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Abstract
In this paper, we systematically study spacetimes of gravitational plane waves in
Einstein-aether theory. Due to the presence of the timelike aether vector field, now the
problem in general becomes overdetermined. In particular, for the linearly polarized
plane waves, there are five independent vacuum Einstein-aether field equations for
three unknown functions. Therefore, solutions exist only for particular choices of the
four free parameters ci ’s of the theory. We find that there exist eight cases, in two
of which any form of gravitational plane waves can exist, similar to that in general
relativity, while in the other six cases, gravitational plane waves exist only in particular
forms. Beyond these eight cases, solutions either do not exist or are trivial (simply
representing a Minkowski spacetime with a constant or dynamical aether field).

Keywords Gravitational plane waves · Polarizations · Faraday rotation ·
Einstein-aether theory

1 Introduction

Lorentz invariance (LI) has been the cornerstone of modern physics and is strongly
supported by observations [1]. In fact, all the experiments carried out so far are consis-
tent with it, and there is no evidence to show that such a symmetry needs to be broken
at a certain energy scale, although the constraints on the LI violations in the matter
sector are much stronger than those in the gravitational sector [2,3].
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Nevertheless, there are various reasons to construct gravitational theories with bro-
ken LI. In particular, when spacetime is quantized, as what we currently understand
from the point of view of quantum gravity [4,5], space and time emerge from some
discrete substratum. Then, LI, as a continuous spacetime symmetry, cannot exist in
such discrete space and time. Therefore, it cannot be a fundamental symmetry, instead
must be an emergent one at the low energy physics. Following this line of thinking,
various gravitational theories that violate LI have been proposed, such as ghost con-
densation [6], Einstein-aether theory [7,8], andmore recently, Hořava theory of gravity
[9].While the ghost condensation and Einstein-aether theory are considered as the low
energy effective theories of gravity, the Hořava gravity is supposed to be ultraviolet
(UV) complete [10].

In Einstein-aether theory, LI is broken only down to a rotation subgroup by the
existence of a preferred time direction at every point of spacetime, i.e., the existence of
a preferred frame of reference established by the aether vector field. This time-like unit
vector field can be interpreted as a velocity four-vector of some medium substratum
(aether, vacuum, or dark fluid), bringing into consideration non-uniformly-moving
continuous media and their interaction with other fields. Meanwhile, this theory can
be also considered as a realization of dynamic self-interaction of complex systems
moving with a spacetime dependent macroscopic velocity.

The introduction of the aether vector allows for somenovel effects, e.g.,matter fields
can travel faster than the speed of light [11], and new gravitational wave polarizations
can spread at different speeds [12]. It should be noted that the faster-than-light propa-
gation does not violate causality [10]. In particular, gravitational theories with broken
LI still allow the existence of black holes [13–41]. However, instead of Killing hori-
zons, now the boundaries of black holes are hypersurfaces termed universal horizons,
which can trap excitations traveling at arbitrarily high velocities (For more details, see,
for example, [10] for a recent review.). This universal horizon may radiate thermally
at a fixed temperature and strengthen a possible thermodynamic interpretation though
there is no universal light cone [42].

Another interesting issue is whether or not spacetimes of gravitational plane waves
are compatible with the presence of the timelike aether field. This becomes more
interesting after the recent observations of several gravitational waves (GWs) emitted
from remote binary systems of either black holes [43–45] or neutron stars [46]. The
sources of these GWs are far from us, and when they arrive to us, they can be well
approximated by gravitational plane waves. However, this issue is not trivial, specially
for the Einstein-aether theory, in which a globally time-like aether field exists, while
such plane waves, by definition, move along congruences defined by a null vector.

In this paper, we shall focus ourselves on this issue. In particular, we shall show
that the system of the differential equations for gravitational plane waves in the
Einstein-aether theory is in general overdetermined, that is, we have more indepen-
dent differential equations than the number of independent functions that describe the
spacetime and aether, sharply in contrast to that encountered in Einstein’s General
Relativity (GR), in which the problem is usually underdetermined, that is, we have
less independent differential equations than the number of independent functions that
describe the spacetime [47–49]. In particular, for the linearly polarized gravitational
plane waves, there are five independent vacuum field equations for three unknown
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functions in the Einstein-aether theory, while there is only one independent vacuum
field equation for two unknown functions in GR.

The rest of the paper is organized as follows: In Sec. II, after briefly presenting the
Einstein-aether theory, we give a summary on the gravitational plane waves with two
independent polarization directions, and define the polarization angle with respect to a
parallelly transported basis along the path of the propagating gravitational plane wave.
Such a description is valid for any metric theory, including GR and Einstein-aether
theory. In Sec. III, we systematically study the linearly polarized gravitational plane
waves in Einstein-aether theory, and find that such gravitational plane wave solutions
exist only for particular choices of the free parameter ci ’s of the theory. We identify
all these particular cases, and find that there are in total eight cases. Cases beyond
these either do not allow such solutions to exist or are trivial, in the sense that their
spacetime is Minkowski (though sometimes with a dynamical aether field). In Sec.
IV, we summarize our main results, and present our concluding remarks. There is
also an Appendix, in which the Einstein-aether field equations for linearly polarized
gravitational plane waves are presented.

2 Einstein-aether theory and gravitational plane waves

In this section, we shall give a brief introduction to the Einstein-aether theory [7,8](See
also [50] for a brief comment on slowly rotating black holes in Einstein-aether theory
and Hořava theory) and polarizations of gravitational plane waves [47,51]. For more
details of the Einstein-aether theory, we refer readers to [7,8], while for gravitational
plane waves in GR to [47–49].

2.1 Einstein-aether Theory

In the Einstein-aether theory, the fundamental variables of the gravitational sector are
[7,8]

(
gμν, u

μ, λ
)
, (2.1)

with the Greek indices μ, ν = 0, 1, 2, 3, and gμν is the four-dimensional metric of the
space-time with the signature (−,+,+,+) [52–54]. The four-vector uμ represents
the aether field, and λ is a Lagrangian multiplier which guarantees that the aether
four-velocity is always timelike. The general action of the theory is given by,

S = Sæ + Sm, (2.2)

where Sm denotes the action of matter, and Sæ the gravitational action of the æ-theory,
given by

Sæ = 1

16πG

∫ √−g d4x
[
R(gμν) + Læ

(
gμν, u

α, λ
) ]

,
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Sm =
∫ √−g d4x

[
Lm

(
gμν, u

α;ψ
) ]

. (2.3)

Here ψ collectively denotes the matter fields, R and g are, respectively, the Ricci
scalar and determinant of gμν , and

Læ ≡ −Mαβ
μν

(
Dαu

μ
) (

Dβu
ν
) + λ

(
gαβu

αuβ + 1
)
, (2.4)

where Dμ denotes the covariant derivative with respect to gμν , and Mαβ
μν is defined

as

Mαβ
μν = c1g

αβgμν + c2δ
α
μδβ

ν + c3δ
α
ν δβ

μ − c4u
αuβgμν. (2.5)

Note that here we assume that matter fields couple not only to gμν but also to the aether
field, which in general violates theweak equivalence principle [7,8]. The four coupling
constants ci ’s are all dimensionless, and G is related to the Newtonian constant GN

via the relation [55],

GN = G

1 − 1
2c14

. (2.6)

The variations of the total action with respect to gμν, uμ and λ yield, respectively,
the field equations,

Eμν = 8πGTμν, (2.7)

Æμ = 8πGTμ, (2.8)

gαβu
αuβ = −1, (2.9)

where

Eμν ≡ Rμν − 1

2
gμνR − Tμν

æ ,

Tμν ≡ 2√−g

δ
(√−gLm

)

δgμν

,

Tμ ≡ − 1√−g

δ
(√−gLm

)

δuμ
,

Tæ
αβ ≡ Dμ

[
Jμ

(αuβ) + J(αβ)u
μ − u(β J

μ

α)

]

+c1
[ (

Dαuμ

) (
Dβu

μ
) − (

Dμuα

) (
Dμuβ

) ]

+c4aαaβ + λuαuβ − 1

2
gαβ J

δ
σ Dδu

σ ,

Æμ ≡ Dα J
α
μ + c4aαDμu

α + λuμ, (2.10)
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with
Jα

μ ≡ Mαβ
μνDβu

ν , aμ ≡ uαDαu
μ. (2.11)

From Eqs. (2.8) and (2.9), we find that

λ = uβDα J
αβ + c4a

2 − 8πGTαu
α, (2.12)

where a2 ≡ aλaλ.
Recently, the combination of the gravitational wave event GW170817 [46],

observed by the LIGO/Virgo collaboration, and the event of the gamma-ray burst
GRB 170817A [56] provides a remarkably stringent constraint on the speed of the
spin-2 mode, −3 × 10−15 < cT − 1 < 7 × 10−16. In the Einstein-aether theory, the
speed of the spin-2 graviton is given by c2T = 1/(1− c13) [57], so the GW170817 and
GRB 170817A events imply

|c13| < 10−15. (2.13)

Together with other observational and theoretical constraints, recently it was found
that the parameter space of the theory is further restricted to the ranges [54],

0 � c14 � 2.5 × 10−5, c4 � 0, 0 � c2 � 0.095. (2.14)

It should be noted that not all the points inside these ranges satisfy all the obser-
vational and theoretical constraints, and additional conditions still exist even inside
these ranges. For example, for 0 ≤ c14 ≤ 2 × 10−7 we must further require
c14 � c2 � 0.095; and for 2 × 10−6 � c14 � 2.5 × 10−5, we need to further
require 0 � c2 − c14 � 2 × 10−7. For details, see [54].

2.2 Polarizations and interaction of gravitational plane waves

The spacetimes for gravitational plane waves can be cast in various forms, depending
on the choice of the coordinates and gauge-fixing [47–49]. In this paper, we shall adopt
the form originally due to Baldwin, Jeffery, Rosen (BJR) [58,59], which can be cast
as [47,51]

ds2 = −2e−Mdudv + e−U
[
eV coshWdy2 − 2 sinhWdydz

+e−V coshWdz2
]
, (2.15)

where M,U , V and W are functions of u only, which in general represents a grav-
itational plane wave propagating along the null hypersurfaces u = constant. The
corresponding spacetimes belong to Petrov Type N [47–49].1 Choosing a null tetrad

1 By rescaling the null coordinate u → u′ = ∫
e−M(u)du, without loss of the generality, one can always

set M = 0.
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defined as,

lμ ≡ Bδμ
v , nμ ≡ Aδμ

u , mμ = ζ 2δ
μ
2 + ζ 3δ

μ
3 ,

m̄μ = ζ 2δ
μ
2 + ζ 3δ

μ
3 , (2.16)

where A and B must be chosen so that M ≡ ln(AB), and

ζ 2 ≡ e(U−V )/2

√
2

(
cosh

W

2
+ i sinh

W

2

)
,

ζ 3 ≡ e(U+V )/2

√
2

(
sinh

W

2
+ i cosh

W

2

)
, (2.17)

we find that the Weyl tensor has only one independent component, represented by �4,
and is given by [47],

Cμναβ = 4
[
�4l

[μmν]l[αmβ] + �̄4l
[μm̄ν]l[αm̄β]],

�4 = −1

2
A2

{
coshWVuu + coshW

(
Mu −Uu

)
Vu

+ 2 sinhWVuWu + i
[
Wuu + (

Mu −Uu
)
Wu

− sinhW coshWV 2
u

]}
, (2.18)

where [A, B] ≡ (AB − BA)/2, and Vu ≡ ∂V /∂u, etc. To see the physical meaning
of �4, following [47,51], let us first introduce the orthogonal spacelike unit vectors,
Eμ

(a) (a = 2, 3), in the (y, z)-plane via the relations,

Eμ

(2) ≡ mμ + m̄μ

√
2

, Eμ

(3) ≡ mμ − m̄μ

i
√
2

, (2.19)

we find that the Weyl tensor can be written in the form,

Cμναβ = 1

2

[
eμναβ
+

(
�4 + �̄4

) + ieμναβ
×

(
�4 − �̄4

) ]
,

(2.20)

where

eμναβ
+ ≡ 4

(
l[μEν]

(2)l
[αEβ]

(2) − l[μEν]
(3)l

[αEβ]
(3)

)
,

eμναβ
× ≡ 4

(
l[μEν]

(2)l
[αEβ]

(3) + l[μEν]
(3)l

[αEβ]
(2)

)
. (2.21)
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Making a rotation in the (E(2), E(3))-plane,

E2 = E ′
(2) cosϕ + E ′

(3) sin ϕ,

E3 = −E ′
(2) sin ϕ + E ′

(3) cosϕ, (2.22)

we find that

e+ = e′+ cos 2ϕ + e′× sin 2ϕ,

e× = −e′+ sin 2ϕ + e′× cos 2ϕ. (2.23)

In particular, if we choose ϕ such that

ϕ = 1

2
tan−1

(
Im (�4)

Re (�4)

)
, (2.24)

we obtain

Cμναβ = 1

2
|�4| e′+

μναβ
. (2.25)

Thus, the amplitude of theWeyl tensor is proportional to the absolute value of�4, and
the angle defined by Eq. (2.24) is the polarization angle of the gravitational plane wave
in the plane spanned by (E(2), E(3)), which is orthogonal to the propagation direction
lμ of the gravitational plane wave. It is interesting to note that the unit vectors Eμ

(2)

and Eμ

(3) are parallelly transported along lν ,

lνDνE
μ

(2) = 0 = lνDνE
μ

(3). (2.26)

Therefore, the angle defined by Eq. (2.24) is invariant with respect to the parallelly
transported basis

(
E(2), E(3)

)
along the propagation direction lμ of the gravitational

plane wave.2 This is an important property belonging only to single gravitational plane
waves.

When W = 0, from Eq. (2.19) we find that

Im (�4) = 0, (W = 0), (2.27)

and ϕ = 0. Then, the polarization is along the Eμ

(2)-direction, which is usually referred
to as the “+” polarization, characterized by the non-vanishing of the function V . The
other polarization of the gravitational plane wave, often referred to as the “×” polar-
ization, is represented by the non-vanishing of the function W , for which generically
we have Im (�4) �= 0 (W �= 0) (cf. Fig. 1 given in [51]).

2 Polarizations ofGWs inweak-field approximationswere also studied in [60] in the framework of Einstein-
aether theory.
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When M,U , V and W are functions of v only, the gravitational plane wave is now
propagating along the null hypersurfaces v = constant. In this case, by rescaling the
null coordinate v → v′ = ∫

e−M(v)dv, one can always set M(v) = 0.
When gravitational plane waves moving in both of the two null directions are

present, the metric coefficients M,U , V and W are in general functions of u and v.
An interesting case is the collision of two gravitational plane waves moving along
the opposition directions, which generically produces spacetime singularities due to
their mutual focuses [61]. Another remarkable feature is that one of the gravitational
plane waves can serve as a medium for the other, due to their non-linear interaction,
so the polarizations of the gravitational plane wave can be changed. The change of
polarizations due to the nonlinear interaction is exactly a gravitational analogue of the
Faraday rotation, but with the other gravitational plane wave as the magnetic field and
medium [47,51].

3 Linearly polarized gravitational plane waves

In this section, we shall consider gravitational plane wavesmoving along the hypersur-
faces u = constant only with one direction of polarizations, which are usually called
linearly polarized gravitational plane waves. Without loss of the generality, we shall
consider only gravitational plane waves with the “+” polarization. Then, by rescaling
the u coordinate, without loss of the generality, we can always set M = 0, so the
metric takes the form,

ds2 = −2dudv + e−U (u)
(
eV (u)dy2 + e−V (u)dz2

)
. (3.1)

We also assume that the aether moves only in the (u, v)-plane, so its four-velocity uμ

takes the general form,

uμ = 1√
2
(e−h, eh, 0, 0). (3.2)

Since the spacetime is only of u dependence, it is easy to see that h = h(u). Then,
the non-vanishing components of the Einstein and aether tensors Gμν and Tæ

μν and
the aether vector Æμ are given, respectively, by Eqs. (A.1) and (A.2). In the vacuum
case, we have Tm

μν = 0, Tμ = 0, and the Einstein-aether equations (2.7) reduce to

Gμν = Tæ
μν, (3.3)

which yield five equations,3 given by Eqs. (A.4)–(A.8). The aether equations Æμ = 0
yield the same equation as given by Eq. (A.6).

3 It is interesting to note that in Einstein’s theory the field equations Gμν = 0 yields only a single equation
[47,51],

2Uuu −U2
u = V 2

u , (3.4)
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It is remarkable to note that there are five independent field equations for the three
unknowns,U , V and h. Therefore, in contrast to the situation of GR, in which there is
only one independent field equation, given by Eq. (3.4), for two unknown functionsU
and V , here in the framework of the Einstein-aether theory, we are facing an overde-
termined problem, instead of underdetermined, and clearly only for particular cases
the above equations allow solutions for U , V and h.

From the constraint (2.13) we can see that the current observations of GW170817
and GRB 170817A practically requires c13 � 0. However, in order for our results
to be as much applicable as possible, in the rest of this section we shall not impose
this condition, and consider all the possible solutions with both c13 = 0 and c13 �= 0,
separately.

3.1 Solutions with c13 = 0

When c13 = 0, Eqs. (A.4)–(A.8) reduce to,

2Uuu −
(
U 2
u + V 2

u

)

+ 2c14
(
huu − huUu − h2u

)
= 0, (3.5)

c2
(
Uuu − 2huUu −U 2

u

)

+ (
c2 − c14

)(
huu − huUu − 2h2u

)
= 0, (3.6)

c2Uuu + (
c2 − c14

)(
huu − huUu − h2u

)
= 0, (3.7)

c2
(
2Uuu −U 2

u − 4huUu

)

+ 2c2huu − (
3c2 + c14

)
h2u = 0. (3.8)

Then, from Eqs. (3.6) and (3.7) we find

c2
(
U 2
u + 2Uuhu

)
+ (

c2 − c14
)
h2u = 0, (3.9)

c2
(
Uuu +U 2

u

)
+ (

c2 + c14
)
Uuhu + (

c2 − c14
)
huu = 0. (3.10)

To study the above equations further, we need to distinguish the cases c2 �= c14 and
c2 = c14, separately.

for the two unknown functionsU (u) and V (u). In this sense, the problem is underdetermined in Einstein’s
theory. Thus, for any given gravitational wave V (u), we can always integrate the above equation to find
U (u).
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3.1.1 c2 �= c14

In this case, from Eqs. (3.9) and (3.10) we find that

h2u = c2
c14 − c2

(
U 2
u + 2Uuhu

)
, (3.11)

huu = 1

c14 − c2

{
c2

(
Uuu +U 2

u

)
+ (

c2 + c14
)
Uuhu

}
. (3.12)

Inserting the above expressions into Eq. (3.8), we find

c2c14
(
Uuu −U 2

u − 2Uuhu
)

= 0, (3.13)

from which we can see that there are three different cases that need to be considered
separately,

i) c2c14 �= 0, ii) c2 = 0, c14 �= 0, iii) c2 �= 0, c14 = 0. (3.14)

Case i) c2c14 �= 0: In this case we have

Uuu = U 2
u + 2Uuhu, (3.15)

which has the solution

Uu = α0e
U+2h, (3.16)

where α0 is an integration constant. Then Eq. (3.6) reduces to

huu − 2h2u − huUu = 0, (3.17)

which has the solution

hu = α1e
2h+U , (3.18)

where α1 is an integration constant. Notice that hu ∝ Uu . In fact we may write

h = αU + h0, (3.19)

where α and h0 are constants. By substituting Eqs. (3.15) and (3.19) into Eq. (3.7) or
(3.8) we find that

α = −
√
c2√

c2 ± √
c14

. (3.20)
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By substituting Eqs. (3.15) and (3.19) into Eq. (3.5) we find

V = βU + V0, (3.21)

where V0 is another integration constant, and

β ≡ ±
√
1 + 4α + 2c14α2. (3.22)

Now combining Eqs. (3.19) and (3.16) we find

Uu = α̂0e
(2α+1)U , (3.23)

where α̂0 ≡ α0e2h0 . Thus, we obtain

U (u) = − 1

2α + 1
ln [−α0(2α + 1)(u − u0)] , (3.24)

where u0 is a constant of integration. OnceU (u) is given the functions h(u) and V (u)

can be read off from Eqs. (3.19) and (3.21), respectively, that is,

V (u) = − β

2α + 1
ln [−α0(2α + 1)(u − u0)] + V0,

h(u) = − α

2α + 1
ln [−α0(2α + 1)(u − u0)] + h0,

(3.25)

where β is given by Eq. (3.22) in terms of α and c14.
Case ii) c2 = 0, c14 �= 0: In this case from Eqs. (3.6) and (3.7) we find that hu = 0,

that is

h(u) = h0, (3.26)

where h0 is a constant. Then, Eqs. (3.6)–(3.7) are satisfied identically, while Eq. (3.5)
reduce to

2Uuu −U 2
u = V 2

u , (3.27)

which is the same as in GR, that is, in the present case the functions U and V are
not uniquely determined. For any givenU (u), one can integrate the above equation to
obtain V (u).

Case iii) c2 �= 0, c14 = 0: In this case from Eqs. (3.6) and (3.7) we find that
Uu + hu = 0, which has the solution,

U = −h +U0, (3.28)
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where U0 is a constant. Inserting the above expression into Eq. (3.6) we find that
hu = 0, that is,

h = h0. (3.29)

Then, from Eq. (3.5) we obtain

V = V0, (3.30)

where V0 is a constant. By rescaling y and z coordinates, without loss of the generality,
we can always set V0 = U0 = 0, so the solution represents the Minkowski spacetime.
That is, in the current case only the trivial Minkowski solution is allowed.

3.1.2 c2 = c14

In this case, from Eq. (3.7) we find that

c2Uuu = 0. (3.31)

Therefore, depending on the values of c2, we have two different cases.
Case i) c2 = c14 �= 0: In this case, we must have Uuu = 0, which has the general

solution,

U (u) = α0u +U0, (3.32)

where α0 and U0 are two integration constants. On the other hand, from Eq. (3.6) we
find that

h(u) = −α0

2
u + h0, (3.33)

while Eq. (3.8) is satisfied identically. Then, from Eq. (3.5) we find that

V (u) = ±
√

(c2 − 2)α2
0

2
u + V0, (3.34)

where V0 is another integration constant.
Case ii) c2 = c14 = 0: In this case, Eqs. (3.6)–(3.8) are satisfied identically for any

given h(u), while Eq. (3.5) reduces to

2Uuu −U 2
u = V 2

u , (3.35)

which is the same as in GR, that is, in the present case the functionsU , V and h(u) are
not uniquely determined. For any given U (u) and h(u), one can integrate Eq. (3.35)
to obtain V (u).
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3.2 Solutions with c13 �= 0

When c13 �= 0, from Eqs. (A.7) and (A.8) we find that

Vuu −UuVu − 2huVu = 0, (3.36)

which has the solution,

Vu = α0e
U+2h, (3.37)

where α0 is an integration constant. Inserting the above expression into Eqs. (A.4)–
(A.8), we obtain the following four independent equations for U and h,

2Uuu −U 2
u + 2c14

(
huu − huUu − h2u

)
= V 2

u , (3.38)

c2
(
Uuu − 2huUu −U 2

u

)

+ (
c2 + c13 − c14

)(
huu − huUu − 2h2u

)
= 0, (3.39)

2
(
c2 + c13 − c14

)(
huu − huUu − h2u

)

+ 2c2Uuu + c13U
2
u+ = −c13V

2
u , (3.40)

(
c13 + 2c2

)(
2Uuu −U 2

u − 4huUu

)
+ 4c2huu

− 2
(
3c2 − c13 + c14

)
h2u = −c13V

2
u , (3.41)

Combining Eqs. (3.38) and (3.40) we find

c123Uuu = (c13c14 + c2 + c13 − c14)
(
h2u + huUu − huu

)
, (3.42)

and by using Eqs. (3.38) and (3.41) we obtain

c123U
2
u = (c13c14 + 2c13 − 2c14)

(
h2u + huUu − huu

)

+ (c13 − c14 − c2)h
2
u − 2c123huUu . (3.43)

To study the above equations further, we need to consider separately the cases c123 = 0
and c123 �= 0.

3.2.1 c123 = 0

In this case, from Eqs. (3.38) and (3.40) we find

c14(c13 − 1)(huu − h2u − huUu) = 0. (3.44)
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The possibility of c13 = 1 is ruled out by observation [54], as mentioned above,
leaving the possibilities

c14 = 0, (3.45)

or

huu − huUu − h2u = 0. (3.46)

Case A.1 c14 = 0: In the case of Eq. (3.45) we find that Eqs. (3.39) and (3.41)
reduce to

Uuu = 2huUu +U 2
u , (3.47)

and

huu = 2h2u + huUu, (3.48)

respectively, where we have used the fact that Eq. (3.38) reduces to 2Uuu = U 2
u +V 2

u .
Then, both hu and Uu are proportional to e2h+U , and hence by Eq. (3.37) we find

h = αV + h0 U = βV +U0, (3.49)

where h0 and U0 are two integration constants, and the constants α and β can be
determined by substituting Eq. (3.49) and Eq. (3.47) into Eq. (3.38) or Eq. (3.40),
which yields

α = 1 − β2

4β
. (3.50)

Inserting the above expressions into Eq. (3.37), we find that

V = − 2β

1 + β2 ln
[
α̂0 (u0 − u)

]
, (3.51)

where α̂0 ≡ α0 (2α + β) eU0+2h0 and u0 is an integration constant. Therefore, in this
case the solutions are given by Eqs. (3.49)–(3.51).

Case A. 2 c14 �= 0: In this case we find that

hu = α1e
h+U , (3.52)

and by Eq. (3.41) that

h2u

(
c14
c13

− 2

)
= 0. (3.53)
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If hu = 0 (α1 = 0) then by Eq. (3.39) we have

Uu = α2e
U , (3.54)

and using this result with Eq. (3.38) we have

U = ±V +U0. (3.55)

Inserting the above expressions into Eq. (3.37), we find that

V = ∓ ln
[∓α̂0(u − u0)

]
, (3.56)

where α̂0 ≡ α0e2h0+U0 and where the choice of upper or lower sign must hold for
both Eqs. (3.55) and Eq. (3.56). Thus, in this case, the general solutions are given by

(U , V , h) = (±V +U0, V , h0) , (3.57)

where V is given by Eq. (3.56), and U0 and h0 are two integration constants.
However, if hu �= 0 then Eq. (3.39) reduces to

Uuu − 2h2u −U 2
u − 2huUu = 0, (3.58)

and we add the LHS of Eq. (3.46) (which is zero) twice to the LHS of Eq. (3.58) to
get

Uuu + 2huu − 4h2u − 4huUu −U 2
u = 0, (3.59)

which simplifies to

2huu +Uuu = (2hu +Uu)
2. (3.60)

If we define a function f(u) such that

f (u) = 2h(u) +U (u), (3.61)

then Eq. (3.60) can be written as

fuu = f 2u , (3.62)

which has the solution

f = − ln (−α3(u − u0)) , (3.63)

where α3 and u0 are integration constants. If we multiply both sides of Eq. (3.52) by
eh we have

hue
h = α1e

2h+U , (3.64)
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and making use of Eq. (3.63) we find

hue
h = −α1

α3

1

u − u0
, (3.65)

whereupon integration we find

h = ln

(
−α1

α3
ln (u − u0) + h0

)
. (3.66)

So, for the functions U and V we have

U = − ln(−α3(u − u0)) − 2h, (3.67)

V = −α0

α3
ln(u − u0) + V0. (3.68)

By substituting these results into Eq. (3.38) we find that α3 = ±α0.

3.2.2 c123 �= 0

In this case we can substitute Eqs. (3.42) and (3.43) into Eq. (3.39) and by defining

Q ≡ c123 − c14 + c2
c123

(c13 − c14 − c2) , (3.69)

we have

Q
(
huu − 2h2u − huUu

)
= 0. (3.70)

And so we must consider the cases where Q �= 0 and Q = 0.
Case B.1 Q �= 0: Then, we have

hu = α1e
2h+U ∝ Vu . (3.71)

Using this result with Eqs. (3.42) and (3.43) we find also that

Uu = α2e
2h+U ∝ Vu, (3.72)

and thus we can set

h = αV + h0, U = βV +U0, (3.73)

for some constants α, β, h0 andU0. Substituting Eqs. (3.73) and (3.63) into Eqs. (3.38)
and (3.40), we find that α and β must satisfy the relations,

β2 + 4αβ + 2c14α
2 − 1 = 0, (3.74)
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2(c14 − c13 − c2)α
2 − 4c2αβ

− (c13 + 2c2)β
2 − c13 = 0, (3.75)

which uniquely determine α and β, but the expressions for them are too long to be
presented here. Inserting the above expressions into Eq. (3.37), we find that

V = − 1

2α + β
ln

[
β̂0(u0 − u)

]
, (3.76)

where β̂0 ≡ α0(2α + β)eU0+2h0 . Therefore, in the present case, once α and β are
determined by Eqs. (3.74) and (3.75), the functions V (u), U (u) and the aether field
h(u) are given, respectively, by Eqs. (3.73) and (3.76).

Case B.2 Q = 0: It will be helpful to try to solve for c14 as a function of the other
ci ’s, and to introduce a new parameter δ such that:

δ = 2c2 + c13. (3.77)

Then we find from Eq. (3.69) that

c14δ = c13(c2 + δ), (3.78)

If we consider δ = 0, then we have c2 = 0 since c13 �= 0. But by Eq. (3.77) this means
we must have c13 = 0, which violates our assumption, and so we must have

δ �= 0, (3.79)

and thus

c14 = c13
(
1 + c2

δ

)
, (3.80)

is a general solution for the Q = 0 case. However, we can still have c2 = 0 in general.
If that is the case then we have c13 = c14 and we find from Eq. (3.40) that

V 2
u = −U 2

u , (3.81)

and so to have real functions wemust have U and V constant in u. Then by considering
Eqs. (3.42) and (3.43) with a vanishing Uu we have

huu − h2u = 0, (3.82)

which has the solution

h = − ln(α(u − u0)) + h0, (c2 = 0), (3.83)

where α and h0 are the integration constants. So, in the case of c2 = 0 we have a static
Minkowskian spacetime with a dynamical aether.
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If c2 �= 0, then we find from Eqs. (3.42) and (3.43) that

Uuu −U 2
u = 2c2

δ

(
h2u + huUu − huu

)
+ 2c2

δ
h2u + 2huUu, (3.84)

and

2Uuu −U 2
u = +2c2

δ
h2u + 2huUu + D

(
h2u + huUu − huu

)
, (3.85)

where

D ≡ 2c2c213
c123δ

+ 1

δ

(
c213 + 2c2

)
. (3.86)

These expressions can be substituted into Eqs. (3.38) and (3.41) to find

V 2
u =

(
c13

(c2 + δ)

c123
− 2c2

δ

)
+ 2c2

δ
h2u + 2huUu, (3.87)

and

V 2
u =

(
c13

(c2 + δ)

c123
− 2c2

c13

)
+ 2c2

δ
h2u + 2huUu . (3.88)

Equating these two gives us

c2
(
huu − h2u − huUu

)
= 0. (3.89)

Since now we have c2 �= 0, then we must have

hu = αeh+U . (3.90)

In this case, Eq. (3.40) reduces to

V 2
u = −2c2

c13
Uuu −U 2

u , (3.91)

and by Eq. (3.38) we also have

V 2
u = 2Uuu −U 2

u , (3.92)

by the result of which we must have

Uuu = 0, (3.93)
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since c123 �= 0 in this case. As Uu must be a constant, then by Eq. (3.92) we find that
Vu must be also a constant, and to keep the constants real we must have Uu and Vu
vanish, as before. Considering this result, Eq. (3.39) reduces to

h2u = 0. (3.94)

Therefore, when c2 �= 0, the spacetime must be Minkowski and the aether field is
simply given by h(u) = h0, this is, the solution in the present case is

(U , V , h) = (U0, V0, h0) , (c2 �= 0), (3.95)

where U0, V0 and h0 are all constants.

4 Summary

In this paper, we have studied gravitational plane waves in Einstein-aether theory,
and found all vacuum solutions of the linearly polarized gravitational plane waves. In
general, such waves need to satisfy five independent Einstein-aether field equations,
given by Eqs. (A.4)–(A.8), for three unknown functions (U (u), V (u), h(u)). There-
fore, the problem in the Einstein-aether theory is overdetermined, and it is expected
that gravitational plane waves exist only for some particular choices of the coupling
constants ci . This is sharply in contrast to Einstein’s general relativity, in which the
problem is actually underdetermined, i.e. the vacuum Einstein field equations Gμν

only yield one independent equation,

2Uuu −U 2
u = V 2

u , (4.1)

for the two unknown functions U and V . Thus, for any given V (u), one can integrate
Eq. (4.1) to find the metric coefficientU (u). This implies that Einstein’s theory allows
the existence of any form of gravitational plane waves. This is no longer true in
Einstein-aether theory, due to the presence of the time-like aether field. In particular,
in Einstein-aether theory in order to have arbitrary forms of gravitational plane waves
exist, the coupling constants ci must be chosen so that one of the following two
conditions must be satisfied,

(i) c13 = c2 = 0, c14 �= 0, h(u) = h0, or

(i i) c13 = c2 = c14 = 0, ∀ h(u). (4.2)

In the former case it can be seen that the aether must be a constant, while in the latter
the aether has no contributions to the spacetime, and Tæ

μν = 0 identically, as can be
seen from Eq. (A.1).

In addition to the above two cases, in which any form of gravitational plane waves
are allowed to exist in Einstein-aether theory, there exist also several particular cases in
which the spacetime and the aether field take particular forms. In particular, non-trivial
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solutions exist in the other six particular cases,

(i i i) c13 = 0, c2 �= c14, c2c14 �= 0,

(iv) c13 = 0, c2 = c14 �= 0,

(v) c13 �= 0, c123 = c14 = 0,

(vi) c13 �= 0, c123 = 0, c14 �= 0, hu = 0,

(vi i) c13 �= 0, c123 = 0, c14 �= 0, hu �= 0,

(vi i i) c13 �= 0, c123 �= 0, Q �= 0, (4.3)

in which the particular solutions of the vacuum Einstein-aether field equations are
given, respectively, by Eqs. (3.24)–(3.25); Eqs. (3.32)–(3.34); Eqs. (3.49)–(3.51); Eqs.
(3.56)–(3.57); Eqs. (3.66)–(3.68), and Eqs. (3.73)–(3.76), where Q is defined by Eq.
(3.69).

In the rest of the cases, the solutions are either not allowed or simply represent the
Minkowski spacetime with either a constant or dynamical aether field.

Some of these cases are problematic, as outlined in Jacobson’s review article [7,8].
Any case in which c123 = 0 results in α2 diverging (suggesting that the current PPN
analysis is not valid here), while any case in which c14 = 0 results in the speeds of the
scalar and vector modes diverging (suggesting that wave equations for these modes
do not exist).

In Case (iv), the squared speed of the spin-0 mode is given by c2S = (2− c2)/(2+
3c2). Thus, to have cS ≥ 1, we must require c2 = c14 < 0, which is in conflict
with the observational constraints of Eq. (2.14). Therefore, this case is ruled out by
observations.

If we require that the speeds of the scalar, vector and tensor modes are all precisely
equal to one, then we find that

c13 = c4 = 0, c2 = c1
1 − 2c1

, (cT = cV = cS = 1), (4.4)

which is satisfied only by Case (iii), and the corresponding solutions are still quite
different from those of GR, even all of these gravitational modes now move at the
same speed as that of the spin-2 graviton in GR.

It should be noted that the results obtained in this paper is quite understandable,
since the aether field is always unity and timelike, while the gravitational plane waves
move only along a null direction. Then, due to their mutual scattering, it is expected
that oppositely moving gravitational plane waves exist generically, and the spacetimes
must depend on both u and v. Therefore, if only a single gravitational wave moving
along a fix null direction is allowed to exist, it is clear that only for particular choices
of the coupling constants ci ’s, can compatible solutions exist.

Thus, it would be very interesting to study the interactions of a plane gravitational
wave with the aether and other matter fields, as well as with a gravitational plane wave
moving in the opposite direction, by paying particular attention on Faraday rotations
and the difference from those found in GR [47,51], due to the presence of the timelike
aether field, which violates LI.
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Appendix A: The Einstein and aether tensors G�� and Tæ
�� and the

aether vector Æ�

For the spacetime of Eq. (3.1), the non-vanishing components of the Einstein tensor
Gμν and Tæ

μν are given by,

G00 = 1

2

(
2Uuu −U 2

u − V 2
u

)
,

T æ
00 = −1

8

[
2c2Uuu + c13

(
V 2
u +U 2

u

)

+ 2
(
c13 + c2 + 3c14

)(
huu − huUu − h2u

)]
,

Tæ
01 = e−2h

4

[
c2

(
Uuu − 2huUu −U 2

u

)

+ (
c2 + c13 − c14

)(
huu − huUu − 2h2u

)]
,

Tæ
11 = −e−4h

8

[
2c2Uuu + c13

(
U 2
u + V 2

u

)

+ 2
(
c2 + c13 − c14

)(
huu − huUu − h2u

)]
,

Tæ
22 = eV−U−2h

8

[
c13

(
2Vuu − V 2

u − 2UuVu − 4huVu
)

− (
c13 + 2c2

)(
2Uuu −U 2

u − 4huUu

)

− 4c2huu + 2
(
3c2 − c13 + c14

)
h2u

]
,

Tæ
33 = −e−(V+U+2h)

8

[
c13

(
2Vuu + V 2

u − 2UuVu − 4huVu
)

+ (
c13 + 2c2

)(
2Uuu −U 2

u − 4huUu

)

+ 4c2huu − 2
(
3c2 − c13 + c14

)
h2u

]
, (A.1)

and Æμ = (
Æ0,Æ1, 0, 0

)
, where

Æ0 = −Æ1e
2h = − e−h

4
√
2

[
2c2Uuu + c13

(
U 2
u + V 2

u

)

+ 2
(
c2 + c13 − c14

)(
huu − huUu − h2u

)]
. (A.2)
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In the vacuum case, we have Tm
μν = 0, and the Einstein-aether equations (2.7)

reduce to

Gμν = Tæ
μν, (A.3)

which yield five independent equations,

2Uuu −
(
V 2
u +U 2

u

)
+ 2c14

(
huu − huUu − h2u

)
= 0, (A.4)

c2
(
Uuu − 2huUu −U 2

u

)

+ (
c2 + c13 − c14

)(
huu − huUu − 2h2u

)
= 0, (A.5)

2c2Uuu + c13
(
U 2
u + V 2

u

)

+ 2
(
c2 + c13 − c14

)(
huu − huUu − h2u

)
= 0, (A.6)

c13
(
2Vuu − V 2

u − 2UuVu − 4huVu
)

− (
c13 + 2c2

)(
2Uuu −U 2

u − 4huUu

)

− 4c2huu + 2
(
3c2 − c13 + c14

)
h2u = 0, (A.7)

c13
(
2Vuu + V 2

u − 2UuVu − 4huVu
)

+ (
c13 + 2c2

)(
2Uuu −U 2

u − 4huUu

)

+ 4c2huu − 2
(
3c2 − c13 + c14

)
h2u = 0 (A.8)

where in Eq. (A.4) we have used the fact that Tæ
00 can be expressed in terms of Tæ

11
which is equal to zero.
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