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Abstract
Chargeless massive scalar fields are studied in the spacetime of Born–Infeld dilaton
black holes (BIDBHs).We first separate themassive covariant Klein–Gordon equation
into radial and angular parts and obtain the exact solution of the radial equation in
terms of the confluent Heun functions. Using the obtained radial solution, we show
how one gets the exact quasinormal modes for some particular cases.We also solve the
Klein–Gordon equation solution in the spacetime of a BIDBHs with a cosmic string
in which we point out the effect of the conical deficit on the BIDBHs. The analytical
solutions of the radial and angular parts are obtained in terms of the confluent Heun
functions. Finally, we study the quantization of the BIDBH. While doing this, we also
discuss the Hawking radiation in terms of the effective temperature.

Keywords Quasinormal modes · Black hole · Hawking radiation · Born–Infeld ·
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1 Introduction

The existence of gravitational waves (GWs), which was confirmed when LIGO
detected GW150914 (stellar-mass binary black holes) in September 2015 (and
announced in February 2016) heralded new era of physics and astronomy [1]. In
this context, QNMs [2,3] of a black hole are related with the ringdown phase of GWs.
Namely, a perturbed black hole settles down through the characteristic damped oscil-
lations i.e., by the QNMs [4–8]. Since the discovery of GWs, studies on the QNMs
have gained more attention [9–28]. Moreover, in the gauge/gravity dualities theories,
there is a relation between the QNMs and the poles of a propagator in the dual field
theory so that physicists use it as a tool to work on strong coupled gauge theories (or
holography) [29–35]. The frequencies of QNMs are obtained by applying perturbation
to the spacetime of the black hole with appropriate boundary conditions. One of the
most difficulties in studying QNMs is that they admit an eigenvalue problem, which
is not self-adjoint: the system is non-conservative and therefore energy is lost both at
spatial infinity and at the black hole horizon. Thus, unlike the ordinary normal modes,
QNMs are not a basis (see [36] and references therein). Moreover, QNMs can be also
used for testing the no-hair theorem, which states that BHs have only mass, angu-
lar momentum and charge (neutral to quantum effects) and black hole quantization
[18,37]. Namely, studying the QNMs can give us new hints about physics beyond the
Einstein’s theory of general relativity [38].

On the other hand, the complete theory of quantum gravity is still an open problem.
However, black holes can be used as a test arena for the quantum gravity. From this
point of view, Hawking [39–49] made a pioneering work by showing how the strong
gravitational field around a black hole can affect the production of virtual particles
(pairs of particles and anti-particles: existing all the time in apparently vacuum accord-
ing to quantum field theory). According to the theory of Hawking, virtual particles
are likely to be created outside the event horizon of a black hole. Thus, it is possible
that the positive energy (mass) member of the pair can escape from the black hole—
observed as thermal radiation—while the negative particle (with its negative energy
or mass) can fall into the black hole, which gives rise the black hole to lose its mass.
This phenomenon is known as the Hawking radiation and it was perhaps one of the
first ever examples of the quantum gravity theory. Since then, there is a continuously
growing interest to the thermodynamics of black holes, Hawking radiation and QNMs
[50–58].

Born and Infeld proposed the non-linear electromagnetic field theory to solve the
problem of divergences in theMaxwell theory [59]. After the studies on the superstring
theory,which admits theD-branes that are derived from theBorn–Infeld action, various
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researches are done by using the Einsten-dilaton–Born–Infeld theory to obtain non-
singular charged black hole solutions. From the high energy levels to the the low
energy limit, the string theory reduces to the Einstein gravity non-minimally coupled
scalar dilaton field [60–64]. The main motivation for studying the BIDBHs is that
they are a promising candidate for the quantum gravity. In the light of all mentioned
above, in this paper, we shall use the black hole solution in the Born–Infeld-dilaton
with a Liouville-type potential. This kind of Liouville-type potential appears when
one applies a conformal transformation to the low-energy limit of the string tree level
effective action for the massless boson sector and in sequel write the action in the
Einstein frame [61–64]. Furthermore, if the dilaton filed is removed from the action,
the action of Einstein–Born–Infeld with � is obtained. Use of the dilaton field causes
the changes on the asymptotic behavior of the spacetime and also leads to curvature
singularities at finite radii. Therefore, such black holes can be used in the studies on
AdS/CFT correspondence, where the holography is occurred near the horizon [29].

Cosmic strings are one dimensional topological defects extensively studied in the
past [65–70]. It is widely believed that such topological defects may have formed
during a symmetry breaking process which is usually associated with the phase tran-
sition in the early universe. There are, unfortunately, no experimental measurements
supporting their existence until today. However the possible detection of these exotic
objects in the future will have a great impact in current understanding on the physics
of the early universe. Our main aim in this paper is to explore an analytical solution of
the QNMs and Hawking radiation in spacetime of BIDBHs [62] including the effect
of the cosmic string.

The remainder of this paper is arranged as follows. In Sect. 2, we briefly review the
BIDBH spacetime and its thermodynamics. In Sect. 3, we study the Klein–Gordon
equation (KGE) of themassive scalar particles propagating in the geometry of BIDBH.
Section 4 is devoted to the exact solution of the radial equation. We also derive the
QNMsofBIDBH. InSect. 5,we introduce a thin cosmic string in theBIDBHspacetime
and solve the KGE for a massive scalar field for that geometry. Then, we obtain the
effect of the cosmic strings on the QNMs of BIDBH spacetime. In Sect. 6, we calculate
the effective temperature and reveal the effects of the cosmic strings on the quantization
of the BIDBH spacetime. In Sect. 7, we summarize our results.

2 Spacetime of BIDBH

In this section, we shall review and give the insights of the BIDBH spacetime [62].
The action of the Einstein-dilaton–Born–Infeld theory, which comprises the dilaton
field φ and the Born–Infeld parameter γ̂ coupled to the Maxwell field is given by

S =
∫

d4x
√−g

[

R − 2(∇φ)2 − V (φ) + 4γ̂ e−2τφ

(

1 −
√

1 + FμνFμν

2γ̂

)]

(1)

where V (φ) denotes potential, τ is the dilaton coupling constant, R stands for the
Ricci scalar, and Fμν is the Maxwell tensor. Dilaton has the following solution [62]
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φ(r) = τ

1 + τ 2
ln(b1r − b2) (2)

where b1 and b2 are integration constants. Throughout the paper, we set, without loss
of generality, b1 = 1 and b2 = 0. The dilaton potential can be considered either as
V (φ) = 0 or as a Liouville-type potential V (φ) = 2�e−2τφ [� is the mass scale of
V (φ)]. For both potentials, the metric function h(r) is found to be linear in r [63,64].
In other words, h(r) is irrespective of the dilaton potential and it admits the following
solution:

h(r) = r

L
− b0, (3)

where b0 is a constant. Length scale L is given by

L−1 = 2(1 − 2ρ − �), (4)

where the constant ρ is given by

ρ = −γ̂ +
√

γ̂ (Q2 + γ̂ ), (5)

by which Q is the background charge:

Q2 = 1 +√

1 + 16γ̂ 2

8γ̂
. (6)

Finally, as it can be seen from [62–64], the line-element of the BIDBH spacetime
takes the following form

ds2 = −h(r)dt2 + h(r)−1dr2 + rd�2. (7)

Setting rH = Lb0, metric function 3 recasts in

h(r) = r − rH
L

. (8)

Thus, one can easily interpret rH as the event horizon of the BIDBH. On the other
hand, due to the non-asymptotically flat character of the metric 7, one can employ the
Brown–York formalism [71] to compute the quasi-local mass, MQL (the interested
reader is referred to [72,73] and references therein for MQL ) of the black hole, which
results in:

rH = 4LMQL . (9)
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2.1 Thermodynamics of BIDBH

Considering the following 4-velocity

u = ut∂t , (10)

one can easily verify that the normalization condition is satisfied by

1 = uμuμ, (11)

with

ut = 1√
gtt

. (12)

Since the metric components are functions of r and θ , particle acceleration aμ
p is

obtained from [74]

aμ = −gμυ∂υ ln ut . (13)

Surface gravity (κ) is defined by [74] as follows

κ = lim
r→rh

√

aμaμ

ut
, (14)

which yields

κ = 1

2

dh (r)

dr

∣

∣

∣

∣

r=rh

= 1

2L
. (15)

Thus, we obtain the Hawking temperature as

TH = κ

2π
= 1

4πL
. (16)

It can be deduced from the above result that Hawking radiation of BIDBH is nothing
but a isothermal process. Surface area of the BIDBH can be computed as

ABH =
∫ 2π

0
dϕ

∫ π

0

√−g dθ = 4πrh . (17)

by which
√−g is considered for the hypersurface of BIDBH. Hence, the entropy of

BIDBH becomes [37,75,76]

SBH = ABH

4
= πrh . (18)
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The physical quantities given in Eqs. (9), (17), and (18) satisfy the first law of ther-
modynamics:

dMQL = THdSBH . (19)

3 QNMs of BIDBH spacetime

In this section, we shall study the wave equation of the massive scalar particles propa-
gating in the geometry of BIDBH. To this end, we first consider the KGE for a massive
scalar particle [77]

1√−g
∂α

(√−ggαν∂ν�
)− m2

b� = 0, (20)

where mb is the mass of the boson having scalar field �. Owing to the spherical
symmetry and time independence of the spacetime, the scalar field can be written as

� = �(r, t) = P(r)A(θ)eimϕe−iωt , (21)

where ω is the frequency and m denotes the azimuthal quantum number. Thus, KGE
(20) takes the following form in the BIDBH geometry

− ω2r

h (r)
− cot (θ)

A (θ)

d A (θ)

dθ
− 1

A (θ)

d2A (θ)

dθ2
+ m2

sin2 (θ)
+ m2

br

−
h (r)

[

dP(r)
dr + r d2P(r)

dr2

]

+ r
(

dh(r)
dr

)

dP(r)
dr

P (r)
= 0. (22)

Thus, if one uses an eigenvalue λ, we can separate Eq. (22) and get an angular
equation:

− 1

A (θ)

d2A (θ)

dθ2
− cot (θ)

A (θ)

d A (θ)

dθ
+ m2

sin2 (θ)
+ λ = 0, (23)

and a radial equation:

m2
br − ω2r

h (r)
−

h (r)
[

dP(r)
dr + r d2P(r)

dr2

]

+ r
(

dh(r)
dr

)

dP(r)
dr

P (r)
− λ = 0. (24)

As it is well-known, we obtain Legendre polynomials [78,79] for the angular equa-
tion (23) with λ = −l (l + 1) in which l denotes orbital or azimuthal quantum number.
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3.1 Exact solution of the radial equation and QNMs

Changing the independent variable from r to y

r = rh (1 − y) , (25)

we transform Eq. (24) into

y (1 − y)
d2P (y)

dy2
+ (1 − 2 y)

dP (y)

dy

+
[

L2ω2
(

−1 + 1

y

)

+ m2
bLrh (1 − y) + l (l + 1) L

]

P (y) = 0. (26)

We also introduce a new function U (y):

P (y) = yiω LU (y) , (27)

and thus Eq. (26) becomes

y (1 − y)
d2U (y)

dy2
+ [1 − 2 y + 2 iω L (1 − y)]

dU (y)

dy

+
[

−iω L + m2
bLrh (1 − y) + l (l + 1) L

]

U (y) = 0, (28)

which is the confluent Heun equation [80,81] (and see for example [82–88] for its
applications). Its generic form is given by

d2U (y)

dy2
+
(

ã + 1 +˜b
y

− 1 + c̃

1 − y

)

dU (y)

dy
+
(

m̃

y
− ñ

1 − y

)

U (y) = 0. (29)

Comparing Eq. (28) with Eq. (29), we get

ã = c̃ = 0, ˜b = 2iω L, (30)

m̃ = 1

2
(̃a −˜b − c̃ + ã˜b −˜bc̃) − ẽ = L

[

l (l + 1) + m2
brh
]

− iω L, (31)

ñ = 1

2
(̃a +˜b + c̃ + ãc̃ +˜bc̃) + ˜d + ẽ = L [iω − l (l + 1)] . (32)

Thus, we have

ẽ = −L
[

l (l + 1) + m2
brh
]

, ˜d = m2
bLrh, (33)

The solution of Eq. (29) is given by [80,81]

U (y) = A1HeunC(̃a,˜b, c̃,˜d, ẽ; y) + A2y
−˜bHeunC(̃a,−˜b, c̃,˜d, ẽ; y), (34)
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where A1, A2 are the constants. Thus, the general exact solution of the radial equation
(26), in the entire range −∞ < y ≤ 0, is given by

P(y) = A1y
iω LHeunC(̃a,˜b, c̃,˜d, ẽ; y) + A2y

−iω LHeunC(̃a,−˜b, c̃,˜d, ẽ; y).
(35)

For matching the near horizon and asymptotic regions, we are interested in the
large r behavior (y → −∞) of the solution (35). For this purpose, one needs such a
connection formula:

HeunC
(

ã,˜b, c̃,˜d, ẽ; y) → Gamma function multiplier × HeunC(a, b, c, d, e; y−1),

(36)

thus the normalization condition [80]: HeunC(̃a,˜b, c̃,˜d, ẽ; y−1 = 0) = 1 is going
to be satisfied while y → ∞. The parameters a, b, c, d, e and the parameters of
“Gamma function multiplier” seen in the above equation have to be related with
ã,˜b, c̃,˜d, ẽ according to the transformation rules of the special functions [78]. Thus,
the asymptotic solution of the radial equation (35) would be obtained. In sequel, we
should impose the second boundary condition (pure outgoing QNMs survive at spatial
infinity) and compute the QNMs, analytically. Unfortunately, the absence of Eq. (36)
like transformation in the literature does not allow us to find analytical forms of the
ingoing and outgoing waves at spatial infinity. Namely, the connection formula (36)
of the confluent Heun functions remained intact [80,81].

From Eq. (A12), the confluent Heun functions can be reduced to the Gauss hyper-
geometric functions:

HeunC(0,±˜b, 0,˜d, ẽ; y) = (1 − y)−X± F

(

X±, X±; 1 ±˜b; y

y − 1

)

, (37)

if ˜d = 0 and 1 ±˜b �= 0 for y �= 1. In Eq. (37), X± are given by

X± = 1 ±˜b +
√

˜b2 − 4̃e + 1

2
,

= ±iω L + p̂, (38)

in which

p̂ = 1

2
+ iω�, (39)

where

� =
√

L2 − l (l + 1) L + 1
4

ω2 . (40)
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The condition of ˜d = 0 corresponds to the case of massless bosons (mb = 0).
Therefore, the radial solution (35) for themassless scalar fields in theBIDBHgeometry
becomes

P(y) = A1y
iω L (1 − y)−X+ F

(

X+, X+; 1+˜b; y

y − 1

)

+ A2y
−iω L (1 − y)−X− F

(

X−, X−; 1−˜b; y

y − 1

)

, (41)

Furthermore, if we change the independent variable from y to a new variable z via
the following transformation

z = y

y − 1
=r − rh

r
, (42)

the generic massless radial solution to Eq. (26) reads

P(z) = (1 − z) p̂
[

A1z
iω L (1 − z) p̂ F(X+, X+; 1+˜b; z) + A2z

−iω L F(X−, X−; 1−˜b; z)
]

.

(43)

Tortoise coordinate of the BIDBH is given by

r∗ =
∫

dr

h (r)
= L ln (r − rh)

= L
∫

dy

y
= L ln (y) , (44)

It is worth noting that the range rh < r < ∞ corresponds to −∞ < r∗ < ∞, since
r∗ → −∞ as r → rh . For this reason, r∗ is known as a tortoise coordinate: as we
approach the horizon, r changes more and more slowly with r∗ since dr

dr∗ → 0. On
the other hand, from Eq. (44) we have

y = e
r∗
L → z = e

r∗
L

e
r∗
L − 1

. (45)

Near the event horizon [r → rh ; r∗ → −∞; y ∼= z → 0], the hypergeometric
functions approximate to one. Therefore, the radial solution reduces to

PNH (z) ∼ A1z
iω L + A2z

−iω L (46)

and thus we have the near horizon form of the scalar field ϕ as follows

� ∼ A1e
−iω(t−r∗) + A2e

−iω(t+r∗). (47)
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It is obvious from Eq. (47) that first term
(

A1e−iω(t−r∗)) represents the outgoing
wave, the second term

(

A2e−iω(t+r∗)) corresponds to the ingoing wave. For having the
QNMs, we impose one of the boundary conditions that only ingoing waves survive at
the event horizon. To satisfy this condition, we simply set A1 = 0. Namely, the radial
solution admitting the QNM is given by

P(z) = A2z
−iω L (1 − z) p̂ F(

â
︷︸︸︷

X− ,

̂b
︷︸︸︷

X− ;
ĉ
︷︸︸︷

1−˜b; z). (48)

Performing the connection formula for z → 1− z of the hypergeometric functions
[78]:

P (z) = A2z
−iω L(1 − z)

p̂ �(̂c)�(̂c − â −̂b)
�(̂c − â)�(̂c −̂b) F (̂a,̂b; 1 + â +̂b − ĉ; 1 − z)

+ A2z
−iω L(1 − z) p̂−â−̂b+ĉ �(̂c)�(̂a +̂b − ĉ)

�(̂a)�(̂b)
F(c − â, ĉ −̂b; 1

+ ĉ − â −̂b; 1 − z). (49)

in which

p̂ − â −̂b + ĉ = 1 − p̂ = 1

2
− iω�. (50)

Therefore, the asymptotic form (r → ∞; r∗ → ∞; z → 1) of the radial solution
(49 ) is given by

P (z) ∼ A2
√
1 − z

[

(1 − z)iω� �(̂c)�(̂c − â −̂b)
�(̂c − â)�(̂c −̂b) + (1 − z)−iω� �(̂c)�(̂a +̂b − ĉ)

�(̂a)�(̂b)

]

.

(51)

Correspondingly, the near spatial infinity form of the scalar field becomes

� ∼ A2
√
1 − z

⎡

⎢

⎢

⎢

⎣

e−iω(t−�) �(̂c)�(̂c − â −̂b)
�(̂c − â)�(̂c −̂b)

︸ ︷︷ ︸

Ingoing Wave

+ e −iω(t+�) �(̂c)�(̂a +̂b − ĉ)

�(̂a)�(̂b)
︸ ︷︷ ︸

Outgoing Wave

⎤

⎥

⎥

⎥

⎦

.

(52)

It isworth noting that in order thewaves to be ingoing and outgoing as shown above,we
impose a condition, which is named as the wave type identifier condition by [89–91]

� =
√

L2 − l (l + 1) L + 1
4

ω2 ∈ R > 0. (53)

123



Analytical solutions in a cosmic string Born–Infeld… Page 11 of 24 125

Namely, Eq. (53) helps us to distinguish the advanced and retarded times and thus
the ingoing and outgoing waves. Spatial infinity boundary condition of QNMs is
conditional on the vanishing ingoing waves at spatial infinity. In other words, only
the outgoing waves are allowed to propagate at the spatial infinity. To this end, one
should terminate the first term (i.e., the ingoing wave). To this end, we use the poles
of the gamma functions stand in the denominator of the ingoing wave term [�(̂c − â)

or �(̂c −̂b)] of Eq. (52). It is a well-known fact that the gamma functions �(q) have
poles when q = −n with n = 0, 1, 2, . . .. Thus, QNMs of the massless scalar waves
of the BIDBH are found out as follows:

ĉ − â = ĉ −̂b = −n, (n = 0, 1, 2, . . . ) (54)

From above, we find out the following QNMs:

ωQNM = − i [n (n + 1) − Ll (l + 1)]

L (1 + 2 n)
,

= −i2πTH
[n (n + 1) − Ll (l + 1)]

(

n + 1
2

) . (55)

Stable QNMs should have Im(ωQNM < 0). Therefore, one can immediately
observe from Eq. (55) that the stable QNMs are conditional on

n (n + 1) ≥ Ll (l + 1) . (56)

One can immediately ask the existence of unstable modes depending on the values
of n, L, and l; see Fig. 1. However, we want to take the attention of the reader to Eq.
(53), which helps us to decide the wave-type: ingoing or outgoing. When ωQNM is
used in Eq. (53), one gets

�|ω=ωQNM
=

1
2 + n (n + 1) + Ll (l + 1)

n (n + 1) − Ll (l + 1)
> 0, (57)

which is possible only with the condition of Eq. (56). It is clear from Eqs. (53) and
(57) that only stable ωQNM allows us to distinguish ingoing and outgoing waves at
spatial infinity. Namely, the analytical method that we applied comprises a basis for
the stable QNMs.

It is important to remark that while we are about to complete the present study,
we have realized that the problem of QNMs of BIDBH has very recently studied in
[94]. However, we have differences not only in the ways to be followed, but in the
obtained results as well. We have used the massive KGE, obtained its radial equation
solution in terms of the confluent Heun functions, and shown how it yields the QNMs
of BIDBH in the massless case. They instead started with massless KGE (relatively
simpler scalar wave equation) and in sequel they directly obtained the hypergeometric
function solution to the radial equation, which made QNMs easily to be found. At the
end, QNM result of [94] is given by
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Fig. 1 Im(ωQNM ) versus L graph. The plots are governed by Eq. (55). For various n and l values, the
behaviors of ωQNM are depicted. It is clear that once condition (56) does not hold, the perturbation
becomes unstable [92,93]) since Im(ωQNM ) > 0 shows exponential increase instead of decay: recall the
wave function (21)

ωn = −i

(

1

4L (2n + 1)
+ l(l + 1)

2n + 1
− n + 1

2

2L

)

,

= i [n (n + 1) − Ll (l + 1)]

L (1 + 2 n)
,

= i2πTH
[n (n + 1) − Ll (l + 1)]

(

n + 1
2

) , (58)

which can be easily seen that there is a minus sign difference between Eqs. (55) and
(58). In fact, both results are true and they are complementary to each other. Our result
(55), which likes the results of [22,92,95–97] admits unstable modes when n = 0
but their result (58) does not. On the other hand, Eq. (58) does not admit stability
for the s-wave (l = 0) case [98]; QNMs (58) lead to exponentially growing modes
i.e., unstable modes. However, our result (55) is stable for the s-waves, which have
strong impact on the testing of the stability since their motion is perpendicular to the
direction of wave propagation.

4 Spacetime of BIDBHwith cosmic string

Let us now introduce a thin cosmic string within the BIDBH spacetime. To this end,
letting ϕ → αϕ (α ∈ (0, 1]) for metric (7), we get

ds2 = −h(r)dt2 + h(r)−1dr2 + rdθ2 + rα2 sin2 θdϕ2, (59)
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withα = 1−4μ, in whichμ ≥ 0 is themass density of the cosmic string [99]. Wemay
remark here that although the cosmic strings are usually expressed in the cylindrical
coordinates for describing the conical topology of the spacetime, for some cases, in
particular for the problems in a black hole geometry plus a cosmic string like, it is
better to use the spherical coordinates. Namely, the choice of spherical coordinates
enables us to make easier computations. After all, no physics changes using different
coordinates. In fact, numerous studies in which cosmic strings are expressed in the
spherical coordinates are available in the literature (see for instance [100–102] and
references therein). On the other hand, very recent study of Blanco-Pillado et al. [69]
shows that the gravitational wave background to be expected from cosmic strings with
the latest pulsar timing array limits puts an upper bound on the energy scale of the
possible cosmic string network: μ < 1.5 × 10−11 (in dimensionless units; at 95%
confidence level). The surface area and entropy of the BIDBH now modifies to

ABH ,α =
∫ 2π

0
dϕ

∫ π

0

√−g dθ = 4παrh, (60)

SBH ,α = ABH

4�
= παrh

�
. (61)

Furthermore, since global topology changes, one has to take into account that the
mass (energy) of the system changes this is simply due the volume change (deficit
angle) of the spacetime. To see this, one can calculate the quasi-local mass [71] for
the spacetime (59) as follows

MQL,α = α

2

√
h
(√

h0 − √
h
)

, (62)

where

h = r

L
− 4MQL , h0 = r

L
. (63)

Using the above equations, in the large radial limit, one can find that

MQL,α = α MQL . (64)

Thus, the first law of thermodynamics is can be written as

dMQL,α = TH dSBH ,α, (65)

in which the Hawking temperature Eq. (16) is not affected by the cosmic string.

5 Exact solutions and QNMs of BIDBHwith cosmic string

One can show that, with ansatz Eq. (21), the radial equation of the massive KGE on the
geometry of Eq. (59) remains intact, however the angular equation takes the following
form
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− 1

A (θ)

d2A (θ)

dθ2
− cot (θ)

A (θ)

d A (θ)

dθ
+ m2

α2 sin2 (θ)
+ λ = 0, (66)

From Eq. (66), one can naturally set

m(α) = m

α
, (67)

In the case of α �= 1, the quantum number m(α) is no longer integer. Thus, Eq. (66)
can be recast in the following form

1

sin θ

d

dθ

(

sin θ
d A

dθ

)

+
(

λ − m2
(α)

sin2 θ

)

A = 0. (68)

This type of differential equation was exactly solved by [99,103] in the following
way. First, one needs to introduce a new coordinatew = cos2 θ , which transforms Eq.
(66) to

d2A

dw2 +
(

1/2

w
+ 1

w − 1

)

d A

dw

+
⎡

⎣

λ − m2
(α)

4

1

w
+ m2

(α) − λ

4

1

w − 1
−
(

m2
(α)

2

)2
1

(w − 1)2

⎤

⎦ A = 0. (69)

Then, if we let A(w) = (w − 1)m(α)/2V (w), the above equation reduces to the
confluent Heun equation:

d2V

dw2 +
(

ã + b̃ + 1

w
+ c̃ + 1

w − 1

)

dV

dw
+
(

m̃

w
+ ñ

w − 1

)

V = 0, (70)

where the parameters of HeunC(ã, b̃, c̃, d̃, ẽ;w) now are given by

ã = 0, b̃ = −1

2
, c̃ = m(α), d̃ = 0, ẽ = 1 + m2

(α) − λ

4
. (71)

The general solution to Eq. (69) thus becomes

A(w) = (w − 1)m(α)/2
(

C1HeunC(ã, b̃, c̃, d̃, ẽ;w) + C2w
−b̃HeunC(ã,−b̃, c̃, d̃, ẽ;w)

)

,

(72)

in which C1 and C2 are two integration constants. Hence, we remark that the general
behavior of the scalar wave function (21) of the BIDBH is influenced by the presence
of the cosmic string α.

It is interesting to note that the radial solution is quite similar to the case covered
in the previous section, thus we are going to skip the solution procedure. However,
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there is a crucial point that must be considered. In the existence of the cosmic string,
the energy of the particles measured at spatial infinity changes since the volume of the
spacetime has a deficit angle. That is to say, when a wave packed (particle) is emitted
from the black hole, its energy is shifted by a factor of α. For this reason, we have

ω → ωα = ωα. (73)

So, the general wave solution of the BIDBH with cosmic string is given by [recall
Eq. (52)]

� ∼ A2
√
1 − z

⎡

⎢

⎢

⎢

⎣

e−iωα(t−�α) �(̂c)�(̂c − â −̂b)
�(̂c − â)�(̂c −̂b)

︸ ︷︷ ︸

Ingoing Wave

+ e −iωα(t+�α) �(̂c)�(̂a +̂b − ĉ)

�(̂a)�(̂b)
︸ ︷︷ ︸

Outgoing Wave

⎤

⎥

⎥

⎥

⎦

,

(74)

in which

�α =
√

L2 − l (l + 1) L + 1
4

ωα
2 ∈ R > 0. (75)

In the presence of the cosmic string, Eq. (73) thus modifies the QNMs (55) of the
BIDBH as

ωQNM,α = ωQNM α = − iα [n (n + 1) − Ll (l + 1)]

L (1 + 2 n)
. (76)

We remark that the general scalar wave solution is modified when the cosmic string
is introduced and thus the QNMs are shifted by a parameter α. In this way, QNMs
might provide a new method to detect topological defects like cosmic strings by the
virtue of GWs.

6 Effective temperature and quantization of BIDBH

Hawking radiation [74] is a quantum process associated with the quantum fields near
the event horizon. During theHawking radiation one expects not only photons, but also
gravitons to be emitted from the black hole, which, in a classical level, can be viewed
as the GW [104]. Since a black hole is an open system (it continuously interacts with
the quantum fields), this implies a loss in the energy via Hawking radiation. Thus, it is
natural to expect a possible link between the QNMs and black hole thermodynamics,
but there is no satisfactory answer yet. In fact, Hod [105] first argued that the damping
rate of the fundamental (n = 0) QNMs of any black hole is constrained by its Hawking
temperature via

|Imω| ≤ π TH . (77)
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One can check the validity of Hod’s conjecture by using the fundamental modes of
the s-waves. In this case, Eq. (55) admits the following imaginary part

|Imω| = 4π TH > π TH . (78)

The result obtained in Eq. (78) is against to theHod’s conjecture. However, considering
the fact that metric (59) is non-asymptotically flat, such a result should not be seen as
very surprising. Besides, the violation of Hod’s conjecture has been recently reported
in the context of Gauss–Bonnet de Sitter black hole [106].

We now consider the asymptotic highly damped (n → ∞) QNMs (55), which has
the imaginary part related to the Hawking temperature in a very simple way:

ωn � −2π i TH

(

n + 1

2

)

= −iκH

(

n + 1

2

)

. (79)

We recall that theParikh–Wilczek’s quantum tunnelingmethod [43],which includes
the back reaction effects in the spacetime i.e., a change of the black hole horizon when
a Hawking quanta is emitted, this implies a deviation from the thermal nature of
the Hawking spectrum. Corda [107–109], inspiring from the Bohr correspondence
principle and the quantum tunneling method, argued that QNMs can be re-interpreted
by introducing the effective temperature TH → TE , which incorporates the back
reaction effects in the black hole horizon. Along this line of thinking, Eq. (79) should
take the following form

ωn � −2π i TE

(

n + 1

2

)

. (80)

As a result of the quantum tunneling near the event horizon, we can interpret the
imaginary part, seen in the above equation, as a loss of the black hole energy via
QNMs. In other words, as it was suggested by Maggiore [18], a black hole behaves
pretty much like a quantum harmonic oscillator. Namely, it constantly interacts with
the quantum fields and hence never stops to oscillate. This argument is also supported
by a recent paper [110], which argues that highly damped modes always exist and are
related to the presence of the horizon.

The probability of emission is given by [43]

�BH = exp

[

−ωQL

TH

(

1 − ωQL
)

]

. (81)

For this reason, if one wants to take into account the dynamical geometry of the
BH during the emission of the particle, the effective temperature [107–109] should be
considered:

TE ≡ TH
1 − ωQL

= 1

4πL
(

1 − ωQL
) . (82)
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Thus, Eq. (80) becomes

ωn � − i

2L(1 − |ωn|)
(

n + 1

2

)

, (83)

where |ωn| = En = ωQL,n is the total energy emitted at level n.We impose a condition
that a black hole cannot emit more energy than their total mass, i.e., |ωn| ≤ M . From
Eq. (83) it follows that

|ωn| = 1

2
+

√
L − 1 − 2n

2
√
L

, (84)

which yields the following condition

n ≤ nmax = L − 1

2
. (85)

Now, if we consider an emission from the ground state (i.e., a BHwhich is not excited)
to a state with n = n1, we can write down

Mn1 = M − |En1 | = M − 1

2
−

√
L − 1 − 2n1

2
√
L

, (86)

and similarly to a state with n = n2,

Mn2 = M − |En2 | = M − 1

2
−

√
L − 1 − 2n2

2
√
L

. (87)

Taking the difference of these two energy states, one gets

�En1→n2 = Mn2 − Mn1,

= −
√
L − 1 − 2n2

2
√
L

+
√
L − 1 − 2n1

2
√
L

. (88)

Now setting n1 = n − 1 and n2 = n, we find out

�En1→n2 =
√
L − 2n + 1

2
√
L

−
√
L − 2n − 1

2
√
L

.

It can be assumed that the length scale is the same for emission and absorption. Let
us define the effective length scale LE(n,n−1) as [109]

LE(n,n−1) = Ln−1 + Ln

2
=

√
L − 2n − 1

2
√
L

+
√
L − 2n + 1

2
√
L

. (89)
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Since ABH = 16πLM , the change in area can be defined as

�ABH = 16πLE(n,n−1)�En1→n2 , (90)

in which

LE(n,n−1)�En1→n2 = 1

2L
,

and thus we have

�ABH = 8π. (91)

Equation (91) is nothing but the original result of Bekenstein [37]. Note that this
relation seems to be universal and not affected when the Hawking radiation spectrum
is non-thermal [107,108].Wealso remark that theHod’s conjecture is not only violated,
but also affected by the conical topology, when we replace TH → TE ; because the
imaginary part of the fundamental modes reads

|Imωα| = 4π TE (1 − 4μ) > πTE . (92)

On the other hand, one can also show the validity of the Bekenstein’s result [37] by
employing the method of Maggiore [18]. For the highly damping modes (n → ∞),
the transition frequency can be obtained from Eq. (79) as follows

�ω ≈ Im (ωn−1 − ωn) = κH = 1

2L
. (93)

With the help of the adiabatic invariance formula:

Iadb =
∫

TH�SBH
�ω

, (94)

which basically suggests the Bohr–Sommerfeld quantization condition: Iadb,n→∞ =
n�, we find out that entropy is quantized as follows

SBH ,n = 2πn. (95)

Thus, the area spectrum can be easily found as

ABH ,n = 4�SBH ,n = 8π�n. (96)

One can observe that this reveals the Bekenstein’s conjecture [An = εn�], with
the minimum change to the area of the horizon i.e., �Amin = An − An−1 = 8π�, or
�Amin = 8π within the geometric unit sytem: � = 1 [37].
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When considering the cosmic string, the adiabatic invariance formula would be
modified to

Iadb =
∫

TH�SBH ,α

�ωα

, (97)

in which

�ωα = α�ω = ακH , (98)

we get the entropy change as SBH ,nα = 2παn. Hence, ABH ,nα = 4SBH ,nα = 8παn,
and the change in area results in�Amin,α = 8πα. In other words, the minimal change
in entropy/area spectrum is affected by the cosmic string parameter.

7 Conclusions

We have studied the analytical solution to the KGE for a massive scalar field in the
BIDBH spacetime. Radial exact solution is given in terms of the confluent Heun
functions [80,81], and it covers the whole range of the observable space 0 ≤ z < 1.

The obtained radial solution could not be extended to the asymptotic region because
of the lack of the inverse connection formula (36) which would help us to get the
exact asymptotic form of the radial solution. This gap has enforced us to consider the
massless scalar fields. Using the particular transformation (A12), we have managed
to express the confluent Heun functions in terms of the hypergeometric functions.
By this was, we have transferred the radial solution from the near horizon region
to asymptotic region [78,79]. Afterward, we have computed QNMs of the massless
scalar waves propagating in the BIDBH. In particular, Eqs. (56) and (57) have shown
us that our analytical QNM results are possible with stable waves. We have also
compared Eq. (55) with the QNM results of [94]. We have remarked that both results
are complementary with each other. It is important to note that our solution (55)
violates the Hod’s conjecture [22] such as being discussed in [106].

In the presence of a cosmic string, QNMs are found to be shifted by a parameter α

when a cosmic string is introduced:

ωQNM,α = − i [n (n + 1) − Ll (l + 1)]

L (1 + 2 n)
α, (99)

which obeys the same condition of Eq. (56) to possess the stable QNMs. In short, our
QNM analysis might provide an information to identify the topological defects (i.e.,
cosmic strings) in the fingerprints of the GWs. We have also shown that the minimum
change in the area of the black hole is shifted by the cosmic string parameter α, which
means a deviation from the Bekenstein’s result [37]: �Amin = 8πα.

The results of the present studymotivate us for doing further works in this direction.
In the near future, we plan to extend our analytical analysis to the other fields (Dirac
fields, vector fields, gravitons etc.) and explore the effects of spin and cosmic string
on the QNMs and quantization of the black hole.
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Appendix

The confluentHeun equations is obtained from the generalHeun equation [80,111,112]
through a confluence process, that is, a process where two singularities coalesce,
performed by redefining parameters and taking limits, resulting in a single (typically
irregular) singularity. The confluent Heun equation is given by

d2U (y)

dy2
+
(

ã + 1 +˜b
y

− 1 + c̃

1 − y

)

dU (y)

dy
+
(

m̃

y
− ñ

1 − y

)

U (y) = 0. (A1)

and thus (A1) has three singular points: two regular ones: y = 0 and y = 1, and
one irregular one: y = ∞. Solution of (A1) is called the confluent Heun’s function:
U (y) = HeunC(̃a,˜b, c̃,˜d, ẽ; y), which is regular around the regular singular point
y = 0. It is defined as

HeunC(̃a,˜b, c̃,˜d, ẽ; y) =
∞
∑

n=0

un (̃a,˜b, c̃,˜d, ẽ)yn, (A2)

which is the convergent in the disk |y| < 1 and satisfies the normalization
HeunC(̃a,˜b, c̃,˜d, ẽ; 0) = 1. The parameters ã,˜b, c̃,˜d, ẽ are related with m̃ and ñ
as follows

m̃ = 1

2
(̃a −˜b − c̃ + ã˜b −˜bc̃) − ẽ, (A3)

ñ = 1

2
(̃a +˜b + c̃ + ãc̃ +˜bc̃) + ˜d + ẽ. (A4)

The coefficients un (̃a,˜b, c̃,˜d, ẽ) are determined by three-term recurrence relation:

Anun = Bnun−1 + Cnun−2, (A5)

with initial conditions {u−1 = 0 , u0 = 1} and we have

An = 1 + ˜b

n
→ 1, as n → ∞,

Bn = 1 + −ã +˜b + c̃ − 1

n
+ ẽ + (̃a −˜b − c̃)/2 +˜b/2 (̃c − ã)

n2
→ 1, as n → ∞,

Cn = ã

n2

(

˜d

ã
+ ˜b + c̃

2
+ n − 1

)

→ 0, as n → ∞. (A6)
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HeunC(̃a,˜b, c̃,˜d, ẽ; y) reduces to a polynomial of degree N (= 0, 1, 2, . . .) with
respect to the variable y if and only if the following two conditions are satisfied [82]:

˜d

ã
+ ˜b + c̃

2
+ N + 1 = 0, (A7)

�N+1(m̃) = 0. (A8)

(A7) is known as “δN -condition” and (A8) is called “�N+1-condition”. In fact,
the δN -condition is nothing but CN+2 = 0 and the �N+1-condition corresponds to
uN+1(̃a,˜b, c̃,˜d, ẽ) = 0.

Since the confluent Heun equation thus has two regular singularities and one irreg-
ular singularity, it includes the 2F1 hypergeometric equation [78]:

(

−z + z2
) d2

dz2
Y (z) + [(

1 + â +̂b) z − ĉ
] d

dz
Y (z) + â̂bY (z) = 0 (A9)

which can be expressed in terms of HeunC functions as follows [112]

Y (z) = C1 (1 − z)−â HeunC

(

0, â −̂b, ĉ − 1, 0,
1

2

[

(̂c − 2 â)̂b

− ĉ (1 − â) + 1
]

, (1 − z)−1
)

+C2 (1 − z)−̂b HeunC
(

0,̂b − â, ĉ − 1, 0,
1

2

[

(̂c − 2 â)̂b

− ĉ (1 − â) + 1
]

, (1 − z)−1
)

(A10)

In fact, the 2F1 hypergeometric function is related to HeunC function by [112]

2F1(̂a,̂b; ĉ; z) = (1 − z)−̂b HeunC
(

0, ĉ − 1,̂b − â, 0,
1

2

(−1 + â +̂b) ĉ

− â̂b + 1

2
,

−z

1 − z

)

,

where z �= 1.

(A11)

Inversely, HeunC function can be rewritten in terms of the 2F1 hypergeometric
function as follows [112–114]

HeunC
(

0,̂b, ĉ, 0, ê, z
) = (1 − z)

− 1
2

(

1+̂b+ĉ+
√

1+̂b2+ĉ2−4̂e
)

×2F1

[

1

2

(

1 +̂b + ĉ +
√

1 +̂b2 + ĉ2 − 4̂e
)

,

1

2

(

1 +̂b − ĉ +
√

1 +̂b2 + ĉ2 − 4̂e
)

; 1 +̂b; z

−1 + z

]

,

where 1 +̂b �= 0 and z �= 1. (A12)
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