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Abstract
In the present work, we attempt to find a new class of solutions for the spherically sym-
metric perfect fluid sphere by employing the homotopy perturbation method (HPM),
a new tool via which the mass polynomial function facilitates to tackle the Einstein
field equations. A set of interior solutions found on the basis of the simplest MIT
bag model equation of state in the form p = 1

3 (ρ − 4B) where B is the bag con-
stant. The proposed interior metric for the stellar system is consistent with the exterior
Schwarzschild spacetime on the boundary. In addition, we also conduct a detailed
study on different tests, viz. the energy conditions, TOV equation, adiabatic index,
Buchdahl limit, etc., to verify the physical validity of the proposed model. The numer-
ical value of the used parameters are predicted for different strange star candidates,
for different chosen values of the bag constant. In a nutshell, by exploiting HPM
technique first time ever in the field of relativistic astrophysics, we have predicted in
the present literature a singularity-free and stable stellar model which is suitable to
describe ultra-dense objects, like strange (quark) stars.
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1 Introduction

Several scientists [1–3] have pointed out that the matter made of u, d and s quarks, and
some electrons (to ensure the charge neutrality) known as the strange quark matter,
may bemore stable than the ordinary nuclear matter. The strange stars, named after the
strange quark, are therefore composed of strange matter. The interesting difference
between the strange stars and neutron stars is that the former one can vary in size from
roughly 0–12km whereas neutron stars are mostly of the radius >12km.

Quark matter is self-bounded by the forces of quantum chromodynamics (QCD).
Therefore, like neutron stars, which are gravitationally bounded, the stability of a
strange star is independent of the gravity [4]. However, this statement is not true in
general, e.g. a strange star, having a central energy density slightly above themaximum
mass limit is not stable and due to the gravitational force, it needs to collapse to a black
hole. This stability threshold depends on the underlying gravitational interaction and
differs between alternative theories of the gravity. Essentially the degeneracy pressure
of the nucleons within a neutron star is balanced by the gravitational force, and hence
for the star to be stable its mass must be greater than a certain value.

In 1916 first time ever Karl Schwarzschild [5] presented an exact solution to the
Einstein field equations for a spherically symmetric isotropic system. Later in 1939
Oppenheimer and Volkoff [6] introduced the equation of hydrostatic equilibrium for
isotropic spherically symmetric stellar configuration. In the same year, Tolman [7]
presented seven solutions of the Einstein field equations. Delgaty and Lake [8] in their
pioneering work showed that for isolated, static and spherically symmetric perfect
fluid stellar system only 16 solutions of Einstein’s field equations out of available 127
solutions are physically acceptable. It is worth mentioning that in this line several
scientists [9–14] attempted to produce a physically acceptable solution of the Einstein
field equation for the isotropic spherically symmetric stellar system.

Solving analytically the non-linear equations it has always been a challenge to the
astrophysicists. The Homotopy Perturbation Method (HPM) is a powerful as well as
very simple tool to solve this kind of equations with the least number of assump-
tions. To solve the differential and integral equations He [15,16] first proposed the
semi-analyticalHPMtechnique in 1998 and later on improved it further [17,18]. Imme-
diately, it drew attention to many researchers [19–25] for solving non-homogeneous
as well as non-linear partial differential equations. The important study by Cveticanin
[26] has revealed that for a large range of nonlinear problems in the applied and fun-
damental science it is very advantageous to use the HPM technique which provides an
analytical approximate solution. As the obtained solutions by the technique of HPM
appear as the rapidly converging infinite series, hence it is enough to limit the calcu-
lations for the first few orders. It is worth mentioning that recently in both the field of
cosmology and astrophysics several authors [27–30] have successfully used the HPM
technique in their studies. Interestingly, unlike other usual perturbation techniques,
any restrictive assumption, linearization or discretization is not essential for HPM to
obtain a simple and effective solution to the equations to be solved.

Using theMIT bag model, Rahaman et al. [31] have obtained a deterministic model
of strange stars, where they considered amass polynomial and analyzed all the physical
properties. However, they were unable to obtain the physical properties of the model
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up to 6km from the center of the system. We would also refer to the work of Rahaman
et al. [32] where the HPM has been employed for a spherically symmetric system of
radiating star which suffers from stability condition. Again, Aziz et al. [33] in their
study used the HPM to describe a compact stellar system, but they failed to provide
a singularity-free stable stellar model. In this context, it is worth mentioning that the
present investigation is the first study where the HPM technique has been employed
successfully to provide a singularity-free aswell as stable spherically symmetric stellar
system and thus offers a possibility to open up a new arena in the studies of relativistic
astrophysics.

In the present work, we have developed an expression of mass (in the polynomial
form) as a function of the radial coordinate r which is appropriate for the strange stars.
However, it is not assumed arbitrarily, rather we have computed this by the help of
HPM. Further, we have substituted that expression of mass to solve the Einstein field
equations by using the MIT bag EOS in the form p = 1

3 (ρ −4B). The entire solutions
set thus obtained provides a stable model of ultra-dense compact stars.

The outline of our investigation is as follows: In Sect. 2 we discuss the EOS for
the quark stars and show the basic formalism of the HPM in Sect. 3. To calculate
the expression for the mass function of the system in Sect. 4, firstly, we set up the
basic and essential stellar structure equations in Sect. 4.1, and then applied the HPM
technique in Sect. 4.2. Section 5 deals with the solution of the Einstein field equations
for different physical parameters, viz. the pressure and energy density. We have dis-
cussed and explored several physical features in Sect. 6 and a comparative study has
been conducted in Sect. 7 for the validity of the data set of the present model with the
existing candidates of the strange stars available in the literature [34–38]. In the last
Sect. 8 we remark on some of the salient features of the present model.

2 TheMIT bag equation of state

Considering the three flavors of quarks (u, d and s) as non-interacting, i.e. zero strong
coupling constant and confined in a bag, the simplest and linear form of the EOS can
be written as

p + B =
∑

f

p f , (1)

where the external bag pressure B counterbalanced the sum of the individual pressures
p f of all the quarks. Themasses of the quarkmatter aremuch higher than the chemical
potentials involved in the system (� 300MeV). Also, we exclude the effects of leptons
in the system since in the present case the leptons are not required to electrically
neutralize the phase [39].

The deconfined quarks inside the bag have the total energy density ρ given by

ρ =
∑

f

ρ f + B, (2)

where ρ f = 3p f is energy density of the individual quarks.
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Using Eqs. (1) and (2) the EOS of the matter distribution adopts the simple form
as follows

p = 1

3
(ρ − 4 B). (3)

Equation (3) is featuring the well-known MIT bag EOS to describe strange quark
stars. The successful use of this EOS can be found in the recent several works [40–47].
However, Kalam et al. [48] in their work showed that a wide range of values of the
bag constant is allowed which is well supported by the recent CERN-SPS and RHIC
data [49]. Therefore, in the present study, following the proposals of Farhi and Jaffe
[39] and Alcock et al. [50] we choose higher values of bag constant arbitrarily as
83MeV/fm3 [31], 100MeV/fm3, and 120MeV/fm3.

3 Basic formalism of the homotopy perturbationmethod

In order to demonstrate the basic formalism of HPM for solving nonlinear differential
equations, let us consider a general nonlinear differential equation given as

L (u) + N (u) = f (r , t) ; r ∈ Ω, (4)

with the boundary condition

B

(
u,

∂u

∂n

)
= 0; r ∈ γ, (5)

where L is a linear operator, N is a non-linear operator, f (r , t) is a known analytical
function, B is the boundary operator and γ is the boundary of the domain Ω .

By using the homotopy method, one can construct a homotopy

v (r , p) : γ × [0, 1] → R, (6)

which satisfies [18]

H (v, p) = (1 − p) [L (v) − L (u0)] + p [L (v) + N (v) − f (r , t)] = 0, (7)

H (v, p) = L (v) − L (u0) + p [L (u0) + N (v) − f (r , t)] = 0, (8)

where p ∈ [0, 1] is an embedding parameter and u0 is the initial approximation which
is nothing but the initial value of the unknown u. Here

H (v, 0) = L (v) − L (u0) = 0, (9)

H (v, 1) = L (v) + N (v) − f (r , t) = 0. (10)

The changing process of p from 0 to 1 is nothing but v (r , p) changes from u0
to u (r). This is known as the deformation of homotopy and L (v) − L (u0) and
L (v) + N (v) − f (r , t) are homotopic.
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The solution of Eq. 10 can be expressed as a power series of p and is given by

v = u0 + pv1 + p2v2 + · · · (11)

By the choice of p → 1, Eq. (8) reduces to Eq. (4). Again, Eq. (11) turns into the
approximate solution of Eq. (4) and can be written as

lim
p→1

v = u0 + v1 + v2 + · · · . (12)

The series in Eq. (12) is a convergent series for most of the cases. However, con-
vergence rate depends on the non-linear operator N (v).

4 Calculation of mass of the spherical system

4.1 Stellar structure equations

To investigate the spherically symmetric compact stellar model of perfect fluid we are
using the equation of state (EOS) in the following form

p = 1

3
(ρ − 4B), (13)

where p is the pressure and ρ is the energy density of the matter distribution inside
the compact star.

We consider the interior spacetime metric of the spherical symmetric stellar system
as (in natural units G = c = h = k = 1)

ds2 = −gtt (r)dt
2 + grr (r)dr

2 + r2(dθ2 + sin2 θdφ2), (14)

where m(r) is the mass distribution of the system. The metric potentials, i.e., gtt and
grr are the function of the radial component r only.

The general energy-momentum tensor for the spherically symmetric perfect fluid
system is as follows

Tμ
ν = (ρ + p)uμuν + pgμ

ν , (15)

with uμuμ = 1. Here the vector uμ is the fluid 4-velocity of the local rest frame.
The Einstein field equations for the metric (14) and the matter distribution given in

Eq. (13) can be written as

1

grr

(
1

r

d ln (grr)

dr
− 1

r2

)
+ 1

r2
= 8πρ, (16)

1

grr

(
1

r2
+ 1

r

d ln (gtt)

dr

)
− 1

r2
= 8π p, (17)
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1

2grr

[
1

2

(
d ln (gtt)

dr

)2

+ d2 ln (gtt)

dr2
− 1

2

d ln (grr)

dr

d ln (gtt)

dr

+ 1

r

(
d ln (gtt)

dr
− d ln (grr)

dr

)]
= 8π p. (18)

For the present spherically symmetric system the mass function can be defined as

m (r) = 4π
∫ r

0
ρ (r) r2dr . (19)

We assume that the exterior spacetime is governed by thewell knownSchwarzschild
metric given as

ds2 = −
(
1 − 2M

R

)
dt2 +

(
1 − 2M

R

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (20)

Using Eqs. (16), (19) and (20) we obtain the metric component grr as follows

grr =
(
1 − 2m

r

)−1

. (21)

Now, the stellar structure equations are essential to describe the spherically sym-
metric isotropic system and are given by

dm
dr = 4πr2ρ, (22)

d ln(grr)
dr = − 2

(ρ+p)
dp
dr . (23)

Here Eq. (23) represents the conservation of the energy-momentum tensor, Tμ
ν

and also known as the Tolman–Oppenheimer–Volkoff (TOV) equation [6,7]. Again,
substituting Eqs. (17) and (21) into Eq. (23) we have the novel hydrodynamic equation
given as

dp

dr
= − (ρ + p)

(
4πrp + m

r2

)

(
1 − 2m

r

) . (24)

By substituting Eqs. (13) and (22) into Eq. (24) we obtain

m′′ + 256

3
B2π2r3 − 80

3
Bπrm′ − 16 Bπm

− 2m′′m
r

+ 4

3

m′2

r
+ 8mm′

r2
− 2m′

r
= 0, (25)

where ‘′’ denotes the derivation with respect to ‘r ’. The above non-linear differential
equation is nothing but the TOV equation in terms of the mass function m(r) only. By
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solving this Eq. (25) one can obtain the expression for the mass profile of the stellar
system. Now to solve the highly non-linear differential Eq. (25) we shall apply the
HPM technique in the following subsection.

4.2 Application of the HPM

For a spherical symmetric stellar system, an initial expression of mass can be chosen
asm(r) = ar3, where a is a constant. We have already mentioned in Sect. 3 that using
the formalism HPM as provided by He [18] we have calculated the expression of m.
Hence, the Homotopy for the non-linear differential Eq. (25) takes form as

m′′ − m0
′′ + p

[
m0

′′ + 256 B2π2r3

3
− 80 Bπ rm′

3
− 16 Bπ m

− 2m′′m
r

+ 4

3

m′2

r
+ 8mm′

r2
− 2m′

r

]
, (26)

where p is the embedding parameter such as p ∈ [0, 1].
To find out the expression for m, we consider the general solution of m as follows:

m = (m0 + p1m1 + p2m2 + · · · ). (27)

As, mentioned above the chosen initial condition is given as

m0 (r) = ar3. (28)

However, the initial boundary condition can be chosen as

m0 (0) = m0
′ (0) = 0, (29)

mi (0) = mi
′ (0) = 0, (30)

where i > 1.
Now substituting Eq. (27) into (26) we have

p0 : m0
′′ − m0

′′ = 0 (31)

p1 : m1
′′ + m0

′′ + 256 B2π2r3

3
− 80 Bπ rm0

′

3
− 16 Bπ m0 − 2m0

′′m0

r

+ 4

3

m0
′2

r
+ 8m0m0

′

r2
− 2m0

′

r
= 0 (32)

p2 : m2
′′ − 80 Bπ rm1

′

3
− 16 Bπ m1 − 2m1

′′m0

r
− −2m0

′′m1

r

+ 8

3

m0
′m1

′

r
+ 8m0m1

′

r2
+ 8m1m0

′

r2
− 2m0

′

r
= 0. (33)
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Fig. 1 Variation of the mass
function m, normalized to the
solar mass M� against the radial
distance r/R for the strange star
candidate Cen X − 3. Here
B0 = 1MeV/fm3

By using the set of linear Eqs. (31)–(32), chosen initial condition (28) and the
boundary conditions (29) and (30), we get their solutions as

m0 (r) = ar3, (34)

m1 (r) = −
(
256 B2π2

3
− 96 aBπ + 24 a2

)
r5

20
, (35)

m2 (r) =
(
256 B2π2

3
− 96 aBπ + 24 a2

)(
−8 Bπ r7

45
+ 13 ar7

210
− r5

40

)
.

(36)

Here our calculation is intentionally limited to the minimum degree of approxima-
tion. Hence applying the HPM method by using the solutions (34)–(36) we have the
final solution of Eq. (26) as

m = limp→1(m0 + p1m1 + p2m2 + · · · )
= ar3 +

(
256 B2π2

3
− 96 aBπ + 24 a2

) (
13 a

210
− 8 Bπ

45

)
r7

−
(
32 B2π2

5
− 36 aBπ

5
+ 9

5
a2

)
r5, (37)

where for the sake of simplicity, we have limited our solution up to third order of
approximation. The variation of the mass function, m with the radial coordinate r/R
for the different chosen values of B has been featured in Fig 1, which shows the
regularity of the achieved solution as m = 0 at the center.

5 The solution of Einstein’s field equations

Now substituting Eq. (37) in (16), we get the energy density of the system as

ρ = 1

4π r2

[
3 ar2 + 7 ρ1

(
13 a

210
− 8 Bπ

45

)
r6 − 3

8
ρ1r

4
]
, (38)

123



A new model for strange stars Page 9 of 18 112

Fig. 2 Variation of the energy
density as a function of the
radial distance r/R for the
strange star Cen X − 3

where ρ1 = 256 B2π2

3 − 96 aBπ + 24 a2. The behaviour of this energy density are
shown in Fig. 2.

From Eqs. (13) and (38) one get

p = 1

12πr2

[
−16 Bπ r2 + 3 ar2 + 7 ρ1

(
13 a

210
− 8 Bπ

45

)
r6 − 3

8
ρ1r

4
]
, (39)

Substituting Eqs. (13) and (22) into (17) we have

gtt = C
eψ(r)

r
4
3

(
1 − 2m(r)

r

) 1
3

, (40)

where ψ (r) = 4
3

∫ 1−8 Bπ r2
r−2m(r) dr .

After evaluating C , based on the suitable boundary condition, Eq. (40) can be
written as

gtt = e[ψ(r)−ψ(R)] R
4
3

r
4
3

(
1 − 2M

R

) 4
3

(
1 − 2m(r)

r

) 1
3

. (41)

This is the time–time component of the interior metric of the ultra-dense spherical
stellar system.

The nature of the pressure is shown in Fig. 3 which shows the physically acceptable
feature. We have plotted the variation of the metric potentials gtt and grr against
the radial coordinate r/R in Fig. 4 which confirms that our system is free from the
geometrical singularity.

6 Physical properties of the stars

In this section we are going to discuss different physical features of the strange stars
using the proposed model.

123



112 Page 10 of 18 D. Deb et al.

Fig. 3 Variation of the pressures
as a function of the radial
distance r/R for the strange star
Cen X − 3

Fig. 4 Variation of gtt and grr as a function of the radial distance r/R for the strange star candidate
Cen X − 3

6.1 Stability of the system

6.1.1 The Tolman–Oppenheimer–Volkoff (TOV) equation

To study the stability of the system we have checked the stability equation given by
Tolman [7], Oppenheimer and Volkoff [6]. The TOV equation depicts the equilibrium
condition of a star subject to the gravitational and hydrostatic forces. The generalized
TOV equation can be written as [51,52]

− Mg(ρ + p)

r2
e

λ−γ
2 − dp

dr
= 0, (42)
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Fig. 5 Variation of the different forces due to three values of bag constant, as a function of the radial distance
r/R for the strange star Cen X − 3

where the effective gravitational mass Mg of the system is defined as

Mg = 1

2
r2e

γ−λ
2 γ ′, (43)

with γ (r) and λ (r) are respectively ln gtt and − ln

[
1 − 2m(r)

r

]
.

The TOV equation for our system can be translated as

2

3

(B − ρ) gtt ′

gtt
− 1

3

dρ

dr
= 0, (44)

where the first term of the above equation is the gravitational force (Fg) and the second
term is the hydrostatic force (Fh) respectively, so that for equilibrium of the system
we should have

Fg + Fh = 0. (45)

We have drawn the forces in Fig. 5 which describes the overall behavior of different
forces.

6.1.2 Adiabatic index

For the isotropic spherical stellar system, Chandrasekhar [54] in his pioneering works
has shown that the essential and sufficient condition for the stability against the radial
pulsation is the adiabatic index (Γ ) of the system should be greater that 4/3, i.e.,
Γ > 4/3. From our model, we have

Γ = ρ + p

p

dp

dρ
=

[
(1792 Bπ − 624 a) r4 + 540 r2

]
ρ1 + 5760 Bπ − 4320 a

[
(1344 Bπ − 468 a) r4 + 405 r2

]
ρ1 + 17280 Bπ − 3240 a

.

(46)

From Fig. 6 it is clear that adiabatic index for our system is greater than 4/3 in all
the interior points of the system, which confirms that the system is stable by nature.
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Fig. 6 Variation of the adiabatic
index as a function of the radial
distance r/R for the strange star
Cen X − 3

Fig. 7 Variation of the different energy conditions as a function of the radial distance r/R for the strange
star Cen X − 3

6.2 Energy conditions

The ultra-dense spherically symmetric system should satisfy all the energy condi-
tions, viz. null energy condition (NEC), weak energy condition (WEC), strong energy
condition (SEC) and dominant energy condition (DEC) respectively given by

NEC : ρ + p ≥ 0, (47)

WEC : ρ + p ≥ 0, ρ ≥ 0, (48)

SEC : ρ + p ≥ 0, ρ + 3p ≥ 0, (49)

DEC : ρ ≥ 0; ρ − p ≥ 0. (50)

In Fig. 7 we have shown the behavior of all the abovementioned energy inequalities
and it is clear that our system is consistent with all the energy conditions.

6.3 Surface redshift

The compactification factor of a star is defined as themass-to-radius ratio of the system,
i.e.u(r) = m(r)/r .According to the condition ofBuchdahl [53] themaximumallowed
mass radius ratio is ≤ 8/9 (≈ 0.89) for the perfect fluid sphere.
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Fig. 8 Variation of the compactness (left panel) and redshift (right panel) as a function of the radial distance
r/R for the strange star Cen X − 3

For our system the compactification factor is

u(r) = ar2 − 3 ρ1r4

40
+ ρ1

(
13 a

210
− 8 Bπ

45

)
r6. (51)

Surface redshift (Zs) of a star is defined as

1 + Zs = [1 − 2u(R)]−
1
2 , (52)

which for the above studied system is given by

Zs = 1√
1 − 2 aR2 + 3 ρ1R4

20 − 2 ρ1
( 13 a
210 − 8 Bπ

45

)
R6

− 1. (53)

Variation of the compactification factor with respect to the fractional radial coordi-
nate r/R are shown in the left panel of Fig. 8. Further, we have shown variation of the

redshift function, Z =
(

1√
gtt

− 1
)
with the radial coordinate r/R in the right panel

of Fig. 8. From the X-ray spectrum of the stars, the surface redshift Zs can be easily
observed and correspondingly compactness can be calculated.

7 A comparative study

To study the physical properties of the system we choose the star Cen X − 3 as
a representative of the strange stars, having parameters a = 2448.995MeV/fm3,
R = 9.819km and mass m(R) = 1.49 M� for B = 83 MeV/fm3.

With the help of the chosen values of radius and mass, we have shown different
physical properties of the proposed structure of strange stars (Table 1). The observed
mass in Table 1 is available in the literature [34–38]. However, in the lower as well as
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higher mass limits we do not yet find any observed stars whose mass tally with our
prepared data sheet and thus kept blank.

In Table 2 we have presented a data sheet for different physical parameters of the
strange star candidate Cen X − 3 due to three chosen values of B as 83 MeV/fm3,
100MeV / f m3, and 120MeV / f m3.We find that as the values of B increase the stellar
system becomesmore compact and energy density within the stars increases gradually.
With the increasing values of B the observed value of the mass of Cen X − 3 [34]
is achieved for the gradually decreasing values of radius, i.e., the stellar system does
shrink. The values of surface redshift also rise with the increasing values of B.

8 Discussions and conclusions

In this article, we have tried to solve stellar hydrodynamic equation (i.e. TOVequation)
directly by using HPM technique and derived the mass profile for the spherically
symmetric compact stellar system. Further, we have obtained expressions for different
physical parameters, viz., gtt , grr , ρ and p. The salient features of the proposed stellar
model from the present investigation are as follows:

(1) Our model is compatible with the compact stars, especially that of strange stars
as seen from the comparative study of the previous Sect. 7.

(2) In Sect. 6.1, by studying different tests, viz., equilibrium of different forces and
stability against radial pulsation, we find out that our model predicts a completely
stable stellar system. Also, to be consistent with the causality condition the square
of the sound speed (v2s )must liewithin the limit 0 to 1. In ourwork, for the specified
sets of data, we find that v2s = d p

dρ
= 1

3 , i.e. 0 ≤ v2s ≤ 1, which also confirms the
stability of the system.

(3) Figs. 2, 3 and 4 show interesting features that the physical parameters, viz., ρ,
p, gtt and grr have finite values at the center, which confirm that our system is
completely free from any sort of geometric or physical singularities.

(4) From our model, we find that 2M
R < 8

9 for all the strange star candidates. Hence,
Buchdahl condition [53] holds good for our system. Also, as r → 0 we find
m(r) → 0 which shows that the mass function is regular at the center.

(5) In the present paper, with the help of the chosen radius and specific value of the
bag constant [32] we have derived the value of the mass for different possible
strange star candidates (shown in Table 1), whereas in Table 2 we have shown
the possible variation of the physical parameters for different chosen values of
bag constants. However, it is worth mentioning that the values of B are chosen
randomly to present the numerical and graphical outputs of the solutions.

(6) Using the chosen numerical values of the radius and bag constant, we have calcu-
lated different properties of the interior solution of the spherical symmetric body
and also graphically presented different physical features of the model. From
Fig. 7 it is clear that our model satisfies all the energy conditions which is an
essential condition for a compact stellar system to be physically valid. In the
present investigation, we find high surface redshift values (0.30 − 0.51), which
are quite relevant for strange star candidates.
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So both the data, redshift as well as mass, indicate that the model studied in the
present paper is a representative of a compact star and is suitable to explore different
properties of strange stars.
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