equivalent to an orthonormal basis in R
3. Indeed, starting from a single spinor z, we

consider the set of real quadratic combinations of its components:

N = 1

2
〈z|z〉, �J (z) = 1

2
〈z|�σ |z〉, �K (z) = 1

4

(

〈z|�σ |z] + [z|�σ |z〉
)

,

�L(z) = i

4
(〈z|�σ |z] − [z|�σ |z〉) . (34)

Together they form a closed so(3, 2) algebra under Poisson bracket7:

{Ja(z), Jb(z)} = εabc Jc(z), {Ja(z), Kb(z)} = εabcKc(z),

{Ja(z), Lb(z)} = εabcLc(z),

{Ka(z), Kb(z)} = − εabc Jc(z), {La(z), Lb(z)} = − εabc Jc(z),

{Ka(z), Lb(z)} = δabN ,

{N , Ja(z)} = 0, {N , Ka(z)} = − La(z), {N , La(z)} = + Ka(z).

Moreover, the three vector generators form an orthonormal basis of R3:

�J 2 = �K 2 = �L2 = N 2, �J · �K = �J · �L = �K · �L = 0.

Coming back to our vector phase space, it is natural to seek an identification of the
triplet (�x, �p, �J ) with the orthonormal basis ( �K , �L, �J ). However, this requires that �x
and �p be orthogonal and with equal norm. It is indeed always possible to reach such
a configuration by a canonical SL(2,R) transformation. From a 2d geometry point of
view, this amounts to using a 2d diffeomorphism to reach the conformal gauge. This
means using isothermal coordinates8 for every surface patch of the bubbles. More
precisely, we proceed to a gauge-fixing of the SL(2,R) gauge transformations by
imposing two constraints, �0 = �x · �p = 0 and �− − �+ = �x2 − �p2 = 0. In this basis
the 2d metric is proportional to the flat metric qAB = | �J |δAB ., this is the discrete
conformal gauge.

7 This algebra can be derived from the following Poisson brackets,

{
1

2
〈z|σa |z〉, 〈z|σb|z]

}

= −2i

2
〈z|σaσb|z] = −2i

2
〈z|δabI + iεabcσc|z] = εabc〈z|σc|z],

as well as

{
1

2
〈z|σa |z〉, [z|σb|z〉

}

= εabc[z|σc|z〉, {〈z|σa |z], [z|σb|z〉} = 4iδab〈z|z〉 − 4εabc〈z|σc|z〉.

8 An intriguing remark is that isothermal coordinates for minimal surfaces allow for the Weierstrass–
Enneper representation in terms of holomorphic coordinates [36]. This might open the door to a direct link
between spinning geometries (whose boundary surfaces are all minimal surfaces) and spinor networks.
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We can then compute the Dirac bracket {·, ·}D , in terms of the Dirac matrix whose
only matrix element is {�0, (�+ − �−)} = (�+ + �−), and obtain the Dirac bracket
{·, ·}D:

{F,G}D = {F,G} + 1

4| �J |
{

F, (x2 − p2)
} {

�x · �p,G
}

− 1

4| �J |
{

F, �x · �p
} {

(x2 − p2),G
}

, (35)

with | �J | = x2 = p2.We easily find that (|�x |�x, | �p| �p, �J ) exactly reproduces the so(3, 2)
algebra of the ( �K , �L, �J ) generators given above. The norm factors are here to ensure
that we do indeed have three vectors with equal norm (thus forming an orthonormal
basis).

From here, we are ready to reconstruct the spinor from the pair of vectors. Indeed,
it is not possible to fully recover the original spinor z ∈ C

2 from only the angular
momentum vector �J ∈ R

3. These miss the information of the spinor phase eiϕ (which
corresponds to the twist angle data):

|z〉 = eiϕ
( √N + J3
eiθ

√N − J3

)

, eiθ = J1 + i J2
√

J 21 + J 22

= J+
√

N 2 − J 23

, eiϕ ∈ U(1).

On the other hand, once the whole orthonormal triad ( �K , �L, �J ) is provided, we can
retrieve thewhole spinorwith its phase information and express its components zA=0,1,
say, in terms of the �K and �L vectors:

(z0)
2 = K− + i L−, (z1)

2 = − (K+ + i L+
)

, (36)

with K± = K1 ± i K2 and similarly L± = L1 ± i L2. One simply needs to take care
of choosing an appropriate cut for the square-root on the complex plane. From the
so(3, 2) commutators, it is easy to check that, once K and L are defined in terms of
the position and momentum, we get the expected commutators:

∣
∣
∣
∣

�K = |x |�x = | �p|�x
�L = | �p| �p = |x | �p �⇒

∣
∣
∣
∣
∣
∣
∣
∣
∣

{z0, z1}D = 0

{z0, z̄1}D = 0

{z20, z̄20}D = − 4i(N + J3) = − 4i z0 z̄0
{z21, z̄21}D = − 4i(N − J3) = − 4i z1 z̄1

(37)

This allows a direct mapping between the spinor network representation of twisted
geometry and our vector parametrization of the bubble network phase space:

∣
∣
∣
∣

(z0)2 = (|�x | p2 + | �p| x1) − i (| �p| x2 − |�x | p1)
(z1)2 = (|�x | p2 − | �p| x1) − i (| �p| x2 + |�x | p1) (38)

This means that the (holomorphic) spinorial representation of loop quantum gravity is
merely a gauge-fixed version of the full phase space presented here. Bubble networks
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•
••

• ••

Fig. 3 In the bubble network framework, a bubble with discretized 2d geometry has the topology of a 3-ball
with a 2-sphere boundary and is represented as a (not necessarily convex) polyhedron. From the perspective
of twisted geometries, a bubble is the blown-up version of a graph node. Then the graph edges (here in blue)
link each surface patch on the bubble’s surface to a neighboring bubble. These edges carry the symplectic
matching constraints for the 2d geometry and the SO(3) transport from bubbles to bubbles (color figure
online)

are extended twisted geometries with the extra data of discretized surface metrics,
which reduces to the original twistedgeometries in the conformal gaugewhen choosing
isothermal coordinates on the bubbles’ surfaces and thus working with orthonormal
triads.

Outlook

We have introduced discrete bubble networks for the 3d geometry as a discrete version
of a manifold atlas, with the charts represented by bubbles carrying algebraic data
allowing to glue them into a consistent geometry. And we showed how this leads (in a
suitable choice of gauge fixing) to the kinematical structures of loop quantum gravity
where the states of 3d geometry are defined as twisted geometries and spin networks.

More precisely, the discrete bubble networks, as illustrated on Fig. 3, carry the data
of the 2d discretized metric of the bubbles’ surfaces and implement a consistent gluing
of the bubbles through a matching of the boundary 2d geometry. We have shown that
these can be understood as extended twisted geometries, with a dual algebraic structure
with SU(2) group elements describing the 3d transport between the reference frames
of each bubble and a local SL(2,R) gauge invariance of the gluing interpreted as the
discrete equivalent of surface diffeomorphisms. This implements the discrete network
version of the analysis of boundary surfaces coupled to loop gravity worked out in [3].
The main new ingredient of our framework compared to twisted geometries, is that
the standard area-matching constraint between two 3d cells (or equivalent two spin
network nodes) is augmented to a sl2-matching constraint, understood as amatching of
the 2dmetric at the interface. Similar dilatation matching constraints were proposed in
a slightly different context in [37] which investigated an action of the conformal group
SO(4, 2) on twisted geometries and spin network states turning them into su(2, 2) spin
networks. This was achieved through the extension of the spinors to twistors, which is
different fromour extension of the flux vector to a triad. The resulting so(4, 2) structure

123



Bubble networks: framed discrete geometry for quantum. . . Page 21 of 25 9

is thus rather different from the su(2)×sl2 structure derived here. It should nevertheless
be interesting to merge those two extensions together into extended covariant twisted
geometries by upgrading the SU(2) transport between 3d cells to SL(2,C) group
elements and thereby describing 3d bubble networks embedded in a 4d space-time
geometry (with non-trivial extrinsic geometry).

This formalism allows direct access to the 2d metric of boundary surfaces, opening
the door to defining boundary geometrical observables in loop quantum gravity such as
2d curvature or quasi-local energy defined as surface integrals (e.g. [38]). Furthermore
it allows for conformal transformations of the 2dboundarymetric on “corners”. Indeed,
we have showed that the twisted geometries (in their spinorial representation) are
gauge-fixed versions of the new bubble network phase space in the conformal gauge
for the 2dmetric on the bubbles. The extended phase space thus allows to unfreeze this
gauge-fixing and explore the whole phase space of boundary 2d geometries, which
was inaccessible in the standard loop quantum gravity formalism. This improvement
should be very useful in the investigation of the possible holography of the dynamics
of quantum geometry in loop quantum gravity, for example through a quasi-local
CFT/gravity duality.

In the meanwhile, we foresee a few possible extensions of the present formalism
and interesting outlook:

• Quantization and extended spin networks: A first task would be to quantize our
extended twisted geometries into extended spin networks, as graphs dressed with
SU(2) representations and invariant tensors augmented with sl2 charges. Each
node of the graph would be dual to a bubble with a real 2d metric on its boundary
surface. A priori, the bubbles’ 2d quantumgeometrywould consist with a SL(2, R)

(irreducible unitary) representation and state attached to each surface patch and
encoding its quantum state of 2d metric. Each graph edge would still carry a
SU(2) representation—or spin—as in the standard formulation of loop quantum
gravity. The balance equation along each edge, reflecting the gluing of bubbles,
would equate the SU(2) Casimir on the edge with the SL(2,R) Casimirs of the
representations attached to its source and target,

C(e)
su2

= C
(e,s)
sl2

= C
(e,t)
sl2

, (39)

thus implying a one-to-one correspondence between SU(2) representations
(labeled by a half-integer spin j ∈ N/2) and SL(2,R) representations (from the
discrete principal series of unitary representationswith positive quadraticCasimir).
This equilibrium between extrinsic and intrinsic curvatures of the surfaces would
be interpreted as the quantum Gauss-Codazzi equation for bubbles. In this frame-
work, a goal wold be to derive and study the algebra of symmetry and deformations
of the quantumgeometry of surfaces, and see if it can sustain a boundary conformal
field theory in a continuum limit.

• The role of the surface graphs: The phase space and algebraic structure that we
introduced for bubble network relies exclusively on the combinatorial structure of
the 1-skeleton dual of the network of bubbles, as a graph whose nodes represent
the bubbles and links indicate the gluing of two neighboring bubbles. However,
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considering that we describe the 2d metric on the bubbles’ surfaces, it seems
interesting to also keep track of the surface graph on each bubble, i.e. the 1-
skeleton of network of surface patches for each bubble indicating which patches
are neighbors as advocated in [39]. This means keeping track of an extra layer
of lower dimensional cells, as in the hierarchy of cellular decompositions e.g.
used to formulate discrete topological field theories. This layer of information
would be especially useful when considering geometrical observables, such as the
2d curvature, on the surface of the bubbles, which involve derivatives of the 2d
metric. The natural question is what algebraic data live on the surface graph of
each bubble and how they are related to the extended twisted geometry variables? It
amounts to adding some structure to the bubbles and dressing the 1d lines between
surface patches. In the context of spinning geometries, the holonomy of a specific
“spinning” connection live on these triangulation edges, from which the normal
vectors �J ’s were reconstructed [2,25]. It would be enlightening to understand if a
similar idea can be generalized to the bubble networks, and explore what kind of
defects can be respectively associated to the 1d surface edges and to the 2d surface
patches.

• The generalization to a non-vanishing cosmological constant � �= 0: This could
be achieved by either introducing a q-deformation of the T ∗SU(2) phase space
(e.g. using the SL(2,C) Poisson-Lie group structure of q-deformed loop quantum
gravity introduced in [40–42]) or by extending the Casimir balance equation relat-
ing the sl2 and su2 charges and encoding the relation between the intrinsic and
extrinsic geometries of the bubbles’ surfaces, or by a suitable mixture of those two
ingredients.

• Comparison with other proposed extensions of spin networks: We should com-
pare the extended twisted geometry phase space proposed here with the Drinfeld
tube networks based on the Drinfeld double DSU(2) and proposed in [43–45] to
account for both curvature and torsion defects, or the double spin network struc-
tures advocated in [25] for studying the coarse-graining of loop quantum gravity.
This would also shed light on the relation with the more complete picture pro-
posed in [26] of loop gravity coupled to the full Kac–Moody algebra of surface
metric deformation modes, which seems to lead to generalized spin network states
with the SU(2) fluxes and holonomies coupled to conformal field theories on the
bubbles’ surfaces.

• Implement a dynamics of the bubble networks:We have introduced a kinematical
framework for bubble networks, but the aim of quantum gravity is to define the
dynamics of quantum geometry (and the action of diffeomorphisms—change of
observers—at the quantum level). Towards this goal, it would be very interesting
to try to implement the hydrodynamical formulation of the dynamics of general
relativity, as proposed in [46], and derive evolution laws for the bubbles and their
2d boundary geometry. Our goal is to reach a better understanding of the dynamics
of gravitational edge modes living on space-time boundaries.
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Appendix A: Holonomy reconstruction from the canonical pair of vec-
tors

Lemma A.1 Let us consider a pair of 3-vectors (�x, �p) such that |�x ∧ �p| �= 0. We
consider the symplectic generators:

�0 = �x · �p, �− = |�x |2, �+ = | �p|2, D = (�−�+ − �20) = |�x ∧ �p|2 �= 0.

There exists a unique rotation h �x, �p ∈ SO(3) mapping the reference pair (|�x |ê1, �v) to
(�x, �p) with:

|�x |ê1 = |�x |
⎛

⎝

1
0
0

⎞

⎠ , �v = 1

|�x |

⎛

⎝

�x · �p
|�x ∧ �p|

0

⎞

⎠ = 1√
�−

⎛

⎝

�0√D
0

⎞

⎠ ,

which is given by:

h �x, �p =
( �x

|�x | ,
(�x ∧ �p) ∧ �x
|�x | |�x ∧ �p| ,

�x ∧ �p
|�x ∧ �p|

)

=
( �x

|�x | ,
|�x |2 �p − (�x · �p)�x

|�x | |�x ∧ �p| ,
�x ∧ �p

|�x ∧ �p|
)

(40)

Proof The matrix h �x, �p maps the (Oxy) plane to the plane spanned by the two vectors
(�x, �p) and sends the direction ê3 to the angular momentum �J . One simply needs to
check that the three columns of h form a positive orthonormal basis of R3 to prove
that h ∈ SO(3). ��
Now we can combine the two rotations h �xs , �ps and h �xt , �pt to get the SO(3) holonomy
living along the oriented edge e:

h = h �xt , �pt
(

h �xs , �ps
)−1 = h �xt , �pt t h �xs , �ps . (41)
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