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Abstract
The Garfinkle–Vachaspati transform is a deformation of a metric in terms of a
null, hypersurface orthogonal, Killing vector kμ. We explore a generalisation of
this deformation in type IIB supergravity taking motivation from certain studies
of the D1–D5 system. We consider solutions of minimal six-dimensional super-
gravity admitting null Killing vector kμ trivially lifted to type IIB supergravity by
the addition of four-torus directions. The torus directions provide covariantly con-
stant spacelike vectors lμ. We show that the original solution can be deformed as
gμν → gμν +2�k(μlν), Cμν → Cμν −2�k[μlν], provided the two-form supporting
the original spacetime satisfies ik(dC) = −dk, and where � satisfies the equation of
a minimal massless scalar field on the original spacetime. We show that the condition
ik(dC) = −dk is satisfied by all supersymmetric solutions admitting null Killing vec-
tor. Hence all supersymmetric solutions of minimal six-dimensional supergravity can
be deformed via this method. As an example of our approach, we work out the defor-
mation on a class of D1–D5–P geometries with orbifolds. We show that the deformed
spacetimes are smooth and identify their CFT description. Using Bena–Warner for-
malism, we also express the deformed solutions in other duality frames.
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1 Introduction

Understanding the entropy of black holes has been a long-standing problem in quantum
gravity. In string theory, considerable progress has beenmade in explaining the entropy
of black holes in terms of statistical mechanical counting of microstates [1–4]. For
some supersymmetric black holes even exact counting formulae are known [5–7].
Typically these calculations involve counting states in a string theory system of branes
at small coupling and thenmatching itwith the exponential of theBekenstein–Hawking
entropy (or its generalizations like Wald entropy or Sen’s quantum entropy function).
The success of these calculations give us confidence that string theory has the right
ingredients to describe black hole entropy. However, unfortunately, these calculations
do not tell us how these microstates are to be described in the regime of parameters
where we actually have a black hole.

In the last 15years or so, considerable effort has gone in describing microstates
of black holes under the fuzzball paradigm [8–11]. Various techniques have been
developed to construct “microstate geometries”—horizonless, non-singular solutions
in supergravity. These solutions are expected to be supergravity approximation to
string theory configurations for black hole microstates. The program of constructing
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such solutions in supergravity has had most success for supersymmetric black holes.
An important step in this program was the development of general formalisms for
classification of supersymmetric solutions using Killing spinor techniques. Such a
classification was first carried out for minimal N=2 theory in 4D [12], and almost
20years later for supergravity theories in 5D [13–16] and 6D [17]. The 6D case
considered by Gutowski, Martelli and Reall (GMR) is of special interest to us in this
work, where the general supersymmetric solution is given in terms of a 2D fiber over a
4D almost hyper-Kähler base space. This form of the 6D solution reduces the problem
of solving supergravity equations to a more tractable problem of solving a reduced set
of equations on the 4D base space.

In constructing newsolutions of supergravity equations, it is also useful to have solu-
tion generating techniques. Such techniques allow us to construct new solutions from
the known ones. A useful solution-generating technique is the Garfinkle–Vachaspati
transform [18]. It goes as follows: given a spacetime configuration with metric gμν

admitting a null, Killing, and hypersurface orthogonal vector field kμ, i.e., satisfying
the following properties,

kμkμ = 0, ∇(μkν) = 0, ∇[μkν] = k[μ∇ν]S, (1.1)

for some scalar function S, one can construct a new exact solution of the equations of
motion as,

g′
μν = gμν + e−S χ kμkν. (1.2)

The new metric g′
μν describes a gravitational wave on the background gμν provided

the matter fields, if any, satisfy some conditions [19] and the function χ satisfies

�χ = 0, kμ∂μχ = 0. (1.3)

This technique has been applied in varied contexts, see e.g., [20–24].
A generalisation of the above Garfinkle–Vachaspati transform was speculated by

Lunin, Mathur and Turton (LMT) in [25]. Motivated by previous work of Mathur and
Turton [26,27], LMT considered supersymmetric deformations of GMR solutions
lifted to ten dimensions that add travelling waves. They noticed that the deformed
solutions can be written as a generalisation of the Garfinkle–Vachaspati transform,
i.e.,

g′
μν = gμν + 2� k(μlν), (1.4)

C ′
μν = Cμν − 2� k[μlν], (1.5)

where kμ is a null, Killing, but need not be hypersurface orthogonal, and lμ is a
covariantly constant unit normalised spacelike vector, and �� = 0.

The difference from the usual Garfinkle–Vachaspati transform comes due to the
presence of spacelike Killing vector lμ and additional two-form potential Cμν . In
addition, the hypersurface orthogonality condition for the null Killing vector kν is
not required. A main aim of this paper is to present a derivation of the generalised
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Garfinkle–Vachaspati solution generating technique (1.4)–(1.5) and explore its appli-
cations. In particular, we achieve three things:

1. We show that the generalized Garfinkle–Vachaspati transform (1.4)–(1.5) is a
solution generating technique for ten-dimensional IIB theory. We show that given
a solution of minimal six-dimensional supergravity admitting a null Killing vector,
and satisfying the condition

kμFμνρ = − (∇νkρ − ∇ρkν

)
, (1.6)

we can get another solution of type IIB theory. As long as condition (1.6) is
satisfied, we do not require supersymmetry. The technique allows to add wave-
like deformations.

2. We give explicit examples of applications of this technique. We add travelling
wave deformations on multi-wound round supertubes and on a class of D1–D5–P
backgrounds, generalising examples considered in [25]. We pick these examples
as their dual CFT interpretations are well understood. We also present CFT inter-
pretation of the deformed solutions.

3. For a class of supersymmetric solutions, we convert from GMR notation to Bena–
Warner (BW) notation and using string theory dualities present the generalised
Garfinkle–Vachaspati transformation in various other duality frames.

The rest of the paper is organised as follows. In Sect. 2 we present the generalised
Garfinkle–Vachaspati transform as a novel solution generating technique. Details on
the proof are presented in “Appendix A”. In Sect. 2 we compare and contrast the
generalised Garfinkle–Vachaspati transform with the original Garfinkle–Vachaspati
transformand show that all solutions in theGMRform trivially lifted to ten-dimensions
can be deformed via this technique. In Sect. 3 we work out the deformation on the
multi-wound D1–D5 round supertube and on a class of D1–D5–P backgrounds. In
Sect. 4 we show that the deformations we add preserve smoothness of the solutions
and analyse various global properties of the deformed solutions. In Sect. 5 we identity
the CFT states for the deformed solutions. In Sect. 6 applications of the generalised
Garfinkle–Vachaspati transform in different duality frames are explored. Some calcu-
lations details from Sect. 6 are relegated to “Appendix B”, where a dictionary between
the GMR form and the BW form is also worked out. We close with a brief discussion
of open problems in the Sect. 7.

2 A generalised Garfinkle–Vachaspati transform

In this section, we present the generalised Garfinkle–Vachaspati transform as a novel
solution generating technique. The technique allows to add wave-like deformations
on solutions of minimal six-dimensional supergravity embedded in ten-dimensional
IIB theory.

We establish that the generalised Garfinkle–Vachaspati transform,

g′
μν = gμν + �

(
kμlν + kνlμ

)
, (2.1)
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C ′
μν = Cμν − �

(
kμlν − lμkν

)
, (2.2)

is a valid solution generating technique via a direct calculation. We show that the left
and the right hand side of the Einstein equations transform in the exactly the same
way, thereby establishing that if we start with a solution, we can deform it to a new
solution. In our convention, Einstein equations are,

Rμν = 1

4
Fμλσ Fν

λσ , (2.3)

together with Fμλσ Fμλσ = 0, Fμλσ = (dC)μλσ and matter field equations are,

∇μF
μνρ = 0. (2.4)

The vector kμ appearing in (2.2) is a null Killing vector. The vector lμ appearing in
(2.2) is a unit normalised covariantly constant spacelike (Killing) vector orthogonal
to kμ, and � is a massless scalar on the original background spacetime gμν ,

�� = 0, (2.5)

compatible with the Killing symmetries, i.e., kμ∇μ� = 0 and lμ∇μ� = 0. The
transformed configuration also has kμ and lμ as Killing symmetries.

We present the details of the calculation of deformations of the left and the right
hand side of Einstein equations in “Appendix A”. Here we simply note that the left
hand side transforms as,

R′
λν = Rλν − lλ

[
kμ(∇ν∇μ�) + ��kν

]− lν
[
kμ(∇λ∇μ�) + ��kλ

]

+ 1

2
(∇ρ�)(∇ρ�)kλkν − �2(∇μk

ρ)(∇ρk
μ)lλlν, (2.6)

while the right hand side transforms in the same way as long as,

ik(dC) = −dk. (2.7)

In “Appendix A” we also show that the 3-form field equation transforms covariantly,
i.e.,

∇μF
μνρ = 0 �⇒ ∇′

μF
′μνρ = 0. (2.8)

Often in string theory applications there are more than one covariantly constant
spacelike (Killing) vectors lμ(a) orthogonal to kμ are available. In such situations, the
generalised Garfinkle–Vachaspati transformation technique admits a further general-
isation

g′
μν = gμν +

∑

a

�(a)

(
kμl

(a)
ν + kνl

(a)
μ

)
, (2.9)

C ′
μν = Cμν −

∑

a

�(a)

(
kμl

(a)
ν − l(a)

μ kν

)
, (2.10)
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where �(a) are scalars on the original background spacetime gμν satisfying ��(a) =
0.

2.1 Comparison to Garfinkle–Vachaspati transform

Compared to the Garfinkle–Vachaspati (GV) transform, our solution-generating tech-
nique is more restrictive in someways. As shown in [19], for the GV technique to work
the original matter fields have to satisfy certain algebraic transversality conditions. As
long as those conditions are satisfied, the matter fields do not transform. Unlike the
GV technique, in our technique the matter fields do transform. There is no uniform
prescription for the transformation of all matter fields. We need to do a case by case
analysis. For the two-form gauge field considered in this paper, the transformation
is (2.2), provided the untransformed 3-form field strength satisfies the differential
transversality condition (2.7). The differential transversality condition (2.7) is analo-
gous to the transversality condition for theGV technique, though now it is a differential
condition rather than an algebraic condition.

In the next subsection we show that the differential transversality condition (2.7) is
satisfied for all supersymmetric solutions written in the GMR form. However, to the
best of our understanding, conditions for having supersymmetric solutions are more
extensive than just the above differential transversality condition. We suspect that our
solution-generating technique finds applications in non-supersymmetric settings as
well, provided the differential transversality condition (2.7) is satisfied, though we do
not work out any non-supersymmetric example in this paper.

The differential transversality condition is consistent with Einstein equations. To
see this, contract equations (2.3) with the kμkν as:

Rμνk
μkν = 1

4
kμFμλσ k

νFν
λσ , (2.11)

From the fact that kμ is a Killing vector, we have the identity

kλ�kλ = −Rλρk
λkρ. (2.12)

From this, it follows that

Rλρk
λkρ = −kλ�kλ (2.13)

= − (∇μ(kλ∇μkλ) − (∇μkλ)(∇μkλ)
)

(2.14)

= 1

4

[(∇μkλ − ∇λkμ
) (∇μkλ − ∇λkμ

)]
, (2.15)

where we have used the fact that kμ is null and Killing. Equating this with the right
hand side of Eq. (2.11), we have

kμFμλσ k
νFν

λσ = (∇λkσ − ∇σ kλ
)
(∇λkσ − ∇σ kλ) , (2.16)

which is the “square” of this differential transversality condition (2.7).
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2.2 Application to supersymmetric solutions

We can now apply the generalized Garfinkle–Vachaspati transform to supersymmetric
solutions of minimal six-dimensional supergravity. For this set-up, our results are
the same as [25], so we shall be brief. In that reference, the authors showed that
supersymmetric solutions of minimal six-dimensional supergravity embedded in ten-
dimensional IIB theory can be deformed. They showed consistency with Einstein
equations by showing that the deformed solutions are supersymmetric solutions of
ten-dimensional IIB theory. The arguments presented there are of very different nature
compared to the direct derivation of the generalized GV transform presented in this
work. We now show the connection.

Supersymmetric solutions of minimal six-dimensional supergravity, trivially lifted
to ten dimensions, can be written as [17,25]

ds2 = −H−1(dv + β)

(
du + ω + F

2
(dv + β)

)
+ Hhmndx

mdxn + dzi dzi .

(2.17)

with

k = ∂

∂u
, (2.18)

being the null Killing vector. To apply the generalized GV transform, we can pick
any one of the spacelike covariantly constant (Killing) vector provided by the torus
directions. We pick, say,

l = ∂

∂z4
. (2.19)

For the successful application of the generalized GV transform, we only need to
check that the field strength supporting (2.17) satisfies the differential transversality
condition (2.7). The Killing spinor equation implies this differential transversality
condition [17]. We can also explicitly check that it is satisfied using appendix A of
[25]. To this end, consider kμFμνρ :

kμFμνρ = Fuνρ (2.20)

= ∂uCνρ + ∂ρCuν + ∂νCρu (2.21)

= −(∂νCuρ − ∂ρCuν). (2.22)

We see that the differential transversality condition is equivalent to showingCuν = kν ,
upto possible gauge transformations. Looking at the equation (A.6) of [25], we see
that indeed it is the case for the general GMR solution:

Cuνdx
ν = − 1

2H
(dv + β) = kνdx

ν . (2.23)
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3 Deformation of a class of D1–D5–P backgrounds

In this section we present explicit examples of our general construction. We consider
two classes of examples: multi-wound D1–D5 round supertubes and a class of D1–
D5–P backgrounds. Throughout this section, Q1 = Q5 = Q, where

Q1 = gα′3

V
n1, Q5 = gα′n5, (2π)4V = vol(T 4). (3.1)

Multi-wound D1–D5 round supertubes were constructed in [28,29]. This family is
parametrised by an integer k via,

γ = 1

k
, k = 1, 2 . . . , N , N = n1n5. (3.2)

The case k = 1 corresponds to singly wound D1–D5 supertube. This configuration
is dual to Ramond vacuum |0〉R. The k �= 1 members of the family are obtained by
acting with certain twist operator such that the resulting states have N/k component
strings [30]. For k �= 1 the geometries have conical singularities. The metric takes the
form,

ds20 = −1

h
(dt2 − dy2) + h f

(
dr2

r2 + a2γ 2 + dθ2
)

+ h

(
r2 + a2γ 2 Q2 cos2 θ

h2 f 2

)
cos2 θdψ2

+ h

(
r2 + a2γ 2 − a2γ 2 Q2 sin2 θ

h2 f 2

)
sin2 θdφ2

− 2aγ Q

h f

(
cos2 θ dy dψ + sin2 θ dt dφ

)
+ dzi dzi , (3.3)

and the two-form field takes the form,

C0
t y = − Q

Q + f
, C0

tψ = −Qaγ cos2 θ

Q + f
,

C0
yφ = −Qaγ sin2 θ

Q + f
, C0

φψ = Q cos2 θ + Qa2γ 2 sin2 θ cos2 θ

Q + f
, (3.4)

where

f = r2 + a2γ 2 cos2 θ, h = 1 + Q

f
. (3.5)

The y coordinate is periodic with periodicity 2πRy , and the parameter a is related to
the size Ry of the y-circle as,

a = Q

Ry
. (3.6)
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In the large Ry limit, the above geometry has a long AdS3 × S3 × T 4 throat. The
throat together with the cap region is described by the metric obtained by focusing on
the region of the spacetime with r 	 √

Q. In this limit the metric becomes locally
AdS3 × S3 with a Zk orbifold at r = 0, θ = π

2 .
Linear deformation of the type obtained via our Garfinkle–Vachaspati transform on

this solution were studied in [27]. We proceed by writing the linear perturbation from
reference [27] in a suggestive form. We will then see that the deformation is valid
non-linearly. To begin with, let us start by writing the background solution in GMR
form (2.17):

ds20 = −1

h
[du + A] [dv + B] + hds2base + dzidzi , (3.7)

C0 = 1

2h
[dv + B] ∧ [du + A] + Q

(
r2 + a2γ 2

)

f
c2θ dφ ∧ dψ, (3.8)

with

ds2base = f

r2 + a2γ 2 dr
2 + dθ2 + r2c2θdψ2 + (r2 + a2γ 2)s2θ dφ2, (3.9)

and one-forms

A = aγ Q

f

{
s2θ dφ − c2θdψ

}
, (3.10)

B = aγ Q

f

{
s2θ dφ + c2θdψ

}
, (3.11)

where cθ = cos θ and sθ = sin θ .
The linear perturbation in reference [27] was constructed in the gauge

hμz + (C − C0)μz = 0, (3.12)

where z is one of the four-torus coordinates. The explicit form of the solution with
added linear perturbation is

ds2 = ds20 + 2 ε e
−in v

Ry

(
r2

r2 + a2γ 2

) nk
2

K dz, (3.13)

C = C0 + ε e
−in v

Ry

(
r2

r2 + a2γ 2

) nk
2

dz ∧ K , (3.14)

where

K = Q

Q + f

[
dv − aγ

(
c2θdψ + s2θ dφ

)]
+ iaγ Q

r(r2 + a2γ 2)
dr . (3.15)
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We can simplify this form of the solution by adding a pure-gauge piece. We start by
observing that K defined in (3.15) can also be written as

K = − f

Q + f
[dv + B] + dv + iaγ Q

r(r2 + a2γ 2)
dr . (3.16)

Contribution to C , cf. (3.14), from the last two terms of K in the form of equation
(3.16) can be identified as a complete differential

e
−in v

Ry

(
r2

r2 + a2γ 2

) nk
2
[
dv + iaγ Q

r(r2 + a2γ 2)
dr

]
≡ d�, (3.17)

where

� = i Ry

n
e
−in v

Ry

(
r2

r2 + a2γ 2

) nk
2

. (3.18)

As a result we can gauge away these pieces. Specifically, consider the diffeomorphism
and the gauge transformation,

ξz = −�, (3.19)

� = �dz. (3.20)

The new metric

gnewμν = gμν + ε ∇(μξν), (3.21)

takes the form

ds2new = gnewμν dxμdxν (3.22)

= ds20 + 2 ε e
−in v

Ry

(
r2

r2 + a2γ 2

) nk
2
{
− f

Q + f
[dv + B]

}
dz, (3.23)

and new two-form field is

Cnew = C + ε d� (3.24)

= C0 + ε e
−in v

Ry

(
r2

r2 + a2γ 2

) nk
2
{

f

Q + f
[dv + B]

}
∧ dz. (3.25)

The configuration (3.23) and (3.25) is a generalisedGarfinkle–Vachaspati transform of
background (3.7)–(3.8). It is a non-linear solution of ten-dimensional IIB supergravity.
Therefore, from now onwards we set ε = 1. Realising that f

Q+ f is simply 1
h we

observe that the above solution is compatible with the form (3.7), provided we shift
the one-form du as

du → du + � dz, (3.26)
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� = 2

(
r2

r2 + a2γ 2

) nk
2

e
−in v

Ry . (3.27)

The scalar field� satisfies�0� = 0with respect to the backgroundmetricds20 . This
deformation is therefore of the form (2.17). We can generalise the above deformation
further. Instead of working with the specific solution (3.27), we can consider the most
general u-independent solution of the wave equation �0� = 0 that remains finite
everywhere. Such a solution can be written as a superposition

� =
∞∑

n=−∞
cn

(
r2

r2 + a2γ 2

) |n|k
2

e
−in v

Ry . (3.28)

The requirement that � be real fixes (cn)∗ = c−n .
In fact, we can straightforwardly generalise the above discussion even further. In

references [31,32] a bigger class of three-charge solutions of IIB supergravity were
constructed that generalise the above backgrounds with one more integer parameter
m. These solutions are parametrised by parameters γ1, γ2 and charges Q1 and Q5. The
dilaton vanishes for these solutionswhen the Q1 and Q5 are set equal (Q1 = Q5 = Q)

and the moduli at infinity are chosen appropriately. In the component string picture
of the D1–D5 CFT, these states corresponds 2m + 1 units of spectral flows on the
above discussed orbifolds. A more general family is known where the spectral flow
parameter is also fractionated [33–35]. For simplicity, we do not consider those states
here; we expect our analysis to straightforwardly extend to those cases as well. The
six-dimensional metric is [31,32]

ds2 = −1

h
(dt2 − dy2) + Qp

h f
(dt − dy)2 + h f

(
dr2

r2 + (γ1 + γ2)2η
+ dθ2

)

+ h

(

r2 + γ1 (γ1 + γ2) η − Q2 (γ 2
1 − γ 2

2 ) η cos2 θ

h2 f 2

)

cos2 θdψ2

+ h

(

r2 + γ2 (γ1 + γ2) η + Q2 (γ 2
1 − γ 2

2 ) η sin2 θ

h2 f 2

)

sin2 θdφ2

+ Qp (γ1 + γ2)
2 η2

h f

(
cos2 θdψ + sin2 θdφ

)2

− 2Q

h f

(
γ1 cos

2 θdψ + γ2 sin
2 θdφ

)
(dt − dy)

− 2Q (γ1 + γ2) η

h f

(
cos2 θdψ + sin2 θdφ

)
dy, (3.29)

with

Qp = −γ1γ2, η = Q

Q + 2Qp
, (3.30)
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f = r2 + (γ1 + γ2) η
(
γ1 sin2 θ + γ2 cos2 θ

)
, h = 1 + Q

f
, (3.31)

γ1 = −a m, γ2 = a

(
m + 1

k

)
. (3.32)

We consider the range m ≥ 0, k > 0 ∈ Z. The two-form field supporting this
configuration can be written as [32]

C = − Qc2θ
Q + f

(γ2dt + γ1dy) ∧ dψ − Qs2θ
Q + f

(γ1dt + γ2dy) ∧ dφ

+ (γ1 + γ2) η Qp

Q + f
(dt + dy) ∧ (c2θdψ + s2θ dφ) − Q

Q + f
dt ∧ dy

− Qc2θ
Q + f

(r2 + γ2(γ1 + γ2)η + Q)dψ ∧ dφ. (3.33)

In this class of metrics when we setm = 0 we get back to the configuration (3.3). This
more general family when written in the GMR form (2.17) has quantities H , F , β, ω
given as [36],

H = h, (3.34)

F = −Qp

f
, (3.35)

β = Q

f
(γ1 + γ2) η (cos2 θ dψ + sin2 θ dφ), (3.36)

ω = Q

f

[(
2γ1 − (γ1 + γ2) η

(
1 − 2

Qp

f

))
cos2 θ dψ

+
(
2γ2 − (γ1 + γ2) η

(
1 − 2

Qp

f

))
sin2 θ dφ

]
, (3.37)

and the base metric hmn given as,

ds2base = hmndx
mdxn = f

(
dr2

r2 + (γ1 + γ2)2 η
+ dθ2

)

+ 1

f

[[
r4 + r2 (γ1 + γ2) η (2γ1 − (γ1 − γ2) cos

2 θ) + (γ1 + γ2)
2 γ 2

1 η2 sin2 θ
]
cos2 θ dψ2

+ [r4 + r2 (γ1 + γ2) η (2γ2 + (γ1 − γ2) sin
2 θ) + (γ1 + γ2)

2 γ 2
2 η2 cos2 θ

]
sin2 θ dφ2

−2γ1γ2 (γ1 + γ2)
2 η2 sin2 θ cos2 θ dψdφ

]
. (3.38)

On this rather complicated configuration one can add a general deformation as,

du → du + �i dzi , (3.39)

�i =
∞∑

n=−∞
cin

⎛

⎝ r2

r2
(
1 + 2a2

Q m
(
m + 1

k

))+ a2

k2

⎞

⎠

|n|k
2

e
−in v

Ry . (3.40)
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Indeed ��i = 0 with respect to the background metric (3.29); the index i refers to
the four-torus directions. Note that when m = 0, scalar (3.40) reduces to deformation
scalar (3.28); when k = 1 it reduces to the deformation considered in section 5 of
[25]. The deformed two-form field is,

C = − 1

2h
[du + �i dzi ] ∧ dv

+ (γ1 + γ2)

h f

(
ηQp − Q

2

)
[du + �i dzi ] ∧ (c2θdψ + s2θ dφ)

− Q

2h f
(γ2 − γ1)dv ∧ (c2θdψ − s2θ dφ)

− Q

h f
c2θ (r

2 + γ2(γ1 + γ2)η + Q)dψ ∧ dφ. (3.41)

The deformed solution has flat asymptotics, however it is not manifest in the above
coordinates. In the next section we find a set of coordinates that makes the asymptotic
flatness of the solutionmanifest and readoff the charges of the solution. In the following
section we identify the CFT states dual to the deformed spacetimes.

4 Global properties and smoothness of deformed spacetimes

In this section we present a discussion on asymptotics, ADM charges, smoothness and
some other global properties and of the deformed spacetime. The following discussion
is a generalisation of the corresponding discussion in [25] of D1–D5–P geometries
with k = 1 to D1–D5–P orbifolds parametrised by integer k �= 1. We write out
calculations where our analysis offers a simplification, or a different perspective, or
fixes typos/errors over the corresponding discussion in that reference.

4.1 Asymptotics

To find the map between the deformed spacetime and the CFT states, we need to
evaluate charges of the deformed spacetime. We first evaluate the charges in the
asymptotically flat setting, and in the next section in the AdS3 × S3 × T 4 setting.
We assume that ci0 = 0 in (3.40). A constant term in � can be removed by shifting the
u-coordinate. However, since y and zi are periodic coordinates, such a shift does have
an effect on the global properties of the solution. For simplicity we do not analyse the
constant terms in �i here, and assume they are set to zero. At infinity metric of the
deformed spacetime takes the form

ds2 = − [du + fi (v)dzi ] dv + dr2 + r2d�2
3 + dzidzi , (4.1)

where

fi (v) = lim
r→∞ �i (r , v) =

∑

n �=0

cin

(
1 + 2a2

Q
m

(
m + 1

k

))− |n|k
2

e
−in v

Ry . (4.2)
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The diffeomorphism that puts the metric (4.1) in a standard asymptotically flat form
and has the property that the new time-coordinate is single valued is:

z′i = zi − 1

2

∫ v

0
fi (ṽ)d ṽ, (4.3)

u′ = λ

[
u + 1

4

∫ v

0
fi (ṽ) fi (ṽ)d ṽ

]
, (4.4)

v′ = v

λ
, (4.5)

with the value of λ is fixed by the requirement that the new time coordinate t ′ =
1
2 (u

′ + v′) is a single valued function under y ∼ y + 2πRy . This is achieved as
follows:

t ′(y = 2πRy) − t ′(y = 0) = λ

[
πRy + 1

8

∫ t−2πRy

t
fi (ṽ) fi (ṽ)d ṽ

]
− πRy

λ
(4.6)

= πRy

[
λ − 1

λ

]
+ λ

8

∫ −2πRy

0
fi (ṽ) fi (ṽ)d ṽ (4.7)

= πRy

[
λ − 1

λ

]
− λ

8

∫ 2πRy

0
fi (ṽ) fi (ṽ)d ṽ, (4.8)

where in going from the first step to the second we have used the fact that since fi (ṽ)

are periodic functions in ṽ ∼ ṽ − 2πRy , the limit of integration (t, t − 2πRy) can
be changed to (0,− 2πRy). In going from the second step to the third step, we have
once again used the periodic property of the functions fi (ṽ) and converted the limit
of integration to (0, 2πRy). This fixes the value of λ to be:

λ−2 =
[
1 − 1

8πRy

∫ 2πRy

0
fi (ṽ) fi (ṽ)d ṽ

]
. (4.9)

This expression differs from the one written in equation (4.12) of [25]; also the value
of the function fi (v) in (4.2) is different from equation (6.2) of [25] when k = 1.1

In new coordinates, the asymptotic metric (4.1) is

ds2 = −(dt ′)2 + (dy′)2 + dr2 + r2d�2
3 + dz′i dz′i . (4.10)

The z′i coordinates have the same periodicity as the zi coordinates. The periodicity of
the y′ coordinate is

y′(y = 2πRy) − y′(y = 0) = λ

[
πRy + 1

8

∫ t−2πRy

t
fi (ṽ) fi (ṽ)d ṽ

]
+ πRy

λ

(4.11)

1 We thank David Turton and Oleg Lunin for a detailed discussion on these points. After their paper was
accepted for publication, they also independently realised these typos.
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= πRy

[
λ + 1

λ

]
+ λ

8

∫ −2πRy

0
fi (ṽ) fi (ṽ)d ṽ (4.12)

= πRy

[
λ + 1

λ

]
− λ

8

∫ 2πRy

0
fi (ṽ) fi (ṽ)d ṽ (4.13)

= 2πRy

λ
. (4.14)

This implies that the deformed solution has asymptotic radius y′ ∼ y′ + 2πR, with

R = Ry

λ
. (4.15)

The picture is as follows: deformations of a given state are constructed by introduc-
ing functions �i , while keeping n1, n5,m, k and asymptotic radius R fixed. In order
to work with radius R (as opposed to Ry) we introduce

hi (v
′) = fi (v) = fi (λv′). (4.16)

and we also note that

λ−2 = 1 − 1

8πR

∫ 2πR

0
hi (ṽ

′)hi (ṽ′)d ṽ′. (4.17)

4.2 Charges

Now that we know the coordinate transformations that bring the metric in the standard
flat form asymptotically, we can work out the charges. We extend the diffeomorphism
(4.3)–(4.5) to finite radial coordinates as:

z′i = zi − 1

2

∫ v

0
�i (ṽ)d ṽ, (4.18)

u′ = λ

[
u + 1

4

∫ v

0
�i (ṽ)�i (ṽ)d ṽ

]
, (4.19)

v′ = v

λ
. (4.20)

This choice simplifies the extraction of charges. At large values of r we find,2

gt ′t ′ = −1 + 1

r2

(
Q + λ2Qp + 1

4
λ2Qhihi

)
+ . . . (4.21)

gt ′y′ = −λ2

r2

(
Qp + 1

4
Qhihi

)
+ . . . (4.22)

2 In the following equations, we only write components of the metric that are relevant for the computation
of the gravitational charges. The are other components with 1

r2
terms.
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gy′y′ = 1 + 1

r2

(
−Q + λ2Qp + 1

4
λ2Qhihi

)
+ . . . (4.23)

gt ′zi = λQ

2r2
hi + . . . (4.24)

gt ′φ = −λQ

r2
s2θ

(
γ2 − γ1 + γ2

2
η

(
1 − 1

4
hi hi − 1

λ2

))
+ . . . (4.25)

gt ′ψ = −λQ

r2
c2θ

(
γ1 − γ1 + γ2

2
η

(
1 − 1

4
hi hi − 1

λ2

))
+ . . . . (4.26)

From these components we can extract the charges. The ADM momenta of the
solution are given by

Pi = − π

4GN

∫ 2πR

0
dy r2 δgt ′zi = 0, (4.27)

Py′ = − π

4GN

∫ 2πR

0
dy r2 δgt ′y′

= πλ2

4GN

(
2πR Qp + 1

4
Q
∫ 2πR

0
hi hi dy

′
)

, (4.28)

where we have used the fact that ci0 = 0 and where GN = π2α′4g2
2V is the six-

dimensional Newton’s constant.
The ADM mass is [37]

M = π

8GN

∫ 2πR

0
dy r2 (3δgt ′t ′ − δgy′y′) (4.29)

= π

4GN
(2Q)(2πR) + πλ2

4G

(
2πR Qp + 1

4
Q
∫ 2πR

0
hi hi dy

′
)

(4.30)

= π

4GN
(2Q)(2πR) + Py′ . (4.31)

Not surprisingly, the BPS bound is saturated; addition of momentum shifts the mass
by Py′ . Using (3.1) can rewrite the ADM momentum Py′ as

Py′ = n1n5
R

[
m

(
m + 1

k

)
+ Q

4a2
1

2πR

∫ 2πR

0
dy′hi hi

]
. (4.32)

To extract angular momenta, we use

Jφ = − π

8GN

∫ 2πR

0
dy′ r2

δgt ′φ
sin2 θ

, (4.33)

Jψ = − π

8GN

∫ 2πR

0
dy′ r2

δgt ′ψ
cos2 θ

. (4.34)

A simple calculation then gives,
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Jφ = πλQ

8GN

∫ 2πR

0
dy′
(

γ2 − γ1 + γ2

2
η

(
1 − 1

4
hi hi − 1

λ2

))
(4.35)

= πλQ

8GN
γ2(2πR) = n1n5

2

(
m + 1

k

)
, (4.36)

where we have used expression for λ−2 (4.17) in going from the first to the second
step. Similarly, we have

Jψ = πλQ

8GN
γ1(2πR) = − n1n5

2
m. (4.37)

To summarise, the deformed state saturates the BPS bound and has charges

Py′ = n1n5
R

[
m

(
m+ 1

k

)
+ Q

4a2
1

2πR

∫ 2πR

0
dy′hi hi

]
, Jφ = n1n5

2

(
m + 1

k

)
,

(4.38)

Pi = 0, Jψ = −n1n5
2

m. (4.39)

4.3 Smoothness

Remarkably, the determinant of metric of the deformed solution gets no contribution
from the scalars �i :

det g = −1

4
cos2 θ sin2 θh2 f 2. (4.40)

Therefore, as long as �i remain finite, the potential singularities can only occur at
places where the background geometry can become singular. The vicinity of these
potentially dangerous points is analysed in [32] for the undeformed solution. The
analysis of that reference applies almost verbatim to our case together with the fact
that the scalars (3.40) remain finite everywhere.

This is perfectly in line with a conjecture of reference [25]. They conjecture that any
regular solution of the D1–D5 system can be deformed into a regular solution via the
above technique provided, (1)�i satisfies��i = 0, (2)�i remains finite everywhere,
(3) �i approaches a regular function fi (v) as r → ∞ on the four-dimensional base
space. Clearly all these conditions are met for the specific class of solutions studied
in this paper.

5 Identifying CFT states

5.1 Decoupling limit

To map the deformed geometries into states in the dual CFT, we need to evaluate
charges in theAdS region rather than the asymptoticallyflat region. Such a computation
is possible only when the deformed geometry has a large AdS region; and a decoupling
limit can be taken. The geometry develops a large AdS region when we take
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ε ≡ a2

Q
	 1. (5.1)

To take the decoupling limit we must take ε → 0 while keeping the AdS radius
√
Q

fixed. The relation (3.6) implies that the size of the y-circle Ry should go to infinity.
We introduce

ū = u

Ry
, v̄ = v

Ry
, r̄ = r

a
, (5.2)

and take the limit Ry → ∞. Without the deformation (i.e., with �i = 0) the decou-
pling limit gives

ds2 = Q

[
−r̄2dūd v̄ − 1

4
(dū + d v̄)2 + dr̄2

r̄2 + k−2

]

+ Q

[

dθ2 + c2θ

(
dψ − 1

2k
(dū − d v̄) + md v̄

)2

+ s2θ

(
dφ − 1

2k
(dū + d v̄) − md v̄

)2]

+ dzi dzi . (5.3)

To understand the decoupling limit with the scalars�i turned on, we start by noting
that in order to maintain ADM momentum (4.38) finite at Ry → ∞, we must scale
the scalars �i as

�i = a√
Q

�̄i =
√
Q

Ry
�̄i . (5.4)

Then, in the metric, terms of the form

[du + �i dzi ] (5.5)

behave as

du + �i dzi = Ry dū +
√
Q

Ry
�̄i dzi , (5.6)

which in the decoupling limit Ry → ∞ simply becomes

Ry dū. (5.7)

Thus, in effect, in the decoupling limit all �i terms scale out, and we once again we
get the decoupled metric (5.3).

However, there is one subtlety. As we saw in the previous section the deformed
metric is not manifestly asymptotically flat in coordinates zi , t, y. It is better to change
coordinates to z′i , t ′, y′ to connect the decoupled region to the asymptotically flat
region. Through this change of coordinates the scalars reappear. In order to implement
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these coordinate transformations, we first observe that in the decoupling limit λ from
Eq. (4.9) simplifies to unity,

λ−2 = lim
Ry→∞

[

1 − 1

4

Q

R2
y

(
1

2πRy

∫ 2πRy

0
f̄i (ṽ) f̄i (ṽ)d ṽ

)]

= 1. (5.8)

Since λ scales to unity, the transformations (4.18)–(4.20) simplify to

z′i = zi − 1

2

√
Q
∫ v̄

0
�̄i d ¯̃v, u′ = u, v′ = v. (5.9)

As a result, in primed coordinates the decoupled metric is

ds2 = Q

[
−r̄2dūd v̄ − 1

4
(dū + d v̄)2 + dr̄2

r̄2 + k−2

]

+ Q

[

dθ2 + c2θ

(
dψ − 1

2k
(dū − d v̄) + md v̄

)2

+s2θ

(
dφ − 1

2k
(dū + d v̄) − md v̄

)2]

+
(
dz′i + 1

2

√
Q�̄i d v̄

)2
. (5.10)

We can now read off the charges. We find

Py′ = n1n5
R

[
m

(
m + 1

k

)
+ 1

8π

∫ 2π

0
d ȳ f̄i f̄i

]
, Jφ = n1n5

2

(
m + 1

k

)
, (5.11)

Pi = 0, Jψ = −n1n5
2

m. (5.12)

These charges agree with (4.38)–(4.39) in the Ry → ∞ limit.

5.2 Deformed states in the D1–D5 CFT

The expression for the momentum Py′ , cf. (5.11), can be compared with momentum
of the CFT state,

|�〉 = N exp

[
∑

n>0

μi
n J

i−n

]

|ψ〉, (5.13)

where |ψ〉 is the undeformed state and J i−n are the modes of the four U(1) currents of
the D1–D5 CFT. Assuming that the state |ψ〉 is unit normalised, 〈ψ |ψ〉 = 1, we can
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fix the normalisation constant N using the commutation relations,

[J im, J j
n ] = m

n1n5
2

δi jδm+n . (5.14)

Define A† =∑n>0 μi
n J

i−n . Using the fact that the commutator

[A, A†] = n1n5
2

∑

n>0

n(μi
n)

∗μi
n (5.15)

is a c-number, a small calculation shows that the normalisation constant N is given by

1 = 〈�|�〉 = N 2〈ψ |eAeA† |ψ〉
= N 2e[A,A†]〈ψ |eA†

eA|ψ〉 = N 2e[A,A†], (5.16)

where we have used eA|ψ〉 = |ψ〉 (which follows from J in |ψ〉 = 0 for positive n).
This gives

N = exp

[

−n1n5
4

∑

n>0

n(μi
n)

∗μi
n

]

. (5.17)

To find the momentum, we compute the expectation value of L0 and L̄0. Since right
moving sector is untouched, we simply have

〈�|L̄0|�〉 = 〈ψ |L̄0|ψ〉. (5.18)

For the left sector, we need to do a computation. A simple way to organise this com-
putation is as follows. Using the commutation relations,

[Lm, J in] = −nJ im+n, (5.19)

in particular, [L0, J i−n] = nJ i−n , we get

[L0, A
†] =

∑

n>0

μi
n[L0, J

i−n] =
∑

n>0

nμi
n J

i−n =: B†. (5.20)

To calculate 〈�|L0|�〉 we observe

〈�|L0|�〉 = N 2
〈
ψ |eAL0e

A† |ψ
〉
= N 2

〈
ψ |eAeA†

e−A†
L0e

A† |ψ
〉
. (5.21)

Nowwe can use Baker–Campbell–Hausdorff formula to write e−A†
L0eA

† = L0+B†.
We also use eAeA

† = eA
†
eAe[A,A†] and the fact that N 2e[A,A†] = 1 as shown earlier.

We get

〈�|L0|�〉 = N 2
〈
ψ |eAeA†

(L0 + B†)|ψ
〉
=
〈
ψ |eA†

eA(L0 + B†)|ψ
〉
. (5.22)
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Now we use [L0, A]|ψ〉 = B|ψ〉 = 0, as B contains only J in with positive n, we get

〈�|L0|�〉 = 〈ψ |L0|ψ〉 + 〈ψ |[A, B†]|ψ〉 (5.23)

= 〈ψ |L0|ψ〉 +
∑

n>0

n2n1n5
2

(μi
n)

∗μi
n, (5.24)

We conclude that,

〈�|L0 − L̄0|�〉 = RPy′ = 〈ψ |L0 − L̄0|ψ〉 +
∑

n>0

n2n1n5
2

(μi
n)

∗μi
n . (5.25)

Upon doing the Fourier expansion of (5.11) in the decoupling limit, we get

RPy′ = 〈ψ |L0 − L̄0|ψ〉 +
∑

n>0

n1n5
2

Q

a2

(
(cin)

∗cin
)

. (5.26)

Therefore, the map between the quantities cin and μi
n is

μi
n = 1

n

√
Q

a2
cin . (5.27)

Let us remark that in the computations of this subsection the only property of the
undeformed state |ψ〉 we have used is that it is annihilated by A and B operators. The
above analysis is therefore applicable to a large class of states. Although matching of
the charges is no proof that the identified states are dual to the gravity deformation
considered above; it is a strong indicator.

6 Dualities and the generalized Garfinkle–Vachaspati transform

In an attempt to explore further applications of the generalized Garfinkle–Vachaspati
transform and related solution generating techniques, in this sectionwewrite deformed
Bena–Warner solutions in various M2–M5–P duality frames. We obtain these various
duality frames by applying dualities. Our starting point is the D1–D5–P frame. In
“Appendix B” the dictionary for going from the M2–M2–M2 BW form to the D1–
D5–P form is worked out. The string frame D1–D5–P metric can be written in the
following form, cf. (B.34),

ds210 = − 1

Z3Z1
(dt + κ)2 + Z1hmndx

mdxn

+ Z3

Z1

(
dz5 + A(3)

μ dxμ
)2 +

(
dz21 + dz22 + dz23 + dz24

)
, (6.1)

where

A(3)
μ dxμ = −dt + κ

Z3
+ ω3. (6.2)
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The RR two-form field supporting this solution takes the form, cf. (B.41),

C = −
(
dt + κ

Z1
− ω1

)
∧ (dz5 + ω3) + σ. (6.3)

where the two-form σ satisfies Eq. (B.42).
The application of the generalized Garfinkle–Vachaspati transform with,

k = ∂

∂t
, l = ∂

∂z4
, (6.4)

kμdx
μ = −Z−1

1 (dz5 + ω3), lμdx
μ = dz4, (6.5)

leads to the transformed metric,

(ds′
10)

2 = ds210 − 2Z−1
1 �(dz5 + ω3)dz4,

with the transformed C-field,

C ′ = C + �

Z1
(dz5 + ω3) ∧ dz4. (6.6)

These deformed solutions we now write in various other duality frames.

T-duality along z1-direction andM-theory lift

The first duality frame we explore is obtained by T-duality along z1-direction followed
by an M-theory lift along z6:

D1z5 − D5z1z2z3z4z5 − Pz5
Tz1−−→ D2z1z5 − D4z2z3z4z5 − Pz5

M-theory lift−−−−−−−→ M2z1z5
−M5z2z3z4z5z6 − Pz5 .

Performing these dualities, the final answer for the metric is

ds211 = ds210 − 2Z−1
1 �(dz5 + ω3)dz4 + dz26,

together with the 3-form field

A(3) =
(
C + �

Z1
(dz5 + ω3) ∧ dz4

)
∧ dz1. (6.7)

In this duality frame, the transformation is essentially of the form of the generalised
Garfinkle–Vachaspati transform. It is natural to conjecture that a solution generating
technique akin to generalised Garfinkle–Vachaspati transform exist in (an appropriate
truncation of) M-theory.
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T-dualities along z1, z2, z3 andM theory lift

The next duality framewe explore is obtained by T-dualities along z1, z2, z3-directions
followed by an M-theory lift along z6:

D1z5 − D5z1z2z3z4z5 − Pz5
Tz1z2z3−−−−→ D4z1z2z3z5 − D2z4z5 − Pz5

M-theory lift−−−−−−−−→ M5z1z2z3z5z6
−M2z4z5 − Pz5 .

Performing these dualities, the eleven-dimensional metric is,

ds211 = ds210 − 2Z−1
1 �(dz5 + ω3)dz4 + dz26,

together with the A(6) in eleven-dimensions, which is thought of as the dual of A(3):

A(6) =
(
C + �

Z1
(dz5 + ω3) ∧ dz4

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz6. (6.8)

Even in this duality frame, the transformation is essentially of the form of the gen-
eralised Garfinkle–Vachaspati transform. Once again, it is natural to conjecture that
a solution generating technique akin to generalised Garfinkle–Vachaspati transform
exist in such a set-up.

T-duality along z4-direction andM-theory lift

Thenext duality frameweexplore is obtainedbyT-duality along z4-directions followed
by an M-theory lift along z6. Recall that z4 is also the spacelike direction used for the
generalised Garfinkle–Vachaspati transform, cf. (6.4). The duality sequence is:

D1z5 − D5z1z2z3z4z5 − Pz5
Tz4−−→ D2z4z5 − D4z1z2z3z5 − Pz5

M-theory lift−−−−−−−→ M2z4z5
−M5z1z2z3z5z6 − Pz5 .

After the T-duality the IIA ten-dimensional metric in the string frame is,

ds210 = −2Z−1
1 (dt + k)(dz5 + ω3)

+ Z3

Z1

(
1 − �2

Z1Z3

)
(dz5 + ω3)

2 + Z1hmndx
mdxn + ds2T4 . (6.9)

The associated form-fields are,

C (3) = C ∧ dz4, C (1) = �

Z1
(dz5 + ω3), B(2) = �

Z1
(dz5 + ω3) ∧ dz4. (6.10)
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The dilaton remains the same, i.e., e2φ = 1. The M-theory lift is,

ds211 = ds210 + 2�

Z1
(dz5 + ω3)dz6 + dz26, (6.11)

A(3) = C (3) + �

Z1
(dz5 + ω3) ∧ dz4 ∧ dz6. (6.12)

In this duality frame too, the transformation is essentially of the generalisedGarfinkle–
Vachaspati form.

Similarly, one can consider another duality chain to another M2–M5–P frame as
follows

D1z5 − D5z1z2z3z4z5 − Pz5
Tz1z2 z4−−−−→ D4z1z2z4z5 − D2z3z5 − Pz5

M-theory lift−−−−−−−→ M5z1z2z4z5z6
−M2z3z5 − Pz5 .

Even in this duality frame the transformation is essentially of theGarfinkle–Vachaspati
form. It is tempting to speculate that some solution generating techniques akin to
generalised Garfinkle–Vachaspati transform exist for these set-ups as well.

7 Conclusions and future directions

In this paper, we have presented generalizedGarfinkle–Vachaspati transform as a solu-
tion generating technique and have analysed in detail corresponding deformations of
certain D1–D5–P orbifolds. We considered states that are obtained by (odd) integral
spectral flows on certain NS sector chiral primaries. A more general supersymmet-
ric family is known where the spectral flow parameter is also fractionated [33–35].
We expect our deformation analysis to straightforwardly extend to that setting as
well. A much more difficult question is how to add a similar deformation to non-
supersymmetric solutions considered in [33,35]. The analysis of the current paper does
not seem to be applicable, since in general such solutions do not admit null Killing vec-
tor. It will be interesting to figure out if a variant of the above analysis can be applied.3

In the paper, we only considered deformation of solutions of minimal six-
dimensional supergravity embedded in ten-dimensional IIB theory. Extension to
non-minimal six-dimensional supergravity in a natural direction to explore. A form
of such deformation for supersymmetric solutions was proposed in [25]. It will be
interesting to check the validity of the proposed form and to relate it to our generalised
Garfinkle–Vachaspati transform.

In an attempt to explore further applications of the generalized Garfinkle–
Vachaspati transform, in Sect. 6 we wrote a class of deformed solutions in various
M2-M5–P duality frames. It is natural to speculate that some variant of the gener-
alised Garfinkle–Vachaspati transform also exist for these M-theory set-ups.

3 A different, but related, type of deformation on the simplest of non-supersymmetric solutions of [33] was
studied in [38]. It is tempting to speculate, given the analysis [26,38], that a variant of the above analysis
finds application to non-supersymmetric settings.
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Our generalizedGarfinkle–Vachaspati transformation is an example of the extended
Kerr–Schild metrics considered in [39,40]. Due to the assumption that the null and
spacelike vectors are Killing, our analysis is more restrictive and hence our final
results are much simpler. In addition, we have non-trivial matter present compared
to the general extended Kerr–Schild forms considered in those references. It will be
interesting to see if we can further relax our conditions on null and spacelike vectors
and relate our analysis to theirs.

Since the number of Killing symmetries do not change under our generalized
Garfinkle–Vachas–Pati deformation, it is natural to ask whether the deformation has
a simple group theory interpretation from the hidden symmetry point of view of type
IIB theory. Hidden symmetries under null reduction of gravity theories have not been
fully explored. Some general results are known [41]. It can be useful to explore the
null reduction further and find the interpretation of (generalised) Garfinkle–Vachaspati
transform from the hidden symmetry point of view. We hope to return to some of the
above problems in our future work.

Acknowledgements We thankSwayamsidhaMishra,AshokeSen,DavidTurton, and especiallyOlegLunin
for discussions. AV thanks NISER Bhubaneswar, AEI Potsdam, and ICTP Trieste for warm hospitality
towards the final stages of this project. The work of AV is supported in part by the DST-Max Planck Partner
Group “Quantum Black Holes” between CMI Chennai and AEI Potsdam.

A Detailed analysis of the equations of motion

We establish that generalised Garfinkle–Vachaspati transform is a valid solution gen-
erating technique via a brute force calculation. We show that the left and the right
hand side of the Einstein equations transform in the exactly the same way, thereby
establishing that if we start with a solution, we can deform it to a new solution. In our
convention, Einstein equations are

Rμν = 1

4
Fμλσ Fν

λσ , (A.1)

and matter field equations are
∇μF

μνρ = 0. (A.2)

The tedious calculations required to show that these equations transform covariantly
are organised as follows: in Sect. A.1 the left hand side of the Einstein equations are
analysed, in Sect. A.2 the right hand side of the Einstein equations are analysed, and
finally in Sect. A.3 matter equations are analysed.

The generalised Garfinkle–Vachaspati transform of the metric is,

g′
μν = gμν + �(kμlν + kνlμ), (A.3)

where � is a massless scalar on the original background spacetime gμν ,

�� = 0. (A.4)
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The vector kμ appearing in (A.3) is a null Killing vector

kμkμ = 0, ∇μkν + ∇νkμ = 0, (A.5)

and lμ is a unit normalised covariantly constant spacelike (Killing) vector orthogonal
to kμ:

lμlμ = 1, kμlμ = 0, ∇μlν = 0. (A.6)

Furthermore, we also require that the scalar � is compatible with the Killing symme-
tries,

kμ∇μ� = 0, lμ∇μ� = 0, (A.7)

so that the transformed spacetime g′
μν also has kμ and lμ as Killing symmetries.

A.1 Left hand side of Einstein equations

The aim of this subsection is to find the transformation of the left hand side of the
Einstein equations (A.1). Doing this is straightforward, though somewhat tedious. To
compute the change in the Ricci tensor, we essentially need to compute the change in
the metric compatible connection and its covariant derivative:

R′
λν = Rλν − ∇λ�

μ
μν + ∇μ�μ

λν + �μ
μρ�ρ

λν − �ρ
μλ�

μ
ρν, (A.8)

where �
μ
λν is the change in the metric compatible connection

�′μ
λν = �

μ
λν + �

μ
λν. (A.9)

The change in the metric compatible connection is

�
μ
λν = 1

2
g′μσ

(∇λg
′
νσ + ∇νg

′
σλ − ∇σ g

′
νλ

)
. (A.10)

We compute various pieces required in Eq. (A.8).
We start by observing that the inverse of the transformed metric (A.3) is simply

g′μν = gμν + �2kμkν − �Sμν. (A.11)

Next, we introduce the notation,

Sμν = kμlν + kνlμ, (A.12)

hμν = �Sμν, (A.13)

nμν = ∇μkν − ∇νkμ. (A.14)

123



A generalised Garfinkle–Vachaspati transform Page 27 of 40 155

The change in the metric compatible connection, �
μ
λν , is conveniently organised in

two terms,

�
μ
λν = �

μ
λν + 1

2

(
�2kμkα − �Sμα

)
(∇λhνα + ∇νhαλ − ∇αhλν) , (A.15)

where the first term �
μ
λν is the combination that features in the Garfinkle–Vachaspati

transform without the spacelike Killing vector lμ [19]:

�
μ
λν = 1

2
gμα (∇λhνα + ∇νhαλ − ∇αhλν) . (A.16)

In order to proceed further we make a convenient definition,

Kμ
νλ := ∇νS

μ
λ + ∇λS

μ
ν − ∇μSλν, (A.17)

using which it follows that

�
μ
λν = 1

2

(
(∇ν�)Sμ

λ + (∇λ�)Sμ
ν − (∇μ�)Sνλ + �Kμ

νλ

)
, (A.18)

and therefore,

�
μ
λν = �

μ
λν − 1

2
�kμ(kν∇λ� + kλ∇ν�). (A.19)

The trace of �
μ
λν is easily seen to be zero

�
μ
μλ = 0. (A.20)

As a result the transformation of the Ricci tensor (A.8) simplifies to

R′
λν = Rλν + ∇μ�μ

λν − �ρ
μλ�

μ
ρν. (A.21)

To compute the right hand side of the above expression, we need to compute ∇μ�μ
λν

and �ρ
μλ�

μ
ρν . We can first show that

2∇μ�
μ
λν = (∇μ∇ν�)Sμ

λ + (∇μ∇λ�)Sμ
ν

− (∇μ�)(∇μSνλ) + (∇μ�)Kμ
νλ + �(∇μK

μ
νλ), (A.22)

where we have used∇μS
μ
ν = 0 and the fact that we are deforming the original solution

via a massless scalar field (A.4). The first three terms of (A.22) combine to zero,

(∇μ∇ν�)Sμ
λ + (∇μ∇λ�)Sμ

ν − (∇μ�)(∇μSνλ) = 0. (A.23)

In order to simplify (A.22) further we develop some identities. One can easily show
that

Kμ
νλ = (∇νk

μ − ∇μkν)lλ + (∇λk
μ − ∇μkλ)lν (A.24)
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= nν
μlλ + nλ

μlν . (A.25)

It then follows that the fourth term of (A.22) simplifies to

(∇μ�)Kμ
νλ = −2kμ

[
(∇ν∇μ�)lλ + (∇λ∇μ�)lν

]
, (A.26)

where we have used

(∇μ�)nν
μ = −2kμ(∇ν∇μ�). (A.27)

Inserting (A.25) in (∇μK
μ
νλ), the last term of (A.22) simplifies to

∇μK
μ
νλ = −2(�kν)lλ − 2(�kλ)lν, (A.28)

where we have also used

∇μnν
μ = −2�kν . (A.29)

When the dust settles, we get a simplified expression for Eq. (A.22):

∇μ�
μ
λν = −lλ

[
kμ(∇ν∇μ�) + ��kν

]− lν
[
kμ(∇λ∇μ�) + ��kλ

]
. (A.30)

From (A.19) it then follows that

2∇μ�
μ
λν = 2∇μ�

μ
λν − �kμ

[
kν(∇μ∇λ�) + kλ(∇μ∇ν�)

]
. (A.31)

This is one of the pieces that is required to compute the change in the Ricci tensor
(A.21). The other piece that is required is �

ρ
μλ�

μ
ρν . In order to compute this combi-

nation, we start by observing that

4�ρ
μλ�

μ
ρν =

[
2�ρ

μλ − �kρ(kμ∇λ� + kλ∇μ�)
] [

2�μ
ρν − �kμ(kρ∇ν� + kν∇ρ�)

]

(A.32)

= 4�ρ
μλ�

μ
ρν. (A.33)

The combination �
ρ
μλ�

μ
ρν is,

4�ρ
μλ�

μ
ρν =

[
(∇μ�)Sρ

λ + (∇λ�)Sρ
μ − (∇ρ�)Sμλ + �K ρ

μλ

]

× [(∇ρ�)Sμ
ν + (∇ν�)Sμ

ρ − (∇μ�)Sρν + �Kμ
ρν

]
. (A.34)

In order to simplify this further, we use the following non-trivial identities, which can
be straightforwardly established:

Sρ
μK

μ
ρν = 0, SμλK

μ
ρν = 0, (A.35)
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Sμ
ν K ρ

μλ = kνnλ
ρ, K ρ

μλK
μ
ρν = 4(∇μk

ρ)(∇ρk
μ)lλlν . (A.36)

After all these simplifications, we get

�
ρ
μλ�

μ
ρν = −1

2
(∇ρ�)(∇ρ�)kλkν − 1

2
�kμ

[
kλ(∇μ∇ν�) + kν(∇μ∇λ�)

]

+ �2(∇μk
ρ)(∇ρk

μ)lλlν. (A.37)

Therefore, a final simplified expression for the transformed Ricci tensor is

R′
λν = Rλν − lλ

[
kμ(∇ν∇μ�) + ��kν

]− lν
[
kμ(∇λ∇μ�) + ��kλ

]

+ 1

2
(∇ρ�)(∇ρ�)kλkν − �2(∇μk

ρ)(∇ρk
μ)lλlν . (A.38)

In the next subsection we show that the right hand side of the Einstein equations (A.1)
also transform in the same way.

A.2 Right hand side of Einstein equations

We start by recalling that under generalised Garfinkle–Vachaspati transform the two-
form field transforms as

C → C ′ = C − � kμdx
μ ∧ lνdx

ν . (A.39)

To show that the right hand side of the Einstein equations (A.1) transform in the same
way, we require

kμFμ
νρ = −nνρ, (A.40)

and

lμFμ
νρ = 0. (A.41)

As mentioned in the main text, these conditions are satisfied by a large class of
solutions of the minimal six-dimensional supergravity embedded in type IIB theory.
Introducing the notation

mμν = kμlν − kνlμ, (A.42)

we have

C ′
μν = Cμν − �(kμlν − kνlμ) (A.43)

= Cμν − �mμν. (A.44)
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It then simply follows that

F ′
μνρ = ∂μCνρ + ∂ρCμν + ∂νCρμ − ∂μ(�mνρ) − ∂ρ(�mμν)

− ∂ν(�mρμ) (A.45)

= ∂μCνρ + ∂ρCνμ + ∂μCρν − Qμνρ − �Pμνρ (A.46)

= Fμνρ − Qμνρ − �Pμνρ, (A.47)

where

Qμνρ = (∂μ�)mνρ + (∂ρ�)mμν + (∂ν�)mρμ, (A.48)

Pμνρ = ∂μmνρ + ∂ρmμν + ∂νmρμ. (A.49)

Inserting (A.42) in (A.49) we get,

Pμνρ = ∂μ(kνlρ − kρlν) + ∂ρ(kμlν − kνlμ) + ∂ν(kρlμ − kμlρ) (A.50)

= (∂μkν − ∂νkμ)lρ + (∂ρkμ − ∂μkρ)lν + (∂νkρ − ∂ρkν)lμ (A.51)

= nμνlρ + nρμlν + nνρlμ. (A.52)

To compute the transformed right hand side of the Einstein equations, we need to
first raise the indices on the three-form field Fμνλ. Raising the first index we get,

F ′σ
νρ = g′μσ F ′

μνρ (A.53)

=
(
gμσ + �2kμkσ − �Sμσ

) (
Fμνρ − Qμνρ − �Pμνρ

)
. (A.54)

Using the identities,

kμQμνρ = 0, (A.55)

kμPμνρ = 0, (A.56)

Sμσ Fμνρ = −lσnνρ, (A.57)

Sμσ Qμνρ = kσ
[
kρ(∂ν�) − kν(∂ρ�)

]
, (A.58)

Sμσ Pμνρ = kσnνρ, (A.59)

it follows that,

F ′σ
νρ = Fσ

νρ − Qσ
νρ − �Pσ

νρ + �lσnνρ + �kσ
[
(∂ν�)kρ − (∂ρ�)kν

]
.

(A.60)

Similarly raising the second index we get,

F ′ση
ρ = g′ηνF ′σ

νρ

= Fση
ρ − Qση

ρ − �Pση
ρ + �lσnη

ρ + �kσ
[
(∂η�)kρ − (∂ρ�)kη

]

−�lη(nσ
ρ) − �kη

[
(∂σ �) − kσ (∂ρ�)

]
. (A.61)
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Given the above expressions, it is possible to compute the change in the right hand
side of the Einsteins equations. However, it turns out that for various purposes the
three-form with all three indices raised is a much easier quantity to work with. We
now write an expression for F ′ with all three indices raised, and then turn to Einstein
equations. We have

F ′σηα = g′ραF ′ση
ρ (A.62)

= Fσηα − Qσηα − �Pσηα + �lσ nηα + �kσ
[
(∂η�)kα − (∂α�)kη

]

− �lη(nσα) − �kη
[
kα(∂σ �) − kσ (∂α�)

]
) + �2kαkρFση

ρ − �SαρFση
ρ

+ �SαρQση
ρ + �2Sαρ Pση

ρ (A.63)

= Fσηα − Qσηα − �(nσηlα + nασ lη + nηαlσ ) + �lσ nηα

+ �kσ
[
(∂η�)kα − (∂α�)kη

]− �lη(nσα) − �kη
[
kα(∂σ �) − kσ (∂α�)

]
)

+ �lα(nση) + �kα
[
kη(∂σ �) − kσ (∂η�)

]

= Fσηα − Qσηα + �kσ
[
(∂η�)kα − (∂α�)kη

]− �kη
[
kα(∂σ �) − kσ (∂α�)

]
)

+ �kα
[
kη(∂σ �) − kσ (∂η�)

]
(A.64)

= Fσηα − Qσηα, (A.65)

which is a remarkably simple equation.
Now we are in position to compute the transformed right hand side of (A.1). Using

identities

− FλαβQ
δαβ − QλαβF

δαβ = −4
[
lδ(∇λ∇β�) + lλ(∇δ∇β�)

]
kβ, (A.66)

QλαβQ
δαβ = 2(∂β�)(∂β�)kλk

δ, (A.67)

PλαβQ
δαβ = 4kδkα(∇λ∇α�), (A.68)

PλαβF
δαβ = 4lλ�kδ, (A.69)

we get,

1

4
F ′

λαβF
′δαβ = 1

4
FλαβF

δαβ − [lδ(∇λ∇β�) + lλ(∇δ∇β�)]kβ

+ 1

2
(∇β�)(∇β�)kλk

δ + �kδkα(∇λ∇α�) − �lλ�kδ. (A.70)

From this expression we easily see that F ′
λαβF

′λαβ = FλαβFλαβ = 0. Moreover,

1

4
g′
νδF

′
λαβF

′δαβ = 1

4
(gνδ + �Sνδ)F

′
λαβF

′δαβ (A.71)

= 1

4
FλαβFν

αβ − [lν(∇λ∇μ�) + lλ(∇ν∇μ�)]kμ

+1

2
(∇ρ�)(∇ρ�)kλkν

−�lλ�kν − �lν�kλ + �2lλlν(∇αkδ)(∇αk
δ), (A.72)
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where we have used the identities

Fλαβn
αβ = 4�kλ, (A.73)

Sνδ�kδ = lνkδ�kδ. (A.74)

We see that the right hand side matches with the left hand side.

A.3 Matter field equations

The matter field equations are

∇μF
μνρ = 0. (A.75)

Under the deformation the left hand side of this equation changes as

∇′
μF

′μνρ = ∇μF
′μνρ + �μ

μσ F
′σνρ + �ν

μσ F
′μσρ + �ρ

μσ F
′μνσ (A.76)

= ∇μF
′μνρ (A.77)

= ∇μF
μνρ − ∇μQ

μνρ. (A.78)

The first term in Eq. (A.78) is just the field equations for the background configuration,
which is zero. For the second term in (A.78), we have via (A.48)

Qμνρ = gμσ gνηgραQσηα (A.79)

= (∇μ�)mνρ + (∇ν�)mρμ + (∇ρ�)mμν. (A.80)

Applying the covariant ∇μ on this expression we find,

∇μQ
μνρ = (��)mνρ + (∇μ�)

[
lρ(∇μk

ν) − lν(∇μk
ρ)
]+ (∇μ∇ν�)(kρlμ − kμlρ)

+ (∇μ∇ρ�)(kμlν − kνlμ). (A.81)

Using

�� = 0, (A.82)

lμ(∇μ∇ν�) = 0, (A.83)

kμ(∇μ∇ν�) = (∇μ�)(∇μk
ν), (A.84)

we get

∇′
μF

′μνρ = ∇μQ
μνρ = 0. (A.85)

Hence the matter field equations are also satisfied by the transformed configuration.
We have shown that under the generalised Garfinkle–Vachaspati transform, solu-

tions of IIB theory are mapped to solutions of IIB theory.
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B BW and GMR formalisms

In this appendix, after a brief review of the Gutowski–Martelli–Reall (GMR) and the
Bena–Warner (BW) formalisms we relate the two notations. Similar computations
were also done in [42–44].

B.1 Gutowski–Martelli–Reall formalism

In the GMR formalism [17], we work with minimal six-dimensional supergravity. We
follow the notation of appendix A of reference [25]. The bosonic part of this theory
consists of metric gμν and a self-dual three-form Gμνρ . GMR showed that the metric
for any supersymmetric solution of minimal 6D supergravity can be written as

ds2 = −H−1(dv + β)

(
du + ω + F

2
(dv + β)

)
+ Hhmndx

mdxn, (B.1)

where hmn is a metric on a four-dimensional almost hyper-Kähler base manifold, β

and ω are one-forms on this base space, while F and H are functions on the base
space.

In general, the above metric only has

k = ∂

∂u
, (B.2)

as the null Killing vector, i.e., hmn , β, ω F and H can be v-dependent. However, to
compare with the Bena–Warner formalism [15], we must restrict to v-independent
solutions. For this case, the six-dimensional field strength G takes the form

F = 2G = �dH − H−1(dv + β) ∧
(
dω − �dω

2

)

+ H−1
(
du + ω + F

2
(dv + β)

)
∧
(
dβ + H−1(dv + β) ∧ dH

)
.

(B.3)

A detailed analysis of the Killing spinor equations shows that the equations of
motion then reduce to

�d�dF − 1

2
(G+)2 = 0, (B.4)

d�dH + dβ ∧ G+

2
= 0, (B.5)

dβ − �dβ = 0, (B.6)

dG+ = 0. (B.7)
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In these equations, the Hodge star is with respect to 4-dimensional base metric hμν

and self-dual two-form G+ is defined as

G+ = 1

2H
(dω + �dω + Fdβ) . (B.8)

We also note that �d�dF = −∇2F and (G+)2 = (G+)mn(G+)mn .

B.2 Bena–Warner formalism

Bena and Warner [15] showed that solutions preserving same supersymmetries as
those of three charge black holes and black ring can be written in a general form with
one forms defined on a four dimensional hyper-Kähler base space. Their formalism
is simplest and most symmetric in the M-theory form, with branes intersecting on
the six-torus with coordinates (z1, . . . , z6) as M2(12)–M2(34)–M2(56). We refer the
reader to the review [9] for further details on brane-intersection. The metric in eleven-
dimensions takes the following symmetrical form,

ds211 = ds25 + ds2T6 , (B.9)

where ds2
T6 is metric on the six-torus,

ds2T6 = (Z2Z3Z
−2
1 )

1
3 (dz21 + dz22) + (Z1Z3Z

−2
2 )

1
3 (dz23 + dz24) + (Z1Z2Z

−2
3 )

1
3 (dz25 + dz26),

(B.10)

and ds25 is the metric on five-dimensional transverse spacetime,

ds25 = −(Z1Z2Z3)
− 2

3 (dt + κ)2 + (Z1Z2Z3)
1
3 hmndx

mdxn, (B.11)

where hmn is the metric on a 4-dimensional hyper-Kähler base space.
The M-theory three-form potential A for this class of solutions can be written in

terms of three one-form potentials A(I ) on the five-dimensional spacetime,

A = A(1) ∧ dz1 ∧ dz2 + A(2) ∧ dz3 ∧ dz4 + A(3) ∧ dz5 ∧ dz6, (B.12)

which in turn take the form,

A(I ) = − (dt + κ)

ZI
+ ωI , (B.13)

where κ and ωI are one-forms on the four-dimensional base space while ZI are
functions on the base space. These functions and one-forms are determined by the
BW equations [15]:

dωI = �dωI , (B.14)
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dκ + �dκ = ZI dωI , (B.15)

∇2ZI = 1

2
|εI J K |�(dωJ ∧ dωK ), (B.16)

where the Hodge star is with respect to the four-dimensional base metric hmn .
To compare with the GMR formalism, we convert from the M-theory form to the

type IIB D1–D5–P form using dualities and dimensional reduction (later we will trun-
cate to six-dimensional minimal supergravity). Performing a dimensional reduction
along the z6-direction we can go from M-theory to type-IIA theory with the metric
of a D2(12)–D2(34)–F1(5) brane intersection. The resulting IIA metric in the string
frame is,

ds210 = − 1

Z3
√
Z1Z2

(dt + κ)2 +√Z1Z2hmndx
mdxn

+
√

Z2

Z1
(dz21 + dz22) +

√
Z1

Z2
(dz23 + dz24) +

√
Z1Z2

Z3
dz25, (B.17)

with IIA dilaton,

e2φ =
√
Z1Z2

Z3
, (B.18)

and with three-form RR field,

Cμz1z2 = A(1)
μ , (B.19)

Cμz3z4 = A(2)
μ , (B.20)

and two-form NS–NS B-field,

Bμz5 = A(3)
μ . (B.21)

Nextweneed to performT-dualities along z3, z4 and z5 directions to getD5(12345)–
D1(5)–P(5) system. We recall the T-duality rules for a duality along z-direction:

G ′
zz = 1

Gzz
, (B.22)

G ′
μz = Bμz

Gzz
, (B.23)

G ′
μν = Gμν − GμzGνz − Bμz Bνz

Gzz
, (B.24)

B ′
μz = Gμz

Gzz
, (B.25)

B ′
μν = Bμν − BμzGνz − Gμz Bνz

Gzz
, (B.26)

e2φ
′ = e2φ

Gzz
, (B.27)
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C ′(n)
μ...ναz = C (n−1)

μ...να − (n − 1)
C (n−1)

[μ...ν|zG|α]z
Gzz

, (B.28)

C ′(n)
μ...ναβ = C (n+1)

μ...ναβz + nC (n−1)
[μ...ναBβ]z + n(n − 1)

C (n−1)
[μ...ν|z B|α|zG|β]z

Gzz
. (B.29)

We perform the required dualities in two steps. Performing T-dualities along z3, z4
directions we get the following fields:

ds210 = − 1

Z3
√
Z1Z2

(dt + κ)2 +√Z1Z2hmndx
mdxn

+
√

Z2

Z1
(dz21 + dz22 + dz23 + dz24) +

√
Z1Z2

Z3
dz25, (B.30)

e2φ = Z3/2
2

Z3
√
Z1

, (B.31)

C (5)
μz1z2z3z4 = A(1)

μ , C (1)
μ = −A(2)

μ , Bμz5 = A(3)
μ . (B.32)

Now doing T-duality along z5-direction, we get our required D1–D5–P configura-
tion. The IIB dilaton reads:

e2φ = Z2

Z1
, (B.33)

and the metric takes the form,

ds210 = − 1

Z3
√
Z1Z2

(dt + κ)2 +√Z1Z2hmndx
mdxn

+ Z3√
Z1Z2

(
dz5 + A(3)

μ dxμ
)2 +

√
Z2

Z1

(
dz21 + dz22 + dz23 + dz24

)
, (B.34)

together with the associated RR-field components,

C (6) = A(1)
μ dxμ ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5

+ A(1)
μ A(3)

ν dxμ ∧ dxν ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4,

C (2) = −A(2)
μ dxμ ∧ dx5 − A(2)

μ A(3)
ν dxμ ∧ dxν . (B.35)

We can dualize the 6-form potential to get a 2-form potential. This is a tedious step.
Fortunately, we do not need to do this electromagnetic duality. Comparing metric
(B.34) to the GMR form, we obtain a complete dictionary between the GMR and the
BWvariables. Using this dictionary we can convert the GMR form of the field strength
(B.3) into the BW variables. We expect the electromagnetic duality to give the same
result.

Since GMR formalism is for minimal six-dimensional supergravity, in order to
compare the above configuration with the GMR form we must set Z1 = Z2. In that
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case, the dilaton vanishes e2φ = 1. Inserting A(3)
μ dxμ from (B.13) in metric (B.34)

we get,

ds210 = −2Z−1
1 (dt + κ)(dz5 + ω3) + Z3Z

−1
1 (dz5 + ω3)

2 + Z1hmndx
mdxn + ds2T4 ,

(B.36)
where

ds2T4 = dz21 + dz22 + dz23 + dz24, (B.37)

is the metric on the four-torus. To match with the GMR form (B.1), we identify

z5 = v, Z1 = H ,

Z3 = 1 − F
2

, ω3 = β,

κ = β + ω

2
, t = u + v

2
. (B.38)

Using the identification (B.38) in the GMR field strength (B.3), we get

G = 1

2
�dZ1 − 1

4Z1
(dz5 + ω3) ∧ [dκ − �dκ]

+ 1

2Z1

[
(dt + κ) − Z3

2
(dz5 + ω3)

]
∧ dω3

− 1

2Z2
1

(dz5 + ω3) ∧ (dt + κ) ∧ dZ1, (B.39)

which using the BW equations of motion simplifies to

2G = �dZ1 + d

[
(dz5 + ω3)] ∧

(
dt + κ

Z1
− ω1

)]
+ ω1 ∧ dω3. (B.40)

The RR field strength in ten dimensions is normalised as F = 2G, with the associated
2-form field

C = −
[(

dt + κ

Z1
− ω1

)
∧ (dz5 + ω3)

]
+ σ, (B.41)

where an explicit expression for σ cannot be obtained in general. It satisfies,

dσ = �dZ1 + ω1 ∧ dω3. (B.42)

One can easily check that the three form �dZ1+ω1∧dω3 appearing on the right hand
side of equation (B.42) is exact due to BW equations of motion for Z1.

B.3 Relation between GMR and BW

Now that we have a simple dictionary (B.38) we can easily relate BW and GMR
equations of motion. On the GMR side, we look at v-independent solutions while on
the BW side we consider solutions with Z1 = Z2 and ω1 = ω2.
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We consider BW equations and using the dictionary transform them into GMR
equations. Consider BW equation (B.15),

dκ + �dκ = 2Z1dω1 + Z3dω3. (B.43)

Rewriting this equation using dictionary (B.38), we have

2dω1 = 1

Z1
(dκ + �dκ − Z3dω3) (B.44)

= 1

2H
(dω + �dω + 2(1 − Z3)dβ) = 1

H
(dω + �dω + Fdβ) = G+,

(B.45)

where we have used the fact that dβ = dω3 is self dual, cf. (B.14). It then immediately
follows that dG+ = 0, which is one of the GMR equations, cf. (B.7). Similarly, from
the BW scalar equations (B.16) for Z1 we have,

∇2Z1 = ∇2H = −�d�dH = �(dω3 ∧ dω2) = �

(
dβ ∧ G+

2

)
, (B.46)

which implies (B.5). Similarly,

∇2Z3 = −1

2
∇2F = �(dω1 ∧ dω2) = �

(G+ ∧ G+

4

)
, (B.47)

which implies (B.4).
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