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Abstract
For a plane gravitational wave whose profile is given, in Brinkmann coordinates, by a
2×2 symmetric tracelessmatrix K (U ), thematrix Sturm–Liouville equation P̈ = K P
plays a multiple and central rôle: (i) it determines the isometries; (ii) it appears as the
key tool for switching from Brinkmann to BJR coordinates and vice versa; (iii) it
determines the trajectories of particles initially at rest. All trajectories can be obtained
from trivial “Carrollian” ones by a suitable action of the (broken) Carrollian isometry
group.

Keywords Gravitational waves · Sturm–Liouville equation · Carroll group

1 Introduction

The motion of test particles under the influence of a gravitational wave (GW), called
the Memory Effect [1,2], has attracted considerable attention as a potential tool to
detect gravitational waves. Approximating a gravitational wave by an exact plane
wave reveals, in particular, that particles initially at rest will move, after the wave has
passed, with constant but non-vanishing relative velocity: this is the Velocity Effect
[3–11].
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In this Letter we point out the central role played by (i) a matrix Sturm–Liouville
equation [12]

P̈ = K P , (1.1)

where K (U ) is the profile of the wave, and (ii) by Carroll(type) symmetry [13,14].
Equation (1.1) (i) determines the isometries; (ii) appears as the key tool for switching
from Brinkmann (B) to Baldwin-Jeffery-Rosen (BJR) coordinates and vice versa; (iii)
determines the trajectories of particles initially at rest.

In BJR coordinates the symmetries and the trajectories are both conveniently deter-
mined in terms of another matrix, H(u) in (2.8) below. In terms of B coordinates, this
role is overtaken by the matrix Q = P H in (3.5), which satisfies again the Sturm–
Liouville equation above.

Generic gravitational waves have long been known to have a 5-parameter isometry
group [4,15,16], recently identified as the subgroup of the Carroll group with rotations
omitted [13,14,17].1

Carroll symmetry has long been considered as a mathematical curiosity irrelevant
for physics, for the good reason that a particle with Carroll symmetry can not move
[13,14,18–20]. In this Letter we point out that (broken) Carroll symmetry does play
a fundamental rôle, namely in describing particle motion in a gravitational wave
background.

2 Killing vectors and isometries

In Brinkmann (B) coordinates (X, U , V ) the profile of a plane gravitational wave is
given by the symmetric and traceless 2 × 2 matrix K (U ) = Ki j (U ) [15,16,21],

ds2 = δi j d Xi d X j + 2dUdV + Ki j (U )Xi X j dU 2 , (2.1a)

Ki j (U )Xi X j = 1

2
A+(U )

((
X1

)2 −
(

X2
)2) + A×(U ) X1X2 , (2.1b)

where A+ and A× are the + and × polarization-state amplitudes. Previously we
studied : (i) linearly polarized waves: A× = 0 and A+ is typically a [derivative of a]
Gaussian [8,9,22] or a Dirac delta [22,23]; (ii) circularly polarized sandwich waves2

[11]:

A+(U ) = C2 λ√
π

e−λ2U2
cos(ωU ) , A×(U ) = C2 λ√

π
e−λ2U2

sin(ωU ) ; (2.2)

(iii) circularly polarized waves with periodic profile [11]

A+(U ) = C2 cos(ωU ) , A×(U ) = C2 sin(ωU ) . (2.3)

1 The Carroll group [13,14] is the subgroup of the Bargmann group with no time translations; the latter is
itself the subgroup of the Poincaré group which leaves ∂V invariant. The Bargmann group is a 1-parameter
central extension of the Galilei group upon which it projects when translations along V are factored out.
For circularly polarised periodic waves the symmetry can be extend to a 6-parameter group [11,16].
2 A sandwich wave is one which vanishes outside some finite interval [Ui , U f ] [6,15].
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Throughout this Letter, we limit ourselves to sandwich waves with C1 profile.
Impulsive waves with Dirac delta-function profiles have been studied elsewhere [22,
23].

A particularly clear approach to isometries is that of Torre [24] who pointed out
that, in Brinkmann coordinates (X, U , V ), the Killing vectors are

Si (U )∂i + Ṡi (U )Xi ∂V , ∂V , (2.4)

where the dot means d/dU , and where Si , i = 1, 2 is a solution of the vector equation

S̈i (U ) = Ki j (U )S j (U ) . (2.5)

The simplest example is that of Minkowski space, Ki j ≡ 0, when (2.5) is solved by
Si = γi + βiU and (2.4) is a combination of translations in the transverse plane and
two infinitesimal Galilei boost lifted to (2.1) viewed as a Bargmann space [25,26],

Y = (γi + Uβi )∂i +
(
δ + Xiβi

)
∂V . (2.6)

The fifth isometry is the “vertical translation” generated by ∂V .
Things become more complicated if the profile is non-trivial. In the linearly polar-

ized case A× = 0 with a time independent profile A+ = D �= 0 a real constant, for
example, transverse translations are no longer isometries. In this simple but rather non-
physical (non-sandwich) caseEq. (2.5) decouples into two time-independent equations
of the oscillator-form, one of them attractive and the other repulsive, depending on
the sign of D. The solution of (2.5) is therefore a 4-parameter linear combinations
which mixes sinh(

√|D| U ) and cosh(
√|D| U ) in the repulsive, and sin(

√|D| U ) and
cos(

√|D| U ) in the attractive component. But when D �= const., the Sturm–Liouville
problem (2.5) has no analytic solution in general, and in the polarized case with time
dependent profile everything becomes even worse. Various properties of the Killing
vector fields and the group they generate were explored in [27].

The problem of solving the Sturm–Liouville equation (2.5) was circumvented by
Souriau [4] who suggested using BJR coordinates [28–30] instead, in terms of which
the metric may be written as

ai j (u) dxi dx j + 2du dv, (2.7)

with a(u) = (ai j (u)) a positive definite 2 × 2 matrix, which is an otherwise arbitrary
function of “non-relativistic time”,u.3 Thennatural translationsx → x+c, v → v+w

are manifest isometries. Moreover, implementing b ∈ R
2 through the 2 × 2 matrix

valued function

H(u) =
∫ u

u0
a−1(w)dw , (2.8)

3 The BJR coordinates are valid only in finite intervals before becoming singular [6], see Sect. 3.
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as [4,17],

x → x + H(u)b, (2.9a)

u → u, (2.9b)

v → v − b · x − 1
2b · H(u)b, (2.9c)

yields two further isometries. Souriau’s form (2.9) allows one to determine the group
structure with the remarkable result that the above-mentioned generic 5-parameter
isometry group [15,16] we denote here by G may be identified, for any profile, as the
subgroup of the Carroll group with rotations omitted [17].

The transformations (2.9) generated by b are, in particular, boosts, implemented in
an unusual way. In the Minkowski case a = Id is the unit matrix so that HMink(u) =
(u − u0) Id and the standard extension of the Galilei group [lifted to flat Bargmann
space] is recovered.

3 Brinkmann⇔ BJR

The relation between Brinkmann and BJR coordinates is [12]

X = P(u) x, U = u, V = v − 1

4
x · ȧ(u)x with a(u) = PT(u)P(u) , (3.1)

where the 2 × 2 matrix P satisfies

P̈ = K P, PT Ṗ − ṖT P = 0. (3.2)

The first of these is a matrix Sturm–Liouville equation for P . If this is satisfied, then
PT Ṗ − ṖT P = 0 is shown to be a constant of the motion. The second equation is
therefore satisfied when it holds at an arbitrary moment.

We emphasise that while the B-coordinates are global, the BJR coordinates are
valid only in a finite interval: the mapping (3.1) necessarily becomes singular when

det(a) = 0 or equivalently det(P) = 0. (3.3)

The mapping (3.1) trades the quadratic “potential” Ki j (U )Xi X j in (2.1) for a “time”-
dependent transverse metric a(u) = (

ai j (u)
)
in (2.7) and vice versa.

When expressed in B coordinates, the natural BJR transverse translations x → x+c
become “time-dependent translations of the Newton–Hooke form” [31,32]

X → X + P(u) c. (3.4)

Further insight is gained by introducing the 2 × 2 matrix

Q(U ) = (
P H

)
(U ) = P(U )

∫ U

U0

(
P−1(PT )−1)(w)dw. (3.5)
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Then combining (2.9) with (3.1) yields, for boosts,

X → X + Q b, (3.6a)

V → V − X · Q̇ b − 1

2
Q b · Q̇ b. (3.6b)

Equation (3.6) can be tested by inserting the Minkowskian values; reassuringly, the
usual Galilean expression is recovered. Moreover, a straightforward calculation using
(2.8), (3.1) and (3.2) shows that Q satisfies the samematrix Sturm–Liouville equations
(3.2) as P does,

Q̈ = K Q, QT Q̇ − Q̇T Q = 0. (3.7)

Working infinitesimally, only those terms which are linear in b contribute, and we
recover the rule (2.4) of Torre [24] with Si = Pci , c1 = (1, 0) and c2 = (0, 1) for
translations, and Si = Qbi for boosts, respectively.

4 Trajectories

The G-symmetry implies that4

p=a(u) ẋ, k=x(u) − H(u) p, (4.1)

interpreted as conserved linear and boost-momenta. Reversing these relations, the
geodesics may be expressed using the Noetherian quantities above [4,8,9],

x(u) = H(u) p + k, v(u) = −1

2
p · H(u) p + e u + v0, (4.2)

where

e = 1

2
gμν ẋμ ẋν (4.3)

is another constant of the motion, whose sign only depends on the nature (time-
like/spacelike or null) of the geodesic. v0 is a constant of integration. Once the values
of the conserved quantities are fixed, the only quantity to be calculated is the matrix-
valued function H(u) in (2.8), which thus determines both how the isometries act,
(2.9), and also the evolution of causal geodesics, (4.2). H(u) is in turn related to the
Sturm–Liouville solution P in (3.2). In flat Minkowski space H(u) = u Id yields free
motion, x(u) = (u − u0) p + k, v(u) = (u − u0)(− 1

2 | p|2 + e) + v0.

Returning to the general metric (2.7), requiring that our particles be at rest before
the gravitational wave arrives implies, by (4.1), p = 0 for all profiles:

x = x0 ≡ k = const., v = (u − u0)e + v0. (4.4)

4 The conserved quantity associated with the “vertical” Killing vector ∂V can be used to show that proper
time and u are proportional.
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With tongue-in-cheek, we call it “Carrollian”, since there is no (transverse) motion—
the hallmark of “Carrollian” physics [13,14,18–20].5

Remarkably, every geodesic is obtained froma simple one of the form (4.4) by a suit-
able symmetry transformation [3,4,17]. Equation (4.2) says indeed that any geodesic
determines and is, conversely, determined by six constants of the motion. Then we
note that the isometry group G acts on the constants of the motion 
 = ( p,k, e, v0)
according to [4,17]

( p,k, e, v0) → ( p + b,k + c, e, v0 + f − b · k). (4.5)

This action leaves e in (4.3) invariant, however for any fixed value of e we can find
an appropriate element of G which brings 
 = ( p,k, e, v0) to 
0 = ( p = 0,k =
0, e, v0 = 0). Conversely, any given set 
 can be reached from 
0 by the action of
an isometry. The geodesic with parameters 
0 is (4.4) with x0 = 0 and v0 = 0, for
which the trajectory is simply x(u) = 0 , v(u) = (u −u0) e. Conversely, the geodesic
with parameters 
 is obtained in turn by implementing the 
0 → 
 isometry as in
(2.9), as illustrated on Fig. 3 of [17].

One can wonder how all this looks in B coordinates. The answer can be obtained
by “exporting” the trajectories from BJR to B using (3.1).6 Choosing X0 = x0 in the
before zone,

X(U ) = P(U )X0, (4.6a)

V (U ) = (U − U0)e + v0 − 1

4

d(X2)

dU
(U ) (4.6b)

which, for X0 = 0 and v0 = 0, remains “Carrollian” in that X(U ) = 0, V (U ) =
(U − U0) e.

5 Illustration: polarized sandwich waves

Let us indeed consider a circularly polarised oscillating sandwich wave with Gaussian
envelope (2.2) , shown in Fig.1. The simple p = 0 trajectory (4.4) describes themotion
of a particle at rest in the before zone. BJR coordinates are valid between caustics,
which appear where det

(
P(u1)

) = 0; numerically, we found, in the neighborhood of
u0 = 0, u1 = − 2.80 < u < u2 = 2.74; Brinkmann coordinates work for all U .

Then (4.6) can be plotted after solving the Sturm–Liouville eqn (3.2) numerically.
Figure 2 shows, however, that even such simple trajectories become complicated-
looking, with the exception of the one for X0 = 0.

5 Remember that the 4D gravitational wave spacetime is in fact the “Bargmann space” for both a non-
relativistic and for a Carroll particle in the transverse plane [19,25]; geodesics in 4D project to motions in
2 + 1 dimensions.
6 Comparison with the trajectories obtained by solving directly the equations of motion numerically shows
a perfect overlapping. This is a third appearance of the solution P of the SL eqn (3.2). In Souriau’s approach
it is the determinant of the metric (2.1) which satisfies a Sturm–Liouville equation.

123



Sturm–Liouville and Carroll: at the heart of the memory effect Page 7 of 9 107

Fig. 1 Polarized sandwich wave
with Gaussian envelope as given
in (2.2). The colors refer to the
A+ and the A× polarisation
components (color figure online)

Fig. 2 The images under the B ⇔ BJR map (4.6) of the simple trajectories (4.4) initially at rest for u0 < 0

at x10 = X(1)
0 = (1, 0) and at x(2)

0 = X(2)
0 = (0, 1), respectively, are, B coordinates, the two columns of the

P matrix. The motion is complicated in the inside-zone but follows straight lines with constant velocity in
the after-zone

Having calculated (numerically) the matrix P , we can proceed to calculating a =
PTP and then H in (2.8), allowing us to plot finally how boosts are implemented in
BJR coordinates in a neighborhood of the origin, x → x + δx, δx = H(u)b, cf.
(2.9), shown on Fig. 3. The implementation differs substantially from the Galilean
one, δx = ub.

6 Conclusion

The Memory Effect boils down to solving the Sturm–Liouville equation (1.1)—a task
which can, in general, be done only numerically.

Particles at rest in the before zone have vanishing momenta, implying that in BJR
coordinates the trajectory is trivial : all those complicated-looking trajectories obtained
before [8,9,11,22] are in fact images of the trivial “Carrollian” ones in (4.4) resp.
(4.6b) by a suitable broken-Carroll isometry [3,4,17] : all complications are hidden
in the Sturm–Liouville equation (1.1). This can be viewed as the gravitational-wave
generalization of the observation that any free non-relativistic motion is obtained from
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Fig. 3 In BJR coordinates boosts act according to (2.9). The implementation differs substantially from the
Galilean one (dashed). We took here b = (1, 1)

static equilibrium by a Galilei transformation. The “no motion” defect of Carrollian
dynamics [13,14,18–20] is thus turned into an advantage.
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