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Abstract
Weinvestigate geodesic orbits andmanifolds formetrics associatedwithSchwarzschild
geometry, considering space and time curvatures separately. For ‘a-temporal’ space,
we solve a central geodesic orbit equation in terms of elliptic integrals. The intrin-
sic geometry of a two-sided equatorial plane corresponds to that of a full Flamm’s
paraboloid. Two kinds of geodesics emerge. Both kinds may or may not encircle
the hole region any number of times, crossing themselves correspondingly. Regular
geodesics reach a periastron greater than the rS Schwarzschild radius, thus remain-
ing confined to a half of Flamm’s paraboloid. Singular or s-geodesics tangentially
reach the rS circle. These s-geodesics must then be regarded as funneling through the
‘belt’ of the full Flamm’s paraboloid. Infinitely many geodesics can possibly be drawn
between any two points, but theymust be of specific regular or singular types. A precise
classification can bemade in terms of impact parameters. Geodesic structure and com-
pleteness is conveyed by computer-generated figures depicting either Schwarzschild
equatorial plane or Flamm’s paraboloid. For the ‘curved-time’ metric, devoid of any
spatial curvature, geodesic orbits have the same apsides as in Schwarzschild space-
time. We focus on null geodesics in particular. For the limit of light grazing the sun,
asymptotic ‘spatial bending’ and ‘time bending’ become essentially equal, adding
up to the total light deflection of 1.75 arc-seconds predicted by general relativity.
However, for a much closer approach of the periastron to rS , ‘time bending’ largely
exceeds ‘spatial bending’ of light, while their sum remains substantially below that of
Schwarzschild space-time.
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1 Introduction

The first and most fundamental solution of the field equations in Einstein’s theory of
general relativity (GR) was provided by Schwarzschild and published in 1916 in two
ground-breaking papers [1]. Schwarzschild’s exact solution describes a static space-
time in the vacuum outside a non-rotating spherical star or black-hole singularity
at the origin. Geodesics in that space-time originally derived by Schwarzschild and
Einstein have been widely studied and more deeply understood over time in various
coordinate systems, as discussed in fundamental textbooks and review articles [2–15].
There are two metrics closely associated with Schwarzschild’s, which consider either
space or time curvatures as separate from each other. Derivations and comparisons of
geodesic orbit equations for all three metrics have been recently provided [16]. In this
paper we obtain exact solutions of all those geodesic orbit equations and analyze more
deeply their manifolds. Remarkable results, both mathematically and physically, are
presented.

2 Schwarzschild’s space-time geometry and geodesics

Schwarzschild’s space-time geometry and metric line element

ds2 =gμνdx
μdxν

= −
(
1 − rS

r

)
(cdt)2 +

(
1 − rS

r

)−1

(dr)2

+ r2(dθ)2 + r2 sin2 θ(dφ)2 (1)

are derived and discussed in fundamental GR textbooks, such as Refs. [2–4]. In Eq. (1),

rS ≡ G

c2
2M (2)

is Schwarzschild’s radius.
Four-momentum components pμ = m dxμ

dτ
ofmaterial test particles have a time-like

pseudo-norm
pμ p

μ = gμν p
μ pν = −m2c2, (3)

allowing cdτ = √−ds2 to represent an invariant proper-time interval.
A geodesic equation for four-momentum covariant components,

m
dpβ

dτ
= 1

2

(
∂gνα

∂xβ

)
pν pα, (4)

can be generally derived [4].
Conservationof energy,mc2 Ẽ , and angularmomentum,mL̃ , lead to planar geodesic

orbits, which can thus be assumed to be equatorial, with polar angle θ = π
2 = const.
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We then arrive at a time-like geodesic orbit equation in terms of the azimuthal angle,
φ, namely,

(
dr

dφ

)2

= r4

L̃2

{
c2 Ẽ2 − c2 + G

2M

r
− L̃2

r2
+ G

c2
2M

r

L̃2

r2

}
. (5)

In the non-relativistic limit we may omit the last term in Eq. (5) and rescale energy
as to recover Newton’s orbit equation [16].

We may also consider null geodesics, having ds2 = 0 in Eq. (1). These are traveled
exclusively by massless test particles. Correspondingly, their four-momentum pμ =
dxμ

dλ
has null pseudo-norm

pμ p
μ = gμν p

μ pν = 0. (6)

Conservation of energy, E , and angular momentum, L , lead again to planar equatorial
geodesics. The corresponding null geodesic orbit equation is

(
dr

dφ

)2

= r4

L2

{
E2

c2
− L2

r2
+ G

c2
2M

r

L2

r2

}
. (7)

3 Proper spatial submanifold and geodesics in Schwarzschild
submetric

Since Schwarzschild geometry is static, a natural way to separately consider proper
space is to regard it as a three-dimensional (3D) submanifold at any given coordinate-
time [17]. This ‘fixed’ or ‘a-temporal’ space has a submetric line element for xi =
(r , θ, φ) spatial coordinates given by

dS2 = gi j dx
i dx j

=
(
1 − rS

r

)−1

(dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2. (8)

Up to the rS horizon, dS2 > 0 represents the line element of a 3D positive-definite
Riemannian submetric. Therein, parameterizing geodesics with an affine parameter λ,

tangent vectors V i = dxi
dλ

have a positive-definite norm

ViV
i = gi j V

i V j = C2 > 0. (9)

Geodesic curves in the 3D spatial submanifold then obey the equation

dVk
dλ

= 1

2

(
∂gi j
∂xk

)
V iV j . (10)

Spherical symmetry leads again to planar geodesic curves, which can be thus assumed
to be equatorial. Conservation of an angular momentum equivalent, L , leads to a
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geodesic equation for the radial curvature coordinate, namely,

(
dr

dλ

)2

= C2 − C2 rS
r

− L2

r2
+ rS

r

L2

r2
. (11)

From that, a geodesic orbit equation, expressed in terms of the azimuthal angle, φ,
can be derived as

(
dr

dφ

)2

= r4

L2

{
C2 − C2 G

c2
2M

r
− L2

r2
+ G

c2
2M

r

L2

r2

}
. (12)

One may further consider weak-field and non-relativistic limits. In any case, it is
clear that the exact time-like geodesic orbit Eq. (5) demands gravitational attraction
exclusively, whereas the exact spatial-submanifold geodesic orbit Eq. (12) invariably
contains one term, namely its second, which corresponds to gravitational repulsion
[16].

It is particularly useful to generate a regular two-dimensional (2D) surface with cur-
vature and metric equivalent to those of ‘a-temporal’ space of Schwarzschild geodesic
geometry. For the latter, we consider only a 2D subspace that represents geodesic
equatorial planes. The corresponding line element in Eq. (8) thus reduces to

dS2 =
(
1 − rS

r

)−1

(dr)2 + r2(dφ)2 (13)

for the (r , φ) coordinates. Then we embed the corresponding 2D submanifold in
ordinary 3D Euclidean space, by associating r2 with (X2 + Y 2) and by defining

Z2 = 4r2S

(
r

rS
− 1

)
. (14)

This is known as Flamm’s paraboloid of revolution about the Z -axis [18]. It derives
from straightforward integration after setting dS2 = (dZ)2 + (dr)2 + r2(dφ)2 equal
to dS2 in Eq. (13). Thus Flamm’s paraboloid is isometric to the 2D manifold of
the geodesic equatorial plane within the Schwarzschild spatial submetric. Flamm’s
paraboloid originates most interesting dynamics of Einstein–Rosen bridge and worm-
hole constructions in Kruskal coordinates [3–11,13,14,19].

The geodesic orbit Eq. (12) admits a single turning point, obtained by equating
Eq. (12) to its minimum zero value. One can then express the orbit periastron as

r2p = L2

C2 , (15)

for any rp > rS . We may thus recast the orbit Eq. (12) solely in terms of rp and rS as

(
dr

dφ

)2

= r4

r2p
− rSr3

r2p
− r2 + rSr . (16)
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4 Regular geodesic orbits in curved space

Let us also consider a four-dimensional (4D) pseudo-Riemannianmanifoldwithmetric

ds2 =gμνdx
μdxν

= − (cdt)2 +
(
1 − rS

r

)−1

(dr)2

+ r2(dθ)2 + r2 sin2 θ(dφ)2. (17)

This differs from the Schwarzschild metric in that the time-like metric tensor com-
ponent is assumed to be the same as it is in Special Relativity (SR), i.e., gtt = −1,
whereas the 3D spatial submanifold at any given coordinate time, t , maintains the
same curvature, or grr , that it has in the Schwarzschild metric.

Remarkably, all time-like, null and space-like geodesic orbit equations for this
‘splittable space-time’ metric [20–22] formally coincide with the space-like geodesic
orbit Eq. (12) that we derived for the ‘a-temporal’ space of Schwarzschild geometry
[16]. It is possible to figure how that happens by keeping track of all gtt and grr factors
throughout the exact derivation of geodesic orbits for all metrics that we consider. A
central element is that the product of gtt and grr is constant only for the full space-time
Schwarzschild metric. Maintaining gtt grr = −1, as it is in Minkowski space-time,
may indicate that time and space bend inversely, relative to eachother, inSchwarzschild
space-time. That may in turn reflect a basic requirement of the equivalence principle,
namely, that the speed of light must remain a universal constant in any local freely-
falling Lorentzian frame, in curved space-time of GR, as it is in flat space-time of SR.
This result is peculiar to Schwarzschild coordinates, however. It extends only to a first
order in rS/r in ‘isotropic coordinates,’ as shown in Eq. (10.89) and p. 292 of Ref. [4],
for example. In Flamm’s coordinates, obtained from Eqs. (14) and (29), the product
of gtt and gZ Z becomes − Z2

4r2S
, as a result of the fact that Flamm’s coordinates are not

asymptotically Lorentzian.
The intrinsic geometry of Flamm’s paraboloid and its isometric equatorial plane

in the Schwarzschild spatial submetric differs critically from the intrinsic hyperbolic
geometry of the Bolyai-Lobachevsky plane in at least two major respects. Firstly,
the latter requires a constant negative intrinsic Gaussian curvature, whereas Flamm’s
paraboloid has K = − rS

2
1
r3
, rapidly vanishing for r >> rS . At the surface of the earth,

for example, we have K � −1.7 x 10−27 cm−2, far smaller than K � −0.64 cm−2 at
the Schwarzschild radius rS � 0.887 cm of a corresponding black hole [7]. Secondly,
Flamm’s paraboloid is a genus-one surface, excluding the r < rS hole region. That
allows for the possibility of geodesic orbits encircling that hole region any number
of times, and correspondingly crossing themselves. Thus, globally, infinitely many
geodesics can possibly be drawn between any two points on the equatorial plane
of the Schwarzschild spatial submetric, or, equivalently, on its isometric Flamm’s
paraboloid.

The geodesic orbit Eq. (16) for L �= 0 can be integrated by separation of variables
as follows. Set r̂ = r/rS and p = rp/rS > 1. The angle between two vectors with
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radii r̂1 ≥ p and r̂2 > r̂1 is thus

φ(r̂2, r̂1) =
∫ r̂2

r̂1

p dr√
r(r − 1)(r − p)(r + p)

. (18)

This integration can be performed either numerically or analytically. Numerical solu-
tions require consideration of singularities in the integrand. An analytic solution is
generally possible and more satisfactory, both theoretically and practically. It can be
expressed in terms of elliptic integrals and functions as follows:

φ(r̂2, r̂1) = 2
√

p

p − 1

⎛
⎝F

⎡
⎣sin−1

⎛
⎝

√
(p − 1)(r̂1 + p)

2p(r̂1 − 1)

⎞
⎠

∣∣∣∣ −2

p − 1

⎤
⎦

−F

⎡
⎣sin−1

⎛
⎝

√
(p − 1)(r̂2 + p)

2p(r̂2 − 1)

⎞
⎠

∣∣∣∣ −2

p − 1

⎤
⎦

⎞
⎠ , (19)

where F [φ|m] is the incomplete elliptic integral of the first kind,

F [φ|m] =
∫ φ

0

(
1 − m sin2 θ

)−1/2
dθ, (20)

for −π/2 < φ < π/2. Extensions beyond this range of φ may be made using trans-
formations of the argument as

F [nπ ± φ|m] = 2nK[m] ± F [φ|m] , (21)

where K [m] = F [π/2|m] is the complete elliptic integral of the first kind [23]. The
general solution for φ(r̂), parameterized in terms of p, is given by

φ(r̂) = lim
r̂1→p

φ(r̂ , r̂1)

= 2
√

p

p − 1

⎛
⎝K

[ −2

p − 1

]
− F

⎡
⎣sin−1

⎛
⎝

√
(p − 1)(p + r̂)

2p(r̂ − 1)

⎞
⎠

∣∣∣∣ −2

p − 1

⎤
⎦

⎞
⎠ .

(22)

The asymptotic limit for the total angular deflection relative to the symmetry axis (let
us say, the X -axis) is

φ∞ = lim
r̂→∞

φ(r̂)

= 2
√

p

p − 1

(
K

[ −2

p − 1

]
− F

[
sin−1

(√
p − 1

2p

) ∣∣∣∣ −2

p − 1

])
. (23)
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Fig. 1 Some spatial geodesics
with periastra at rp/rS =
3, 2, 1.5, 1.25, 1.125, 1.07611, 1.0625, 1.03125.
Here rS = 1. The critical
2π -encircling geodesic orbit
with rp1 = 1.07611rS is
displayed as a dashed line

Functional inversion of Eq. (22) uniquely provides an analytic solution to the spatial
geodesic orbit Eq. (16). That is

r(φ) = p

2 cn

[√
p−1
4p φ

∣∣∣∣ −2
p−1

]2
− 1

, (24)

where cn denotes the Jacobi elliptic cosine function, and the angle φ is taken within
the range (−φ∞, φ∞).

Values for all these elliptic integrals and functions can be readily obtained from
current computer packages. All the solutions that we illustrate in this paper, and many
more for the same or other related metrics, have been derived from Mathematica
libraries. At times, we checked analytic solutions with direct numerical integrations,
confirming their accuracy.

As a first example, some geodesic orbits are graphed in Fig. 1 for rp/rS =
3, 2, 1.5, 1.25, 1.125, 1.07611, 1.0625, and 1.03125 on Schwarzschild equatorial
plane. The corresponding geodesic orbits on the isometric Flamm’s paraboloid are
graphed in Fig. 2. Since we have azimuthal symmetry, we have chosen without loss
of generality to align the X -axis along a direction from rS to rp in Figs. 1 and 2.

Notice that L �= 0 geodesics on Flamm’s paraboloid, as illustrated in Fig. 2 for
example, have nothing to do with circles at Z0 = const �= 0 heights, as typically drawn
on similar figures, such as that displayed on the cover of Hartle’s book, for example
[10]. Those circles are level curves with r̂0 = const > 1 and non-zero geodesic

curvature κg = 1
rS

√
(r̂0−1)
r̂30

. See Refs. [16,17] for further discussions on that matter.
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Fig. 2 Geodesics on Flamm’s
paraboloid with periastra at
rp/rS =
2, 1.5, 1.25, 1.125, 1.07611, 1.0625, 1.03125,
isometric to the geodesics shown
in Fig. 1. Here rS = 1. The
critical 2π -encircling geodesic
orbit with rp1 = 1.07611rS is
displayed as a dashed line

Remarkably, even in the non-relativistic limit of rp >> rS , the short-range rela-
tivistic attractive fourth term in Eq. (16) still affects the asymptotic behavior of nearly
Euclidean straight lines, causing their semi-asymptotes to form a concave angle 2φ∞
slightly larger than π , about the X -axis in Fig. 1 for example. That differs from the
hyperbola solution of the three-term non-relativistic approximation to Eq. (16), whose
semi-asymptotes form a convex angle slightly smaller than π . Nevertheless, the effect
of the long-range non-relativistic repulsive second term in the full Eq. (16) is always
noticeable as an asymptotic bending away from the hole region for all geodesics:
observe those in Fig. 1, for example. Indeed, the second term always exceeds in mag-
nitude the fourth term in Eq. (16), except at r = rp, where they equilibrate.

The onset of a fully relativistic regime and multiple connectivity can be character-
ized by a critical periastron rp1 = 1.07611rS , where we attain the first full encircling
of the r < rS hole region, but without any crossing of the geodesic orbit. Such rp1 is
determined by solving for φ∞ = π in Eq. (23). That produces a full concave angle
2φ∞ infinitesimally smaller than 2π between geodetic semi-asymptotes. Below that
rp1 value, there is an infinite series of rpn periastra that decreasingly converge to rS ,
such that their corresponding geodesics have increasing integer numbers of wind-
ings around the hole region and corresponding crossings. The critical 2π -encircling
geodesic orbit with rp1 = 1.07611 rS is displayed as a dashed line in Figs. 1 and in 2.

Typically, we can pick two points on the equatorial geodesic plane and find an
infinite number of longer and longer arcs of geodesics that connect them, spiraling
in-and-out around the hole region. In Fig. 3 we provide some examples of that. One
point has r1 = 4rS and φ1 = π/4 + 1, while the other point has r2 = 5rS and
φ2 = π/3 + 1. Periastra occur at rp/rS = 3.1838 (red), 1.06209 (green), 1.04152
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Fig. 3 Four spatial geodesics
connecting two points on the
equatorial plane of
Schwarzschild spatial geometry,
where rS is taken as the unit of
length. One point has r1 = 4rS
and φ1 = π/4 + 1, while the
other point has r2 = 5rS and
φ2 = π/3 + 1. Dashed radial
rays indicate the positive side of
symmetry axes and the location
of periastra of correspondingly
colored geodesics. Periastra are
at rp/rS = 3.1838 (red),
1.06209 (green), 1.04152
(purple), 1.00065 (blue)

(purple), 1.00065 (blue). All periastra fall on the positive side of symmetry axes that
are shown as dashed rays from the origin. The red curve provides the shortest geodesic
arc between the two points. The red geodesic never crosses itself nor fully encircles
the hole region. The green geodesic encircles the hole region once, crossing itself at a
point on the negative side of the symmetry axis. The purple geodesic still encircles the
hole region once, and still crosses itself only once on the negative side of the symmetry
axis. However, the crossing point of the purple geodesic now falls closer to the hole
region, on the same side of the red geodesic. The blue geodesic finally encircles the
hole region twice, crossing itself at two points on both sides of the symmetry axis.

In Fig. 4 two points are taken along the same radial direction, having φ = π/3.
One point has r1 = 4rS , while the other point has r2 = 6rS . Periastra are at rp/rS = 1
(red), 1.05228 (green), 1.00056 (purple). The red segment provides the shortest radial
(L = 0) connection between the two points. The green geodesic encircles the hole
region once, crossing itself on the negative side of the symmetry axis. The purple
geodesic encircles the hole region twice and crosses itself twice, on both sides of the
symmetry axis.

To make further progress, we need to reframe the spatial geodetic analysis in terms
of impact parameters. Given the fact that the intrinsicGaussian curvature, K = − rS

2
1
r3
,

vanishes asymptotically, we may pursue the analogy with the SR asymptotic limit of
GR Schwarzschild space-time for r → ∞. Then the L angular momentum equivalent
defines the impact parameter equivalent as

b2 = L2

C2 . (25)
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Fig. 4 Three spatial geodesics
connecting two points on the
equatorial plane of
Schwarzschild spatial geometry,
where rS is taken as the unit of
length. The connected two
points lie along the same radial
direction, having φ = π/3. One
point has r1 = 4rS , while the
other point has r2 = 6rS .
Dashed radial rays indicate the
positive side of symmetry axes
and the location of periastra of
correspondingly colored
geodesics. Periastra are at
rp/rS = 1 (red), 1.05228
(green), 1.00056 (purple)

Considering Eq. (15), we find that b = rp. Geometrically, b represents the distance
between either incoming or outgoing geodetic asymptotes and corresponding radial
lines (with L = b = 0) asymptotically parallel to those geodetic asymptotes.

In Fig. 5 we display geodesics with varying impact parameters, starting with the
critical 2π -encircling geodesic orbit with rp1/rS = 1.07611, and continuing with
rp/rS = 1.1, 1.2, 1.4, 1.8, 2.6. The corresponding dashed curves match asymptotic
lines smoothly with arcs of constant radius. If we further decrease b from rp1 to rS ,
the geodesic orbit will cross itself an increasing number of times, approaching infinity
for b approaching rS .

5 Singular spatial geodesics

There is a different class of singular geodetic solutions,whichwemay call s-geodesics.
Those occur for impact parameters having ba < rS , thus pa = ba/rS < 1. Periastra of
s-geodesics only occur at rS . Impact parameters ba , although still given by Eq. (25),
actually correspond to apoastra of geodesics in the hole region with indefinite metric
in Eq. (8), which we shall not further discuss in this paper. Suffice it to say that
no spatial geodesic can cross the horizon at r = rS from one region to the other,
whether out-going or in-coming at any angle. Of course that represents yet another
major difference with space-time geodesics, which can definitely cross the horizon
at r = rS .

In order to understand the singularity of s-geodesics at rS , wemust return toEq. (11),
which in fact represents a first-integral. Taking d

dλ
of that, or, equivalently, working

out the standard form of the geodesic equation for contravariant components with
Christoffel symbols, we obtain
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Fig. 5 Solid curves are spatial
geodesics of varying impact
parameters (rp/rS =
1.07611, 1.1, 1.2, 1.4, 1.8, and
2.6). The corresponding dashed
curves match smoothly
asymptotic lines with arcs of
constant radius. The points and
radial dashed lines identify the
point of closest approach and the
symmetry axis, respectively

d2r

dλ2
= rS

2r4
(C2r2 − L2) + (r − rS)

L2

r4
. (26)

For regular geodesics, having b > rS , evaluation of Eq. (26) at their rp periastron
yields (

d2r

dλ2

)
rp

= (rp − rS)
L2

r4p
> 0. (27)

However, for s-geodesics having ba < rS , evaluation of Eq. (26) at their rS perias-
tron yields (

d2r

dλ2

)
rS

= L2

2rS

(
1

b2a
− 1

r2S

)
> 0. (28)

Clearly, the ‘acceleration equivalent’ in Eq. (27) has a single value, whereas Eq. (28)
involves a continuous range of possibilities, having 0 < ba < rS . Thus, starting at
any point with r ≥ rp > rS with any initial vector, there is a unique regular geodesic
that transports that vector parallel to itself indefinitely. However, starting at any point
on the horizon, where grr diverges, there is an infinite number of s-geodesics, all
tangent to each other and to the r = rS circle, that transport the same initial tangent
vector parallel to itself and yet in all subsequently different directions. This situation
is depicted in Fig. 6.

The situation is regularized on Flamm’s paraboloid, if we consider both surfaces
with positive and negative Z -values, joined at the Z = 0 circle. In that perspective,
the (Z , φ) coordinates produce a line element

dS2 =
(
1 + Z2

4r2S

)
(dZ)2 + r2S

(
1 + Z2

4r2S

)2

(dφ)2. (29)
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Fig. 6 Infinite number of
s-geodesics, all tangent to each
other and to the r = rS = 1
circle at φ = 0, transporting the
same initial tangent vector
parallel to itself and yet in all
subsequently different directions

That element is equal in value to dS2 in Eq. (13) for the (r , φ) coordinates, but the
Z = 0 circle is no longer represented as a line of coordinate singularities in Eq. (29).

Thus, in Eq. (16) with ba replacing rp, the Z -elevation of s-geodesics produces a
unique tangent vector that intersects the Z = 0 circle at a specific angle γ such that

tan(γ ) =
∣∣∣∣
(
dZ

rdφ

)
rS

∣∣∣∣ =
√
r2S
b2a

− 1. (30)

Examples of that are shown in Fig. 7.
Regularization of s-geodesics on the full Flamm’s paraboloid can also be appreci-

ated by considering the relation

(
dZ

dλ

)2

= rS
r
grr

(
dr

dλ

)2

. (31)

That produces a well defined limit

(
dZ

dλ

)2

rS

= L2

b2a
− L2

r2S
> 0 (32)

for r → rS , yielding Eq. (30), even though

(
dr

dλ

)2

rS

= 0. (33)
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Fig. 7 Solid curves are
s-geodesics of varying pa (0.1,
0.3, 0.5, 0.7, 0.9, and 0.99). The
dashed circle indicates a radius
of rS = 1. Notice that only the
innermost purple s-geodesic
with the greater pa = 0.99 fully
encircles the hole region once

In terms of (r , φ) coordinates, s-geodesic solutions are obtained from Eq. (18) by
setting its lower limit at r̂1 = 1 and by replacing p > 1 with pa < 1. Thus we obtain

φs(r̂) =
∫ r̂

1

pa dr√
r(r − 1)(r − pa)(r + pa)

= 2
√

pa
1 − pa

(
K

[
−1 + pa
1 − pa

]

+ iF

⎡
⎣i sinh−1

⎛
⎝

√
(1 − pa)(pa + r̂)

2pa(r̂ − 1)

⎞
⎠

∣∣∣∣ 2

1 − pa

⎤
⎦

⎞
⎠ . (34)

In the limit of r → ∞, the final angle is given by

φs,∞ = lim
r̂→∞

φs(r̂) = 2
√

pa
1 − pa

(
K

[
−1 + pa
1 − pa

]

+ iF

[
i sinh−1

(√
1 − pa
2pa

) ∣∣∣∣ 2

1 − pa

])
. (35)

We may also invert Eq. (34) to obtain an explicit expression of r̂s as a function of φ,

r̂s(φ) =
pa

(
1 − sn

[
i
√

1−pa
4pa

, 2
1−pa

]2)

sn
[
i
√

1−pa
4pa

, 2
1−pa

]2 + pa

, (36)
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Fig. 8 Solid curves are
s-geodesics of varying impact
parameters
(pa = 0.1, 0.3, 0.5, 0.7, and
0.9). The corresponding dashed
lines represent their asymptotes,
parallel to the negative X -axis.
The dashed black line
corresponds to the pa = 1
limiting case

where sn denotes the Jacobi elliptic sine function, and the angle φ is taken within the
range (−φs,∞, φs,∞).

Examples of s-geodesics of varying impact parameters, with pa = ba/rS ≤ 1, are
shown in Fig. 8. Notice again that all s-geodesics obey Eq. (33), i.e., the rS-tangential
condition. Continuation of s-geodesics at the horizon is not shown in Figs. 6 or 8,
while it is shown through the full Flamm’s paraboloid in Fig. 7.

Having shown that s-geodesics parallel-transport their tangent vectors continuously
above and below the Z = 0 circle on the full Flamm’s paraboloid, it is best to isometri-
cally view the Schwarzschild geodesic equatorial plane as having two sides, joined at
the horizon. Therein, s-geodesics parallel-transport their tangent vectors continuously
through the r = rS horizon from the upper to the lower side, or conversely.

For ba = 0 there are only radial geodesics, derived from Eq. (11) for L = 0. That
corresponds to continuous parabolae spanning both positive and negative Z -values on
the full Flamm’s paraboloid. Those parabolae intersect vertically the Z = 0 circle,
with an angle γ = π/2, according to Eq. (30).

For the critically separating value of b = ba = rS , the point-particle spirals around
the rS circle infinitely many times, without ever reaching it exactly. If it did, the
geodesic would transform into that of the r = rS circle. The angle γ in Eq. (30)
vanishes in that limit. It is still possible to solve analytically Eq. (18) for p = pa = 1,
obtaining

φc(r̂) =
∫ ∞

r̂

dz

(z − 1)
√
z(z + 1)

= 1√
2
ln

⎛
⎝

(
3 − 2

√
2
) (√

r̂ + 1
) (√

r̂ + √
2
√
r̂ + 1 + 1

)
(√

r̂ − 1
) (

−√
r̂ + √

2
√
r̂ + 1 + 1

)
⎞
⎠ . (37)
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Fig. 9 Three s-geodesics connecting two points of the equatorial plane of Schwarzschild spatial geometry.
One point has r1 = 1.5rS andφ1 = π/4,while the other point has r2 = 1.25rS andφ2 = π/3.Dashed radial
rays indicate the positive side of symmetry axes and the location of periastra of correspondingly colored
geodesics. All periastra occur at rS = 1. Impact parameters are ba/rS = 0.807342 (red), 0.98445 (green),
0.999873 (purple). Only the red s-geodesic connects two points on the same side of the Flamm embedding.
The green and purple geodesics connect two points on opposite sides of the the Flamm embedding. Green
and purple s-geodesics fully encircle the hole region once and twice, respectively, while the red s-geodesic
never does

This solution is plotted as the dashed black curve in Fig. 8, asymptotically starting
parallel to the negative X -axis with pa = 1 impact separation.

Let us now consider again any two points on the top side of the equatorial geodesic
plane, say, or on the top surface of Flamm’s paraboloid, equivalently. It is not always
possible to directly connect these two points with regular geodesics, as we did in
Figs. 3 and 4, for example. When regular geodesics cannot directly connect the two
points, s-geodesics can, and vice versa. There are differences, however. Only the
shortest s-geodesic arc truly connects the two points on the same side of the equatorial
geodesic plane. Longer s-geodesic arcs that may or may not encircle the hole region
any number of times are bound to fall into the other side of the equatorial geodesic
plane. From the perspective of the full Flamm’s paraboloid, longer s-geodesic arcs
thus only connect points having opposite signs in their Z -coordinates. Examples of
this behavior are shown in Fig. 9 on the equatorial geodesic plane, and more clearly in
Fig. 10 on its equivalent full Flamm’s paraboloid. Conversely, regular geodesics are
bound to one side of the equatorial geodesic plane. Thus, regular geodesics cannot
connect points having opposite signs in their Z -coordinates on the corresponding full
Flamm’s paraboloid.

Regular and s-geodesics together provide geodesic completeness, forming a one-
parameter family of curves with impact parameters ranging from−∞ to+∞. Further
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Fig. 10 Flamm embedding of
s-geodesics connecting two
points on either sides of the
equatorial plane in Fig. 9

Fig. 11 Four grids of regular
geodesics spanning each side of
the spatial equatorial plane.
Periastra originating each grid
are taken at
rp/rS = 1.1, 1.4, 1.7, and 2.0

adding azimuthal symmetry,wemayget a sense of the structure and space-filling distri-
bution of regular and s-geodesics on the equatorial geodesic plane fromFigs. 11 and12,
respectively. Equivalent renditions of their embeddings on half and full Flamm’s
paraboloids are shown in Figs. 13 and 14, respectively.

It is of further interest to study independently geodesic curvatures, κg , normal cur-
vatures, κn , and relative torsions, τr , of curves embedded on Flamm’s paraboloid,
using standard notions and elements of differential geometry [24,25]. Geodesic cur-
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Fig. 12 Nine grids of
s-geodesics spanning both sides
of the spatial equatorial plane.
All periastra occur at rS = 1,
with impact parameters ba/rS
ranging from 0.1 to 0.9 in steps
of 0.1

Fig. 13 Flamm embedding of
four grids of regular geodesics,
spanning each side of the spatial
equatorial plane in Fig. 11

vatures must of course vanish for all geodesics. Normal curvatures are illustrated on
Flamm’s paraboloid in Fig. 15 for regular geodesics and in Fig. 16 for s-geodesics,
respectively. Plots of corresponding normal curvatures are shown in Fig. 17. Loci
of vanishing normal (thus total) curvatures reflect the varying hyperbolic geometry
of Flamm’s paraboloid. We have derived analytically and verified numerically many
other differential form and curvature results. Ultimately, however, all that analysis and
results can be obtained from the central geodesic orbit Eq. (16) and its exact solu-
tions that we have already provided. Therefore, we shall not further report on such a
complementary line of inquiry within this context.
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Fig. 14 Flamm embedding of
three grids of s-geodesics,
spanning both sides of the
spatial equatorial plane in
Fig. 12. All periastra occur at
rS = 1. Impact parameters are
ba/rS = 0.1, 0.5, and 0.9

Fig. 15 Arcs of regular
geodesics with positive
(negative) normal curvatures are
shown in green (red) on
Flamm’s paraboloid

6 Geodesic orbits in curved time

Let us alternatively consider a 4D pseudo-Riemannian manifold with metric

ds2 = gμνdx
μdxν

= −
(
1 − rS

r

)
(cdt)2 + (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2. (38)
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Fig. 16 Arcs of s-geodesics with
positive (negative) normal
curvatures are shown in green
(red) on Flamm’s paraboloid.
The (normal) curvature of radial
(L = 0) geodesics,

κn = κ = − 1
2

√
rS
r3

, is always

negative, pointing away from the
hole region, although vanishing
asymptotically

Fig. 17 Plots of normal
curvature κn (in units of
1/rS = 1) versus azimuthal
angle φ (in radians) from the
symmetry X -axis for: a five
regular geodesics labeled by
their periastra rp/rS > 1 within
rectangular boxes; b eight
s-geodesics labeled by their
impact parameters ba/rS < 1
within rectangular boxes

(a)

(b)

This differs from the physically correct Schwarzschild metric in that the 3D spatial
submanifold at any given coordinate-time, t , is devoid of any curvature in Eq. (38).

Following the same procedures that we adopted earlier produces now the time-like
geodesic orbit equation
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(
dr

dφ

)2

= r4

L̃2

{
c2 Ẽ2

(
1 − G

c2
2M

r

)−1

− c2 − L̃2

r2

}
. (39)

This agrees with the Schwarzschild result in the non-relativistic Newtonian limit,
whereas geodesic orbit equations for the previous ‘splittable space-time’ metric,
Eq. (17), do not [16]. Historically, that was instrumental for Einstein to realize that
Newtonian gravity basically derives from the equivalence principle and its association
with the gravitational redshift, evenwithout full knowledge of Einstein field equations:
cf. Chap. 18 of Ref. [5], for example.

However, the null geodesic orbit equation for the gravitational red-shift or ‘curved-
time’ metric of Eq. (38) is

(
dr

dφ

)2

= r4

L2

{
E2

c2

(
1 − G

c2
2M

r

)−1

− L2

r2

}
, (40)

which differs profoundly from the exact null geodesic orbit Eq. (7) of Schwarzschild
space-time metric.

Remarkably, however, turning points or apsides for both time-like andnull geodesics
coincide for both exact and ‘curved-time’ metrics, Eqs. (1) and (38). In particular,
apsides of null geodesics for both metrics satisfy the same cubic equation

α p3 = p − 1, (41)

where

α = r2S E
2

c2L2 . (42)

The three algebraic solutions to the cubic Eq. (41) add up to zero, according to
Vieta’s formula, and are explicitly

p1 =
3
√
2

(√
81α − 12 − 9

√
α
)2/3 + 2 3

√
3

62/3 3
√√

3
√

α3(27α − 4) − 9α2
,

p2 =
3
√−1

(
3
√−2

(√
81α − 12 − 9

√
α
)2/3 − 2 3

√
3
)

62/3
√

α
3
√√

81α − 12 − 9
√

α

,

p3 = 2(−1)2/3 3
√
3 − 3

√−2
(√

81α − 12 − 9
√

α
)2/3

62/3 3
√√

3
√

α3(27α − 4) − 9α2
. (43)

Depending on the value of α, we may have one, two, or no real and positive turning
points. In fact, p2 is always a real and negative solution, which must be physically
excluded. On the other hand, p1 and p3 are real and positive solutions for α < 4/27,
representing two turning points. For α > 4/27, p1 and p3 become complex conjugate
solutions, implying no turning point. For α = 4/27 = 0.148, these two real solutions
merge into a single turning point with p = 3/2, corresponding to an unstable circular
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Fig. 18 Solutions of the cubic Eq. (41). The parameter α is defined in Eq. (42). For α > 4/27 there are
no positive real solutions. The point p = 3/2 at which p1 and p3 coalesce intersects the vertical gray
line where α = 4/27. Physically, that corresponds to an unstable circular orbit. For decreasing α, down to
α → 0, p3 monotonically decreases toward rS = 1, marked by a horizontal gray line

orbit. That is well-known for photons in Schwarzschild space-time, e.g., Eq. (11.18)
in Ref. [4].

The behavior of the solutions to the cubic Eq. (41) is graphed in Fig. 18 as a
function of α. That behavior is quite consistent with the effective potential for null
geodesics in Schwarzschild space-time, as shown in Fig. 11.2 of Ref. [4], for example.
For the ‘curved-time’ metric, Eq. (38), the corresponding effective potential for null
geodesics becomes energy-dependent and diverging at rS . However, its basic features
do not qualitatively differ from those pertaining to Schwarzschild space-time with
regard to the results that we have just provided for turning points of null geodesics.

By the same method and procedures that we have applied to study geodesics in
Schwarzschild spatial submetric, Eq. (8), or ‘splittable space-time’ metric, Eq. (17),
equivalently, we have obtained analytic solutions and numerical results for all kinds
of geodesics in both the ‘curved-time’ metric, Eq. (38), and in Schwarzschild’s space-
time metric, Eq. (1). The latter study is critically important, but too extensive to be
reported here. Therefore, in the remainder of this Section, we will just confine our
discussion to comparisons of null-geodesic asymptotic deflections for all three metrics
considered.

For the parameters and limit of light grazing the sun, where rp = 235, 438rS ,
our results indicate a ‘spatial bending’ of half the total GR inward light deflection
of 1.75 arc-seconds, which we recover for the exact null geodesic orbit Eq. (7) of
Schwarzschild space-time. Our results for the null geodesic Eq. (40) for the ‘curved-
time’ metric of Eq. (38) also indicate a ‘time bending’ of half the total GR deflection
of 1.75 arc-seconds. Coincidentally, half of the correct GR deflection also agrees with
the much older prediction made by Cavendish (1784) and Soldner (1801) based on a
purely Newtonian description of light particles: cf. Ref. [8], Sec. 5.4, pp. 85–88, and
Ref. [26].

However, for a much closer approach of rp to rS , ‘time bending’ largely exceeds
‘spatial bending’ of light, while their sum remains substantially below the total GR
inward light deflection in Schwarzschild space-time. Some significant values are
reported inTable 1.Asymptotic angular deflections vs. the periastron for null geodesics
for all three metrics considered are plotted in Fig. 19.
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Table 1 Asymptotic angular deflections for some significant periastron values of null geodesics in all three
metrics considered

rp/rS Curved space Curved time Sum GR space-time

1.5 68.61◦ – – –

1.51 67.72◦ 298.9◦ 366.6◦ 529.0◦
1.6 60.76◦ 152.1◦ 212.8◦ 274.4◦
2 42.05◦ 67.09◦ 109.1◦ 125.1◦
5 13.04◦ 14.65◦ 27.69◦ 28.66◦
10 6.093◦ 6.423◦ 12.52◦ 12.71◦
100 34.58′ 34.75′ 1.156◦ 1.157◦
235,438 0.876′′ 0.876′′ 1.752′′ 1.752′′

Fig. 19 Asymptotic angular deflections versus periastron for null geodesics in all three metrics considered.
Black curve is for ‘spatial bending’ with gtt = −1. Green curve is for ‘time bending’ with grr = 1. Blue
curve is for Schwarzschild space-time metric with gtt ∗ grr = −1. The black-dashed curve represents the
sum of the black and green curves, i.e., the sum of ‘spatial bending’ and ‘time bending.’ The two red-dashed
vertical lines emphasize divergences at the Schwarzschild radius (rS = 1) for ‘spatial bending’ and at the
radius of the unstable circular orbit for either ‘curved-time’ or Schwarzschild space-timemetrics (p = 3/2).
Vertical and horizontal gray lines refer to p = 5, 10 values and to corresponding Schwarzschild space-time
deflections, respectively

7 Conclusions

We have solved geodesic orbit equations and characterized corresponding manifolds
for metrics associated with Schwarzschild geometry, considering space and time cur-
vatures separately.

For ‘fixed’ or ‘a-temporal’ space, with a positive-definite submetric, Eq. (8), and for
an essentially equivalent ‘splittable space-time’ metric, Eq. (17), we have provided
a central geodesic orbit Eq. (16). We have solved that equation in terms of elliptic
integrals and functions. The intrinsic geometry of a geodesic equatorial plane with
two sides joined at the horizon corresponds to that of a full Flamm’s paraboloid. Two
kinds of geodesics thus emerge. Both kinds may or may not encircle the hole region
any number of times, crossing themselves correspondingly. Regular geodesics reach a
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periastron rp > rS , thus remaining confined to a half of Flamm’s paraboloid. Singular
or s-geodesics tangentially reach the rS circle. These s-geodesicsmust thenbe regarded
as funneling through the Z = 0 ‘belt’ of the full Flamm’s paraboloid. Infinitely many
geodesics can possibly be drawn between any two points, but they must be of specific
regular or singular types. A precise classification can be made in terms of impact
parameters. Geodesic structure and completeness is conveyed by computer-generated
figures depicting either Schwarzschild equatorial plane or Flamm’s paraboloid.

For the ‘curved-time’ metric of Eq. (38), devoid of any spatial curvature, geodesic
orbits have the same apsides as in Schwarzschild space-time. In particular, apsides
of null geodesics obey a cubic Eq. (41) that we solve. For the parameters and limit
of light grazing the sun, asymptotic ‘spatial bending’ and ‘time bending’ become
essentially equal, adding up to the total inward light deflection of 1.75 arc-seconds
predicted by GR. However, for a much closer approach of rp to rS , ‘time bending’
largely exceeds ‘spatial bending’ of light, while their sum remains substantially below
that of Schwarzschild space-time. These results are exact and generalize or clarify
previous statements on that matter [20,21].
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