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Abstract
By applying a recent method—based on a tetrad formalism in General Relativity
and the orthogonal splitting of the Riemann tensor—to the simple spherical static
case, we found that the only static solution with homogeneous energy density is the
Schwarzschild solution and that there are no spherically symmetric dynamic solu-
tions consistent with the homogeneous energy density assumption. Finally, a circular
equivalence is shown among the most frequent conditions considered in the spheri-
cal symmetric case: homogeneous density, isotropy in pressures, conformally flatness
and shear-free conditions. We demonstrate that, due to the regularity conditions at the
center of the matter distribution, the imposition of two conditions necessarily leads to
the static case.

Keywords Relativistic fluids · Spherical and non-spherical sources · Interior
solutions

1 Introduction

The case of a uniform density spherical matter configuration is all but the standard
entry point in all textbooks of General Relativity and Relativistic Astrophysics [1–
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4], presenting the most “simple” interior Schwarzschild solution. Despite its physical
inconsistency—it models a fluid with an infinite sound speed—its simplicity is of
a pedagogical value in illustrating the methods used in solving physical systems in
different (static & dynamic) interesting scenarios [5–13].

In a recent paper [14], by using a tetrad formalism in General Relativity and the
orthogonal splitting of the Riemann tensor, we proposed a full set of equations equiva-
lent to theEinstein systemwhich governs the evolution of self-gravitating systems. The
formalism was applied to the spherical case to show, through a very simple static case,
that it is possible to obtain relevant information from these self-gravitating systems.

The study of the geometric and kinematic properties of timelike congruences is
fundamental in the analysis of the evolution of self-gravitating fluids and there it is
common the use of a framework based on the known 1+3 formalism [15–21]. In this
formalism, any tensor quantity can be split into components along a tangent vector to
a timelike congruence, and in its corresponding components orthogonal to it.

The method we used consists of constructing two sets of independent equations,
which contain the same information as the Einstein equations, expressed in terms of
scalar functions.

As a starting point we choose an orthogonal unitary tetrad, and the first set of evo-
lution equations is obtained from the projection of the Riemann tensor along the unit
tetrad. This is equivalent to the use of Ricci identities, which will allow us to define the
physical variables and the scalars of the Weyl tensor. The second set of six constrain
equations is obtained directly from the Bianchi identities. For the spherical case, solv-
ing this system of first order equations will provide us with the necessary information
to know the equation of state of a gravitational source with spherical symmetry.

Using this method we shall obtain three results involving isotropic and anisotropic
solutions to the Einstein Equations with homogeneous energy density. First we show
that the only static solution with homogeneous energy density is the Schwarzschild
isotropic solution. Secondly, it is shown there are no spherically symmetric dynamic
solution consistent with homogeneous energy density and, for this case the shear-
free assumption is equivalent to the isotropic pressure condition. Finally, a circular
equivalence is shown among the most frequent conditions considered for the spherical
symmetric case: homogeneous density, isotropy inpressures, conformallyflatness [22–
35] and shear-free conditions [36–44]. It is shown that due to the regularity conditions
at the center of the matter distribution, the imposition of any two of them necessarily
leads to the static case.

The paper is organized as follows: In Sect. 2 we present the general strategy and
the formalism in obtaining all relevant equations. Section 3 develops the analysis for
the spherical case and also considers the particular spherical-static case. Finally, in
Sect. 4 we present the final conclusions.

2 The strategy and general formalism

As we have mentioned above, the strategy we shall follow is to compile two indepen-
dent sets of equations, expressed in terms of scalar functions, which contain the same
information as the Einstein system.
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Let us choose an orthogonal unitary tetrad:

e(0)
α = Vα, e(1)

α = Kα, e(2)
α = Lα and e(3)

α = Sα. (1)

As usual,η(a)(b) = gαβeα
(a)e

β

(b), witha = 0, 1, 2, 3, i.e. latin indices label different
vectors of the tetrad. Thus, the tetrad satisfies the standard relations:

VαV
α = −KαK

α = −LαL
α = −SαS

α = −1 ,

VαK
α = VαL

α = VαS
α = KαL

α = KαS
α = SαL

α = 0 .

With the above tetrad (1) we shall also define the corresponding directional derivatives
operators

f • = V α∂α f ; f † = K α∂α f and f ∗ = Lα∂α f . (2)

The first set can be considered purely geometrical and emerges from the projection
of the Riemann tensor along the tetrad [45], i.e.

2Vα ;[β;γ ] = Rδαβγ V
δ , 2Kα ;[β;γ ] = Rδαβγ K

δ ,

2Lα ;[β;γ ] = Rδαβγ L
δ and 2Sα ;[β;γ ] = Rδαβγ S

δ ; (3)

where e(a)
α ;βγ

are the second covariant derivatives of each tetrad (6) vector indicated
with a = 0, 1, 2, 3.

The second set emerges from the Bianchi identities:

Rαβ[γ δ ;μ] = Rαβγ δ ;μ + Rαβμγ ;δ + Rαβδμ ;γ = 0 (4)

3 Spherical case

In this section we shall present the relevant equations, for the spherically symmetric,
locally anisotropic, dissipative, collapsing matter configuration, written in terms of
the kinematical variables: the four acceleration aα , the expansion scalar �, the shear
tensor σ and some scalars functions (the structure scalars related to the splitting of the
Riemann Tensor).

3.1 The tetrad, the source and kinematical variables

To proceed with the above objective we shall restrict to a spherically symmetric line
element given by

ds2 = −A2dt2 + B2dr2 + R2(dθ2 + sin2(θ)dφ2) , (5)

where the coordinates are: x0 = t , x1 = r , x2 = θ , and x3 = φ; with A(t, r), B(t, r)
and R(t, r) functions of their arguments.

123



146 Page 4 of 13 J. Ospino et al.

For this case the tetrad can written as:

Vα = (−A, 0, 0, 0) , Kα = (0, B, 0, 0) , Lα = (0, 0, R, 0) ,

and Sα = (0, 0, 0, R sin(θ)) . (6)

The covariant derivatives of the orthonormal tetrad are:

Vα;β = −a1KαVβ + σ1KαKβ + σ2(LαLβ + SαSβ),

Kα;β = −a1VαVβ + σ1VαKβ + J1(LαLβ + SαSβ),

Lα;β = σ2VαLβ − J1KαLβ + J2SαSβ and

Sα;β = σ2VαSβ − J1KαSβ − J2LαSβ . (7)

where J1, J2, σ1, σ2 and a1 are expressed in terms of the metric functions and their
derivatives as:

J1 = 1

B

R′

R
, J2 = 1

R
cot(θ) , σ1 = 1

A

Ḃ

B
, σ2 = 1

A

Ṙ

R

and a1 = 1

B

A′

A
, (8)

with primes and dots representing radial and time derivatives, respectively.
As we mentioned before we shall assume our source as a bounded, spherically

symmetric, locally anisotropic, dissipative, collapsing matter configuration, described
by a general energy momentum tensor, written in the “canonical” form, as:

Tαβ = (ρ + P)VαVβ + Pgαβ + αβ + FαVβ + FβVα. (9)

It is immediately seen that the physical variables can be defined—in the Eckart
frame where fluid elements are at rest—as:

ρ = TαβV
αV β, Fα = −ρVα − TαβV

β, P = 1

3
hαβTαβ

and αβ = hμ
αh

ν
β

(
Tμν − Phμν

)
, (10)

with hμν = gμν + VνVμ.
As can be seen from the condition FμVμ = 0, and the symmetry of the problem,

Einstein Equations imply T03 = 0, thus:

Fμ = FKμ ⇔ Fμ =
(
0,

F
B

, 0, 0

)
. (11)

Clearly ρ is the energy density (the eigenvalue of Tαβ for eigenvector V α), Fα repre-
sents the energy flux four vector; P corresponds to the isotropic pressure, and αβ is
the anisotropic tensor, which can be expressed as
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αβ = 1

(
KαKβ − hαβ

3

)
, (12)

with
1 = (

2K αK β + LαLβ
)
Tαβ. (13)

Finally, we shall express the kinematical variables (the four acceleration, the expansion
scalar and the shear tensor) for a self-gravitating fluid as:

aα = V βVα;β = aKα =
(
0,

A′

A
, 0, 0

)
, (14)

� = V α
;α = 1

A

(
Ḃ

B
+ 2Ṙ

R

)
, (15)

σ = 1

A

(
Ḃ

B
− Ṙ

R

)
. (16)

3.2 The orthogonal splitting of the Riemann tensor and structure scalars

In this section we shall introduce a set of scalar functions—the structure scalars—
obtained from the orthogonal splitting of the Riemann tensor (see [46–48]) which has
proven to be very useful in expressing the Einstein Equations.

Following [46], we can express the splitting of the Riemann tensor as:

Rαβμν = 2VμV[αYβ] ν + 2hα[νXμ]β + 2VνV[βYα]μ
+hβν(X0 hαμ − Xαμ) + hβμ(Xαν − X0 hαν)

+2V[ν Zγ
μ]εαβγ + 2V[β Zγ

α] εμνγ , (17)

with εμνγ = ηφμνγ V φ , and ηφμνγ the Levi-Civita 4-tensor. The corresponding Ricci
contraction for the above Riemann tensor can also be written as:

Rαμ = Y0 VαVμ − Xαμ − Yαμ + X0 hαμ + ZνβεμνβVα

+VμZ
νβεανβ ; (18)

where the quantities: Yαβ , Xαβ and Zαβ can be expressed as

Yαβ = 1

3
Y0 hαβ + Y1

[
KαKβ − 1

3
hαβ

]
, (19)

Xαβ = 1

3
X0 hαβ + X1

[
KαKβ − 1

3
hαβ

]
(20)

and

Zαβ = Z (LαSβ − Lβ Sα) , (21)
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with

Y0 = 4π(ρ + 3P) , Y1 = E1 − 4π1 , X0 = 8πρ ,

X1 = −(E1 + 4π1) and Z = 4πF , (22)

and the electric part of the Weyl tensor is written as

Eαβ = CανβδV
νV δ = E1

[
KαKβ − 1

3
hαβ

]
. (23)

3.3 Projections of Riemann tensor

From the above system (3) (by using the covariant derivative of equations (7) and the
projections of the orthogonal splitting of the Riemann tensor) we can obtain the first
set of independent equations, for the spherical case, in terms of J1, J2, σ1, σ2, and a1,
(defined in (8)) and their directional derivatives, i.e.

σ •
1 − a†1 − a21 + σ 2

1 = −1

3
(Y0 + 2Y1) , (24)

σ •
2 + σ 2

2 − a1 J1 = 1

3
(Y1 − Y0) , (25)

σ
†
2 + J1(σ2 − σ1) = −Z , (26)

J •
1 + J1σ2 − a1σ2 = −Z , (27)

J †1 + J 21 − σ1σ2 = 1

3
(X1 − X0) , (28)

J •
2 + J2σ2 = 0 , (29)

J †2 + J1 J2 = 0 and (30)

J 21 − 1

R2 − σ 2
2 = −1

3
(X0 + 2X1) . (31)

3.4 Equations from Bianchi identities

The second set of equations for the spherical case, emerge from the independent
Bianchi identities (4), and can be written as:

a1[−X0 + X1 − Y0 + Y1] + 3J1Y1 + 3Z•

+6Zσ1 + 3Zσ2 − Y †
0 + Y †

1 = 0 , (32)

X•
0 − X•

1 − 6a1Z − 3J1Z + [Y0 − Y1 − X1] σ1
+ [Y0 + 2Y1 − X1] σ2 + X0[σ1 + σ2] − 3Z† = 0 , (33)

X•
0 + 2X•

1 + 2X0σ2 − 6J1Z

+[4X1 + 2Y0 − 2Y1]σ2 = 0, (34)

X†
0 + 2X†

1 + 6J1X1 + 6Zσ2 = 0 . (35)
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3.5 The static case

In the line element (5) we can assume, without any loss of generality, R = r and
integrate (25) to obtain:

A = C1e
∫
B2r(Y0−Y1)dr . (36)

Next, from (27) it follows at once that:

B2 = 1

1 − r2
3 (X0 + 2X1)

, (37)

where C1 is a constant of integration. These metric elements (36) and (37) expressed
in terms of the structure scalars X1 and Y0 −Y1, describe any static anisotropic sphere
(see reference [49]).

3.6 Models with homogeneous energy density

It is easy to check that the Schwarzschid interior solution corresponds to the case
X1 = Y1 = 0, and it follows clearly from (22) that E1 = 1 = 0.

Now, let us show that if we have the homogeneous energy density premise, the
only possible outcome is the isotropic Schwarzschild solution. Thus, let us consider
models with homogeneous energy density

X0 = 8πρ = cte (38)

and study the consequences derived from this assumption, under certain physically
reasonable circumstances. First, taking into account (38) and integrating Eq. (35), we
obtain

X1 = C

r3
. (39)

Next consider the regularity condition at r = 0 via (39), which implies C = 0, then:

E1 + 4π1 = 0. (40)

Also from Eq. (32), taking into account (25) and (37) we get

P ′
r = −4πr

(
P2
r + 4

3ρPr + 1
3ρ

2
)

1 − 8π
3 ρr2

− 2

r
1 . (41)

Clearly, if the anisotropic term (1) is zero at a point other than the origin, it will
be zero at all points [50]. If 1(r) does not vanish it must be positive or negative
and, from Eq. (40), the same thing will be true for Weyl’s scalar E1. But, given that
E1(0) = 0, by the conditions of regularity at the origin, and E1(R�) = Pt > 0, by the
boundary conditions, we find that E1(r) > 0. On the other hand, if 1 = −� < 0,
from (41) we find that there is a rc < r� given by
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r2c = 3�

2π(3P2
r + 4ρPr + ρ2 + 4ρ�)

, (42)

for which P ′
r = 0, showing that the minimum radial pressure is reached in a rc smaller

than r� . Thus, we conclude that 1(r) and E1(r) must vanish, i.e.

1(r) > 0 and E1(r) > 0 ⇒ 1(r) = E1(r) = 0. (43)

Therefore,we can see that the only static solutionwith homogeneous energydensity,
under the above considerations, is necessarily the Schwarzschild solution. More over,
if we require that the circumference 2πR of an infinitesimal sphere about the origin
be just 2π times its proper radius Bdr , that is [51]

B(t, r) = R′(t, r) when r → 0 (44)

Now, replacing (44) into (31), in the static case, we get

X0(0) = 0!!! (45)

From (45) we conclude that the models with homogeneous energy density do not
satisfy the Euclidean condition (44).

3.7 The non-static case

3.7.1 Regularity on the origin

To guarantee a good asymptotic behavior of the metric (5), in the vicinity of the origin,
we must demand that the functions A(r , t), B(r , t) and R(r , t), have the following
analytical form, from the standard Taylor expansion:

A(r , t) = α0 + α1(t)r + α2(t)r
2 + · · ·

B(r , t) = 1 + β1(t)r + β2(t)r
2 + · · ·

R(r , t) = r + γ1(t)r
2 + γ2(t)r

3 + · · · (46)

3.7.2 The case X0 = X0(t) and Z = 0

In this case, we obtain from Eq. (35) that X1 = 0 and Eqs. (32)–(34) become:

a1[Y1 − X0 − Y0] + 3J1Y1 = [Y0 − Y1]† , (47)

X•
0 + [X0 + Y0 − Y1]σ1 + [X0 + Y0 + 2Y1]σ2 = 0 , (48)

X•
0 + 2[X0 + Y0 − Y1]σ2 = 0 . (49)

Notice that if X0 =cte.,then from the Eq. (49), it follows that σ2 = 0, and we get the
static case (iii) analyzed in [14].
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Next, combining Eqs. (48) and (49) we find that

[Y0 + X0 − Y1][σ1 − σ2] + 3Y1σ2 = 0, (50)

or
[ρ + Pr ][σ1 − σ2] = 21σ2, (51)

where from equation (22) and X1 = 0. From the Eq. (51), it follows that

σ1 − σ2 = 0 ⇔ 1 = 0. (52)

In other words, the shear-free and isotropic pressure conditions are equivalent, for
non-dissipative fluids with homogeneous energy density.

Evaluating Eq. (49) at r = 0 and taking into account (46) we obtain

σ1 = σ2 = 0 ⇒ X0 = cte. , (53)

therefore it follows that there are no spherically symmetric dynamic solutions with
homogeneous energy density.

3.8 Circular conditions

In this section we shall prove the equivalence of the following circular conditions
taken two by two:

• Homogeneous energy density, X0 = X0(t) 1©
• Isotropy in the pressures, 1 = 0 2©
• Conformally flat, E = 0 3©
• Shear-free condition, σ1 = σ2 4©
1© and 2© ↔ 3© and 4©. . If we assume 1© and 2©, then from (35) we find that
X1 = 0 ⇒ Y1 = 0 ⇒ 3©, and by using Eq. (50) we get σ1 = σ2,⇒ 4©

On the other hand, if we assume 3© and 4©, with the result obtained in [14],

σ1 = σ2 ⇒ a1 = 0, (54)

and from the subtraction of (24) from (25), we find Y1 = X1 = 0 ⇒ 2©, and from
(50) we obtain X0 = X0(t) ⇒ 1©.
1© and 3© ↔ 2© and 4©. Now if we assume 1© and 3©, we find from (35) that
X1 = 0 ⇒ Y1 = 0 ⇒ 2©. Again, by using Eq. (50) we get σ1 = σ2,⇒ 4©. On the
other hand, if we assume 2© and 4©, using (54) and again, substracting (24) from (25),
we find Y1 = X1 = 0 ⇒ 3©, now with (50), we obtain X0 = X0(t) ⇒ 1©.
1© and 4© ↔ 2© and 3©. If we assume 1© and 4©, then from (35) and (50) we obtain
X1 = Y1 = 0 ⇒ 2© and 3©. On the other hand, if we assume 2© and 3©,then

X1 = Y1 = 0, (55)
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by substituting (55) into (35) we obtain

X0 = X0(t). ⇒ 1© (56)

Next, from (56) and by replacing (55) in (50) we find σ1 = σ2 ⇒ 4©. Notice that if we
also take into account (46), in all cases previously considered, we only get the static
case.

4 Final remarks

We have found that, despite its simplicity and pedagogical interest, the uniform den-
sity spherical matter configuration is a very restricted and unphysical solution to the
Einstein Equations.

As we have stated above in this short paper we have presented several results
concerning the homogeneous energy density assumption for isotropic and anisotropic
solutions to theEinstein Equations. First, we have shown that if the regularity condition
at the center of the distribution and some other physical reasonable boundary condition
at the surface of the distribution are to be satisfied, then the only static solution for
a spherically symmetric matter distribution with homogeneous energy density is the
Schwarzschild isotropic solution. This rules out any anisotropic generalization for
ρ = const found in the literature [8,11] and complements the proof for the classic
problem that a static perfect fluid star should be spherically symmetric for physically
reasonable isotropic equation of state [52–55].More over, we have shown that even for
the static homogeneous Schwarschild solution the center of the matter distribution has
to be excluded because it does not satisfy the Euclidean condition. Clearly, is possible
to obtain viable solutions if this condition is relaxed assuming a core-envelope model
(see [56] and references therein).

Secondly, it is shown there are no spherically symmetric dynamic solution consis-
tent with homogeneous energy density and, for this case the shear-free assumption is
equivalent to the isotropic pressure condition.

Finally, we have considered the most frequent conditions assumed in a spherical
symmetric case: homogeneous density, isotropy in pressures, conformally flatness
and shear-free conditions (see [5–13,49,57–60] and reference therein). It is found that
the two of these assumptions are necessarily equivalent to the other remainder two.
Additionally, it is demonstrated that, due to the regularity conditions at the center of
the matter distribution, the imposition of two of them necessarily leads to the static
case.

Again, we have shown that the most simple and “pedagogic” spherical matter
solution—ρ = const—is very restricted and unphysical, but there has been much
recent work with variable energy densities, satisfying all physical criteria, that seems
to correspond to more realistic matter configurations [61,62].
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