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Abstract
Current observations suggest that our Universe is not incompatible with a small posi-
tive spatial curvature that can be associatedwith rest frames having a “closed” standard
topology. We examine a toy model generalisation of the ΛCDMmodel in the form of
ever expanding Lemaître–Tolman–Bondi (LTB) models with positive spatial curva-
ture. It is well known that such models with Λ = 0 exhibit a thin layer distribution at
the turning values of the area distance that must be studied through the Israel–Lanczos
formalism.We find that this distributional source exhibits an unphysical behaviour for
large cosmic times and its presence can be detected observationally. However, these
unphysical features can always be avoided by assuming Λ > 0. While these LTB
models are very simplified, we believe that these results provide a simple argument
favouring the assumption of a nonzero positive cosmological constant in cosmological
models.

Keywords Theoretical cosmology · Exact solutions of Einstein’s equations ·
Spherical symmetry

1 Introduction

The spherically symmetric exact solutions of Einstein’s equations known as the
Lemaître–Tolman–Bondi (LTB) dust models are useful toy models to study obser-
vational issues and structure formation in a Friedman Lemaître Robertson Walker
(FLRW) background. If we assume Λ > 0 these models provide a simple inhomoge-
neous generalisation of the ΛCDM model favoured by current observations. In fact,
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models withΛ = 0 andΛ > 0 provide simple descriptions of a single CDM structure
(overdensity or density void) in anFLRWbackground. The evolution of such structures
can always be mapped rigorously to the formalism of gauge invariant cosmological
perturbations (see comprehensive discussion in [1,2]). As shown in [1,2] (see also
[3,4]), LTB inhomogeneities can be described as covariant exact fluctuations that in
their linear regime reduce to linear cosmological perturbations in the isochronous
comoving gauge.

Models with Λ = 0 and Λ > 0 also provide simple relativistic generalisations of
the Newtonian spherical collapse model, which yield order of magnitude estimations
of collapsing times and density contrasts that are useful in the design of numerical
N-body simulations. See discussion and examples in [5–7].

Ever expanding FLRW models with a closed topology (rest frames difeomorphic
to the 3-sphere S3) and a dust source are not possible unless we assume that Λ > 0.
If Λ = 0 then all closed FLRW dust models must have positive spatial curvature and
must bounce and re-collapse. However, for LTB models the extra degrees of freedom
decouple kinematic evolution and the topology of the rest frames, allowing (in prin-
ciple) for ever expanding closed models even if Λ = 0. In the 1980’s when a nonzero
cosmological constant was not favoured, Bonnor [8] showed interest in looking at ever
expanding LTBmodels withΛ = 0 and a closed topology. He showed that these mod-
els exhibit a thin layer surface matter distribution at a timelike hypersurface marked
by the turning value of the area radius (the “equator” of S3). Using the Israel-Lanczos
formalism, Bonnor derived the equation of state for this surface layer matter-energy
distribution, regarding it in a pointblank manner as unphysical because it involved
negative surface pressure (these were the times before dark energy). Hence, Bonnor
concluded that full regularity of closed LTB models with Λ = 0 required re-collapse
and thus excluded ever expanding kinematics. More recent research allows for the
interpretation of the negative surface layer pressure as surface tension [9].

In the present article we extend Bonnor’s work by (i) showing that fully regular
closed and ever expanding LTB models are possible once we consider Λ > 0 and (ii)
by looking for the caseΛ = 0 at the time evolution of the distributional surface source
in comparison with the evolution of the continuous density. We show for models with
zero and negative spatial curvature that the behaviour of this source is unphysical, since
for large times the continuous dust density surface density decays at a much faster
rate than the distributional surface density (which has no contribution to the quasilocal
mass integral). In particular, we show that the presence of such distributional source
would be detectable by observations through the redshift from sources connected by
radial null geodesics that cross the equatorial hypersurface of S3. While the redshift
as a function of comoving radius is continuous, its derivative is not, with the abrupt
change of rate occurring precisely at this hypersurface. We show that this effect does
not occur for re-collapsing LTB models with closed topology (for which there is no
distributional source at the equator of S3).

Since observations do not rule out a Universe whose rest frames have a closed S3

topology associated with a very small positive spatial curvature, then an LTB model
with Λ > 0 is a viable toy model approximation to a ΛCDM model that is favoured
by observations. Hence, we argue that the results of the present article provide another
argument to support the need for a positive cosmological constant, since without the
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latter all ever expanding CDMdominatedmodels would be incompatible with a closed
S3 topology.

The section by section description of the paper is as follows. In Sect. 2 we provide a
brief introduction to generic LTBmodels withΛ = 0, while in Sect. 3 we examine the
specific case of closed models. In Sect. 3.1 we review Bonnor’s work, Sect. 4.2 briefly
introduces surface tension in curved spacetime and in Sect. 4 we provide an example
of ever expanding closed models with zero and negative spatial curvature. The surface
layer density is evaluated for these models, showing that in the large time regime the
continuous density decaysmuch faster than the surface density, which is an unphysical
behaviour. We show in Sect. 7 that fully regular ever expanding closed models with
Λ > 0 are always possible. In Sects. 8 and 9 we compute null radial geodesics for
the spatially flat case in order to examine the observational detection of the thin shell
distribution. Finally, in Sect. 10, we show that no observational effects occur in the
the case of re-collapsing models with positive spatial curvature and Λ = 0, for which
no thin shell distributional source arise.

2 LTBmodels with3 = 0

LTBmodels are exact spherically symmetric solutions of Einstein’s equations with an
inhomogeneous dust source with or without cosmological constant1. This solutions
are described by the LTB metric in comoving coordinates

ds2 = −dt2 + R′2

1 − K
dr2 + R2dΩ2, (1)

where R = R(t, r), K = K (r) and R′ = ∂R/∂r . The field equations yield:

Ṙ2 = 2M

R
− K , 2M ′ = 8πρR2R′, (2)

where M = M(r) is the Misner–Sharp quasi-local mass-energy function, a well
known invariant in a spherically symmetric spacetime, and Ṙ = ua∇a R = ∂R/∂t .
The first equation in (2), a Friedman-like evolution equation, leads to a classification
of the models in three kinematic classes according to the sign of K = K (r), which
determines the existence of a zero of Ṙ2, and thus, the kinematic evolution: for K > 0
the models expand initially Ṙ > 0, reach a maximal expansion value Rmax = 2M/K
where Ṙ = 0 and then collapse Ṙ < 0, while for K ≤ 0 the models are ever
expanding. Since K = K (r), it is possible to have in a single model regions with
different kinematic class (see comprehensive discussion in [10]).

The solutions of the Friedman-like equation in (2) define the kinematic classes as
elliptic (K > 0), hyperbolic (K < 0) and parabolic (K = 0) solutions given by

K > 0 : R = M

K
(1 − cos η), η − sin η = K

3
2

M
(t − tbb(r)), (3)

K < 0 : R = M

|K | (cosh η − 1), η − sinh η = |K | 32
M

(t − tbb(r)), (4)

1 We examine the case Λ > 0 in Sect. 7. Everywhere else, unless specifically stated, we assume Λ = 0.
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K = 0 : R =
[
9

2
M(t − tbb(r))

2
] 1

3

, (5)

with tbb(r) denoting the Big Bang time function such that R(tbb(r), r) = 0 for variable
r (notice that in general t ′bb �= 0).

To fully determine an LTB model we need to prescribe the three free functions
M(r), K (r) and tbb(r). Since the metric is invariant under rescalings of r , it is always
possible to reduce this set of free functions to a pair of independent irreducible free
functions. Given a choice of free functions, all relevant quantities of the models can
be computed from the solutions for (3)–(5).

3 Ever expanding closedmodels

Closed LTB models are characterised by rest frames that are compact 3–dimensional
submanifolds without a boundary and with finite proper volume, which implies two
possibilities: the rest frames are diffeomorphic to S3 or to a 3-torus (an example of how
to select the free functions latter case is given in [10]). SinceLTBmodels are spherically
symmetric, the topological class of the rest frames is directly connected with the
existence of symmetry centers, which are regular timelike comovingworldlines r = rc
generated by the fixed points of SO(3), and thus comply with

R(t, rc) = Ṙ(t, rc) = 0. (6)

Closed models diffeomorphic to S3 admit two symmetry centers, while rest frames
with toroidal topology admit no symmetry centers. In closed LTBmodels the condition
(6) holds for two values of r , which can be denoted by r = 0 and r = rc. Since S3

is smooth there must exist a turning value r = r∗ such that R′(t, r∗) = 0. Regularity
conditions implies that M = K = 0 and all radial gradients vanish at both symmetry
centers.

3.1 Regularity of ever expanding closedmodels

After looking at closed LTB models with zero cosmological constant, Bonnor [8]
concluded that all “physically acceptable closed models” (PACM) must be elliptic
everywhere and eventually, collapse. Bonnor defined a PACM by the following con-
ditions:

1. ρ is finite and non–negative
2. There are no comoving surface layers nor shell–crossing singularities.
3. K , M and R are C1.
4. K satisfies extra regularity conditions at the symmetry centers, see [8].

These conditions imply

sgn(R′) = sgn(M ′) = sgn(K ′), (7)
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and, as an immediate consequence, if zeroes of R′, M ′,
√
1 − K exist, they must all

be common and of the same order. If the zeroes of R′ are different from the zeros
of the other quantities, then shell crossings occur where the density and curvature
scalars diverge with R > 0. The second equation in (2) together with (7) imply
that the density is non-negative and bounded everywhere, except at the coordinate
locus of a central singularity. The necessary and sufficient conditions to avoid shell-
crossing singularities, as required by (7), are given by the Hellaby–Lake conditions
given explicitly in [4,11].

4 Lanczos–Israel formalism for closedmodels

In what follows we use Taub’s approach to tensorial distributions within the Lanczos–
Israel-formalism [12]. As proven in [13], Bianchi’s second identity holds in the
distributional sense, therefore the following conservation equation holds in the sense of
distributions: ∇aGab = 0, where Gab is the distributional Einstein tensor. Following
[14], we discuss the relations that emerge from this conservation equation.

Let (Σ, h) be a hypersurface embedded in the 4-dimensional spacetime (M, g),
the following equations are satisfied

Gab = −[Kab ] + hab[Kc
c ], (8)

nbGab = 0, (9)

(K+
ab + K−

ab )Gab = 2ncnd [Gcd ] (10)

∇aGab = − nchdb[Gcd ], (11)

where hab = gab−nanb is the inducedmetric of the surface layer,∇a
is the tangential

covariant derivative restricted to the hypersurface, [Cab ] = C+
ab − C−

ab and Gcd is
the singular part of the Einstein tensor considered in a distributional sense.

4.1 Application to the LTBmetric

Applying to the LTB metric the Lanczos–Israel-formalism yields as the only nonzero
component of the Einstein tensor: Gtt , given by (2), while the extrinsic curvature at
the hypersurface marked locally by r = π/2 is given by

Ka
b =

⎡
⎢⎢⎢⎣
0 0 0 0
0 0 0 0

0 0 −
√
1−K |R′|
RR′ 0

0 0 0 −
√
1−K |R′|
RR′

⎤
⎥⎥⎥⎦ . (12)

The Darmois junction conditions demand the continuity of Ka
b at the hypersurface.

Hence, if R′ > 0 for all r , then |R′|/R′ = 1, so that the junction conditions are
equivalent to the continuity of R and K . If there exists a zero of R′ in some fixed value
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r = r0, then there exists a discontinuity of Ka
b unless K (r0) = 1. At the turning value

r0 = r∗ = π/2 there is clearly a discontinuity of Ka
b .

Bonnor proved that a PACM must be an elliptic model. First, he proved that if R′
changes sign (turning value) on a hypersurface r = r∗, with r∗ constant, and 1−K �= 0
on the hypersurface, then there is a surface layer. The proof is straightforward. Since
R has two zeros (two symmetry centers) in closed LTB models, the continuity of R
implies the existence of a turning value marked by a zero of R′ in some value r = r∗
within the radial coordinate range between the centers. Bonnor’s condition 2 implies
that r = r∗ must lie within an elliptic region (K > 0), since the regularity condition
1− K = 0 at r = r∗ cannot be satisfied for a turning value in parabolic or hyperbolic
regions (K ≤ 0). Turning values in such regions necessarily exhibit a surface layer,
which is not contemplated in the definition of a PACM.

The equation of state of the surface layer that follows from (8) is σ +Π1+Π2 = 0,
whereσ is the surface density andΠi are the surface pressures that follow from the right
hand side of (8) (the distributional energy-momentum tensor). Bonnor considered this
equation of state unphysical, not only for having negative pressure, but also because
of:

MT S =
∫ (

T 1
1 + T 2

2 + T 3
3 − T 4

4

)√
h d3x =

∫
(σ + Π1 + Π2)

√
h d3x = 0,

where h = R2R′ sin2 θ , which means that the surface layer energy-momentum tensor
produces zero active gravitational mass.

To choose the appropriate free functions M, K , tbb for a closed model we must
demand that their radial gradients vanish at turning values and at the symmetry centers.
In the following sections we re-examine and extend Bonnor’s results, looking at the
spatially flat (K = 0) and negatively curved (K < 0) cases separately.

4.2 Surface tension

The presence of distributional sources in thin layers can be associated with surface
tension through the relativistic generalisation of the Kelvin relation of Newtonian
physics [9]

ΔP = −2KA (13)

where the surface tension A depends on thematerial,ΔP the difference of pressures in
both sides of the surface layer andK is themean curvature given byK = 1/R1+1/R2,
with R1, R2 the principal curvature radii.As proven in [9], the relativistic generalisation
of (13) is connected to a thin shell in the framework of the Israel–Lanczos formalism:

ΔP = 1

2

(
K+

αβ + K−
αβ

)
T αβ. (14)

where T αβ is the projected energy-momentum tensor in (8)

T αβ = hα
a h

β
bT

ab, 8πT ab = −[Kab] + hab[Kc
c ] (15)
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where hα
a = δα

a δ
β
b + nα

a n
β
b with α, β = t, θ, φ the hypersurface intrinsic coordinates.

5 The spatially flat case K = 0

A convenient choice for the free functions M and tbb is

M = M0 sin
3 r̄ , tbb = −T0 sin

2 r̄ , ⇒ R =
(
9

2
M0

)1/3

sin r̄
[
t̄ + T0 sin

2 r̄
]2/3

,

(16)
where M0 = 3

2H
−1
0 , T0 is an arbitrary constant, r̄ = πH0r and t̄ = H0t are the radial

and time dimensionless coordinates respectively. However, to simply notation hence-
forth we will drop the bars on top of t and r , understanding henceforth that (unless
specifically stated) t and r without overbars denote these dimensionless rescaled coor-
dinates.

The parameters in (16) have been selected so that the kinematic evolution of the
model at the symmetry centres r = 0, π coincides with that of the Einstein-de Sitter
spatially flat FLRW model, whose Big Bang time is given by t = 0. Hence, the
constant T0 can be identified with the Big Bang time of the LTB model at r̄ = π/2
(or equivalently r = 1

2H
−1
0 ), that is: tbb(π/2) = −T0 < 0. For a more realistic

cosmological scenario in the context of an inhomogeneous model with small deviation
from an FLRW background, we shall assume that |T0| 	 t0, with present cosmic age
given by t0 ∼ 13.7 × 109 years (a convenient bound value is |T0| ∼ 10, 000 years).
With this choice of free functions we have

R′ = (M0/6)1/3 cos r
[
7 T0 sin2 r + 3t

]
[
t + T0 sin2 r

]1/3

while the density and the components of the extrinsic curvature follows from (2) and
(12) for K = 0:

8πρ = 16

3(t + T0 sin2 r)(7T0 sin2 r + 3t)
. (17)

K θ
θ = K φ

φ = −2

3

H
(
r − π

2

)
M

1
3
0 sin r

[
t + T0 sin2 r

]2/3 ,

where H(r) is the Heaviside function and we used the fact that t + t0 sin2 r ≥ 0 in
the full domain 0 ≤ r ≤ π .

Since these expressions allow us to compute Kab
+ + Kab

− = 0, while Gab is
continuous on S, then (10) is satisfied identically everywhere. On the other hand, the
right hand side of (11) is zero, but computing its covariant derivative and evaluating on
S yields the following result: the singular part of the Einstein tensor, Gab , is constant
on S. Notice that from (14) there is no surface pressure due to surface tension.
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At S the only nonzero components of the distributional energy-momentum tensor
are:

8πσ = 1

(36M0)1/3(t + T0)2/3
, 8πΠ1 = 8πΠ2 = −4πσ,

where σ is the distributional density, whileΠ1 andΠ2 are the distributional pressures,
with the equation of state given (as found byBonnor) by σ +Π1+Π2 = 0. As the units
of the distributional and continuous (non-distributional) density are not the same we
obtain the quasi-localmass fromeachdensity to obtain a quantity that can be compared.
The energymomentum tensor is divided into a continuous (non-distributional) part and
a distributional part as: T ab = Tab +Tabδ(S), where δ is the Dirac delta function, and
in our case Tab = ρuaub. From the expression of the full energy-momentum tensor
it is clear that it makes sense to compare the quantities Tabuaub and Tabuaubδ(S),
which have the same energy density units, by means of integration over a domain that
contains the hypersurface.

We integrate ρ = Tabuaub in a domain 0 < r1 < π/2 < r2 < π ,

Mρ = 4π
∫ r2

r1
ρR2R′dr = M0[sin3 r2 − sin3 r1], (18)

from this expression we obtain an upper and lower bound, 0 ≤ Mρ ≤ M0.
For the distributional matter at the thin shell we obtain the contribution of σ to the

active gravitational mass as the integral of Tabuaubδ(S),

Mσ =
∫ r2

r1
σ R2|Sδ

(
r − π

2

) ∫
dΩ dr = 1

2

∫ r2

r1

( 9
2M0

) 2
3 (t + T0)

4
3

6
2
3 M

1
3
0 (t + T0)

2
3

δ
(
r − π

2

)
dr

= 1

2

(
9M0

16

)1/3

(t + T0)
2/3.

Considering the arbitrary 0 ≤ r1, r2 ≤ π which give the upper bound for Mρ , and
from the ratio of the latter and Mσ we obtain a comparison of the continuous mass
and the contribution of the distributional density to the quasilocal mass

ξ(t) = Mρ

Mσ

= 2

(
4

3

) 2
3 M

2
3
0

(t + T0)
2
3

. (19)

To obtain a numerical result we evaluate this ratio at present day cosmic time t0 ≈
13.7 × 109 years and use M0 = 3/2H−1

0 , where H0 is the Hubble constant (∼
70 km/(sMpc)). We obtain for these values

ξ(t0) ≈ 2
2
3 2

H
2
3
0 (t0 + T0)

2
3

≈ 2
2
3 2(

70km/s
Mpc

)
(13.7 × 109 + 105)years

≈ 3.2176, (20)
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while for ten times the current age of the universe we have

ξ(10 t0) ≈ 2
5
3(

70km/s
Mpc

)
(13.7 × 1010 + 105)years

≈ 0.69. (21)

Thus, for the asymptotic evolution range of large cosmic times the contribution to
the quasi-local mass from the distributional surface density dominates the contribu-
tion from the continuous dust source. This behaviour is clearly unphysical, since the
distributional source does not generate effective gravitational mass (from the quasi–
local mass definition), yet it ends up overwhelmingly dominating over the quasilocal
mass obtained from the continuous (and physical) dust density. In Sect. 8 we further
examine the physical implications of this model.

6 The case K < 0

We select the same free functions as in (16), together with K (r) = −K0 sin2 r . The
only non-vanishing components of the extrinsic curvature are

Kθθ = −
√
1 − K0 sin2 r R|R′|

R′ , Kφφ = Kθθ sin2 θ,

where

R(t, r) = M0 sin r(cosh η − 1)

K0
, η − sinh η = K

3
2
0 (t + t0 sin2 r)

M0
.

Once again, [Ga
b] = 0, and Kab

+ + Kab
− = 0, so (10) is satisfied. Taking the

covariant derivative of Gab on S leads to a zero vector and thus (11) is identically
satisfied once again. At S the distributional density and pressures are

8πσ = 4

√
1 − K0

R (t, r) |r= 1
2H0

, 8πΠ1 = 8πΠ2 = −4πσ,

while the non-distributional density takes the form

8πρ = 3M0 sin2 r cos r

4πR2R′ . (22)

To obtain a comparison one would proceed as in the case K = 0 but taking into
account the proper mass instead of the quasilocal mass, as in this case both masses are
not equal. These comparison yields a similar result as in the case studied previously,
which we considered to be unphysical.
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7 Case3 > 0

If Λ > 0, Einstein’s field equations yield the same form for the density ρ given in (2),
but the Friedman–Like evolution equation is now:

Ṙ2 = Q(R)

R
, Q(R) = 2M − K R + λR3 (23)

where λ = 8π
3 Λ. The kinematic evolution is governed by the zeroes of the cubic

polynomial Q(R) for different values of K . Ever expanding regions or models are
characterised by configurations with those choices K and M for which Q has no zeros
for a specific range of r . In particular, fully regular closed ever expanding models
without thin layer distributional sources require configurations with K > 0 for which
Q(R) has no zeroes for all the range of r .

To look at the sign of Q(R) we plot this cubic polynomial for fixed positive values
of M and λ and letting vary K for R > 0. As shown in Fig. 1, all curves above the
lowest red thick curve (colors appear in the online version), which are configurations
of a generic LTB dust solution, represent ever expanding universes. The dot–dash
green curve represents spatially flat models, below this curve are models with K > 0,
and above the dash-dot green curve there are negative spatial curvature models. In this
case we can choose K > 0 so that the condition K (r∗) = 1 for R′(t, r∗) = 0 holds
and thus, we have ever expanding models for which the regularity conditions for a
PACM hold: the metric coefficient

√
grr = ±R′/

√
1 − K is well defined at r∗ and

Ka
b is continuous, which eliminates the surface distributional source at r = r∗. This

is an important result, since it proves that LTB models that approximate the Λ-CDM
model can have rest frames with a closed topology.

Fig. 1 Plot of Q(R) in (23), see
text for explanation
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8 Radial null geodesics at the interface

While the thin shell distributional source at the hypersurface r = r∗ in ever expanding
closed LTB models does not generate effective mass, it is interesting to find out if the
existence of such source could be detected observationally. To explore this question
we need to find null geodesics that cross this hypersurface and compute the redshift
from light emitted along these curves by distant observers in these models.

Photon trajectories (null geodesics) follow from the solutions of the geodesic equa-
tion,

d2xa

dλ2
+ Γ a

bc
dxb

dλ

dxc

dλ
= 0, (24)

with the constraint kaka = 0, for ka = dxa/dλ is the tangent vector of these
curves and λ is an affine parameter. We will consider only radial null geodesics
ka = [kt (λ), kr (λ), 0, 0], where kt and kr are obtained from (24)

d2t

dλ2
+ Ṙ′

R′

(
dt

dλ

)2

= 0, (25)

d2r

dλ2
+
(
R′′

R′ − K ′

2(1 − K )

)(
dr

dλ

)2

± 2Ṙ′
√
1 − K

|R′|
R′

(
dr

dλ

)2

= 0, (26)

subjected to the constraint kaka = 0

−
(
dt

dλ

)2

+ R′2

1 − K

(
dr

dλ

)2

= 0, ⇒ dt

dλ
= ± R′

√
1 − K

dr

dλ
. (27)

The metric functions R, K and their derivatives in the coefficients follow from the
closed ever expanding models we have examined in previous sections (with Λ = 0).

It is well-known that a non-degenerate Cr+1 metric determines the Cr Levi-Civita
connection. For K = 0 the metric is C∞, for K �= 0 in general it can only state
that the metric is C0. For convenience we will analyze the case K = 0 in which the
connection is Cr almost everywhere, i.e., it is Cr except on a set of measure zero,
namely the symmetry centers and at the turning value of R′. Therefore there exists a
convex normal neighborhood at each p ∈ M , i.e., an open set U with p ∈ U such
that for all q, r ∈ U there exists a unique geodesic γ which stars at q and ends at
r and is totally contained in U , see [15]. The connection is not Cr at the symmetry
centers and at the hypersurface r = r∗, nevertheless the radial geodesic equation isCr

in all the space-time except at the hypersurface r = r∗. By the standard existence and
uniqueness theorem for ODE’s there exists a unique geodesic from a symmetry point
to any point arbitrarily near the hypersurface, in comoving coordinates this guarantees
the existence of a null geodesic that starts at r = 0 and ends at r = r∗ − ε1 for any
ε1 > 0 and a null geodesic with endpoints at r = r∗ + ε2 and r = rc for all ε2 > 0.
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In order to check if the geodesic equation is well defined at r = π/2, we consider
the choice of functions of Sect. 5, leading to:

d2t

dλ2
+ 2

3
Φ(t, r)

(
dt

dλ

)2

= 0, (28)

d2r

dλ2
+ Ψ (t, r) − Ω(t, r)

21 cos r
(
t0 sin2 r + 3

7 t
)
(t + t0 sin2 r)

Ψ (t, r)

(
dr

dλ

)2

= 0. (29)

where

Φ(t, r) = 3t + t0 sin2 r

(t + t0 sin2 r)
(
3t + 7t0 sin2 r

) , (30)

Ψ (t, r) = ±2(36M0)
1
3

3
cos r(t0 sin

2 r + 3t)

∣∣∣∣∣
cos r(3t + 7t0 sin2 r)

(t + t0 sin2 r)
1
3

∣∣∣∣∣ , (31)

Ω(t, r) = 21

(
t20 sin

4 r +
(
10

7
t t0 − 4

3
cos2 r

)
sin2 r + 3

7
t
(
t − 4t0 cos

2 r
))

sin r ,

(32)

and the plus minus sign in the square root from equation (27) will distinguish between
“ingoing” past directed curves and “outgoing” future directed curves.

Since (29) is notwell-defined near r(λ) = π/2,we introduce the change of variable:
t(λ) = 10w(λ) and solve numerically the geodesic equations above for generic values
of M0 and t0. In what follows we consider M0 = 10 and t0 = 0.5. The absolute value
needs to be evaluated in a piecewise manner |x | = x for x > 0 and |x | = −x for
x < 0 for any x . For generic initial conditions and working with both signs, each
considered also in the geodesic equations [see (31)] we solve numerically (28) and
(29) for several initial conditions, leading to the curves plotted in Fig. 2.

The numerical solution for r ∈ [0, π/2) shows that near π/2 the derivative dr/dλ

does not tend to zero. The graphs for r(λ) and t(λ) for some of the geodesics obtained
are shown in Fig. 3. It can be seen from the solutions that (27) restricts the solutions
for t(λ) and r(λ) to be such that the product R′dr/dλ be finite. In this cases the
product is not zero which implies that dr/dλ must diverge. Also, Eq. (27) reveals that
solutions that are not C1 can be obtained, as arbitrary initial conditions can be chosen
over r as a function of λ to obtain a C0 curve, defining r(π/2) = limr→π/2+ r(λ) =
limr→π/2− r(λ) that satisfies (28) and (29) for r ∈ [0, π/2)∪ (π/2, π ]. Some of these
solutions are shown in Fig. 2. Therefore, there exists a jump in the first derivative of
the curve which could be used to probe the existence of thin shells.

Although there is a discontinuity in the first derivative of the coordinates of the
geodesics, each value of r ∈ [0, π/2) ∪ (π/2, π ] is reached in a finite value of the
affine parameter.
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Fig. 2 Plot to numerical solution of Eqs. (28) and (29) for four different geodesics with generic initial con-
ditions. As it can be noticed, the curves are smooth when considered asw(r) as opposed to the discontinuity
that is examined when w and r are considered as functions of the parameter λ

9 Redshift

The redshift for a K = 0 model is calculated through the following integral [5]

ln(1 + z(r(λ))) =
∫ λ

0
Ṙ′(t(λ), r(λ))

dr

dλ
dλ. (33)

Note that as dr/dλ is discontinuous at r = π/2, the integrand is not continuous but
the integral is. Figures 5 and 6 represent the redshift and the plot for 1/(1 + z)dz/dλ

for two different geodesics.
As there is a discontinuity in the derivative of the redshift it is possible to

probe the existence of a thin shell by measuring the redshift of radial photons that
cross the surface r̄ = π/2 (which corresponds to a physical comoving distance
r = 1/(2H0)). Nevertheless notice that the magnitude of the discontinuity depends
on the parametrization chosen.

10 Amodel with K > 0

We now analyze the case K > 0 and show that in this case observers at the turning
value would not detect any thin layers. Analyzing a model with positive K is easier
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Fig. 4 Plot of the numerical solutions for t(λ). As shown by the graphs, the derivative dt/dλ is everywhere
finite. Hence dt/dr → 0 as r → π/2 (because dr/dλ diverges in this limit)

with a change of variables in the metric, leading to a FLRW line element

ds2 = −dt2 + a2
[

Γ 2R′2
i

1 − kqi R2
i

dr2 + R2
i dΩ2

]
, (34)

where a(t, r) ≡ R/Ri , Ri ≡ R(ti , r) and t = ti determines a fiducial initial hypersur-
face. Henceforth, all quantities evaluated at t = ti will be denoted by a the subindex
i . The dimensionless metric function Γ is

Γ ≡ R′/R
R′
i/Ri

= 1 + a′/a
R′
i/Ri

,

where Γi = 1, while kqi = K/R2
i . Note that the regularity condition on this metric is

R′ = 0 which implies kqi R2
i = 1.

We now consider the functions a, Γ and Ri taking into account a closed model.
We have, c.f. [16], that along turning values regularity conditions on the density, ρ,
density at the fiducial time, ρi , Ricci scalar of the hypersurfaces at the fiducial time
(3)Ri and the metric imply that R′

i , M
′ and (ki Ri )

′ must have common zeros along
the turning values of the same order in r − π/2. The function Γ must not have a zero
due to the fact that Γ = 0 and ρi > 0 imply a shell-crossing singularity. So, taking
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note of these considerations we have

R′ = a′Ri + RR′
i

Ri
, K ′ = k′

qi R
2
i + 2kqi Ri R

′
i ,

which yield a′ = k′
i = 0 when evaluating both equations along the hypersurface S.

The null geodesic constraint is

dt

dλ
= ±a

Γ R′
i√

1 − kqi R2
i

dr

dλ
, (35)

while the radial null geodesic equations are

d2t

dλ2
+ a2Γ̇ + aȧΓ

2Γ 2

(
dt

dλ

)2

= 0,
d2r

dλ2
+ A(B + D)

(
dr

dλ

)2

= 0,

where

A = 1

2aR′2
i Γ

(−1 + kqi R2
i

) ,

B = 2aR′
i

⎡
⎣CΓ +

⎛
⎝± Γ R′2

i Γ̇√
1 − kqi R2

i

+ 1

2
R′
iΓ

′
⎞
⎠(

−1 + kqi R
2
i

)⎤⎦ ,

C = −1

2
k′
qi R

′
i R

2
i − R′2

i kqi Ri + R′′
i kqi R

2
i − R′

i ,

D =
⎛
⎝2a′R′2

i Γ ± 4ȧ R′3
i Γ 2√

1 − kqi R2
i

⎞
⎠(

−1 + kqi R
2
i

)
.

Next, we verify if the geodesic equation in these variables is well defined through the
following limit

lim
r→ π

2

Γ = lim
r→ π

2

R′

R′
i

Ri

R
=
(
lim
r→ π

2

R′

R′
i

)
Ri

R

∣∣∣∣
r= π

2

.

Since R′
i = dRi/dr is the derivative of a radial profile at a given time, and the partial

derivative R′ = ∂R/∂r is taken as a limit at a constant time, the limit in parenthesis
above must be a finite function of time. We now check the product AB

AB = − C

R′
i (1 − kqi )

± R′
i Γ̇√

1 − kqi R2
i

+ 1

2

Γ ′

Γ
(36)
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The limit of the second term is

lim
r→ π

2

R′
i Γ̇√

1 − kqi R2
i

=
(
lim
r→ π

2

Γ̇

)⎛
⎝ lim

r→ π
2

R′
i√

1 − kqi R2
i

⎞
⎠ .

The second limit of the right hand side is finite by regularity conditions, while the first

Γ̇ =
(
Ṙ′R + R′ Ṙ

R2

)
Ri

R′
i

= Ri

(
Ṙ′R + R′ Ṙ

R′
i R

2

)

has a finite limit at r = π
2 as long as the limit Ṙ′/R′

i exists. We now analyze the first
term of the product AB,

C

R′
i (1 − kqi R2

i )
= k′

qi R
2
i + 2R′

i kqi Ri

2 − 2kqi R2
i

− R′′
i

R′
i
.

The limit limit as r → π/2 in the first term in the right hand side of the last equality
does not exist, since 1−kqi R2

i has a zero of the same order as R′2
i and k′2

qi . However, the
non–existence of this is consistent with the geodesic equation at S not being defined
in the comoving coordinates.

We now check the product AD,

AD = a′

a
± 2ȧR′

iΓ

a
√
1 − kqi R2

i

.

The limit of the first term in the right hand side is zero from the definition of a and
as R′ and R′

i are continuous and zero at S. The second term is constant by previous
calculations.

We now compare the results for a model with K > 0 with K = K0 sin(r)2.
Regularity conditions for a closed model require that K = 1 at S (where R′ = 0) and
that the following limit be finite and nonzero:

lim
x→S

R′2

1 − K
, (37)

where x denotes a generic point in the manifold. It is straightforward to prove that the
metric component grr is continuous but does not have a continuous partial derivative
g′
rr which immediately implies that the connection will not be C1 in a set of measure

zero, S. As a contrast in the case K = 0 the connection is not C1 due to the fact
that the metric is degenerate at S, as opposed to the model with K > 0 which is not
degenerate as follows

Nevertheless, if a solution to the geodesic equation where to exist the derivative of
the radial and temporal coordinates should be continuous as they must satisfy the null
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geodesic constraint (35), which relates both derivatives as follows

dt

dλ
= ±R′

√
1 − K

dr

dλ
. (38)

Both derivatives are related by a function which is continuous due to the regularity
conditions, where we used the fact that the square root is a continuous function so
the passage to the limit under the square root (assumed to be invertible) can be taken,
which completely determines both coordinates, unlike the case K = 0 which gives an
infinite number of choices of the derivative of the radial coordinate. Therefore LTB
models with K > 0 present no issues in the behaviour of their geodesics and as there
are no surface layers, and by the analysis of Eq. (39) there is no effect on the redshift
nor on the derivatives of the coordinates.

11 Conclusions and discussion

We have examined the dynamics and geometric properties of ever expanding “closed”
LTB dust models, where by “closed” we mean models whose rest frames (hypersur-
faces orthogonal to the 4-velocity marked by constant time) are diffeomorphic to the
standard 3-sphere S3. We considered both cases, with Λ = 0 and Λ > 0. Since obser-
vations do not rule out a small positive curvature, the case Λ > 0 can be thought of
as a toy model inhomogeneous generalisation of the ΛCDM model.

Ever expanding closed LTB models with Λ = 0 where examined long time ago by
Bonnor [8], who showed that fulfilment of regularity conditions require these models
to admit a thin surface layer at the equator of the 3-sphere (“turning value” of the area
radius), whichmust be examined bymeans of the Israel–Lanczos thin shell formalism.
Bonnor found the equation of state state satisfied by this distributional source, which
he regarded as unphysical because it does not contribute to the effective quasi-local
mass and because of the negative surface pressure (this was before negative pressures
were acceptable in connection with dark energy).

In the present article we extended Bonnor’s work by looking at the time evolution of
the distributional source, in comparison with the time evolution of the continuous dust
source. We also show that assuming Λ > 0 allows for perfectly regular closed LTB
models, an option not contemplated by Bonnor. By looking first at the spatially flat
case K = 0 = Λ, we found that the distributional density (which does not contribute
to the effective mass) dominates the continuous density in the asymptotic time range,
which is an unphysical effect. This same effect occurs for the negatively curved case
(Λ = 0, K < 0).

Furthermore, we raised the issue of whether the presence of this unphysical dis-
tributional source could be detected by observations based on light rays crossing the
timelike hypersurface made by the time evolution of the 3-sphere equator. By look-
ing at radial null geodesics in the case K = 0 = Λ and placing the observer at the
symmetry centre r = 0, we showed that the presence of the distributional source
causes a discontinuos radial derivative of redshifts from observers beyond the equato-
rial hypersurface of S3. Hence, we proved that this type of distributional source would
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be detectable by observations, even if it does not contribute to the effective quasi-local
mass. Finally, and for the purpose of comparison, we showed that this discontinuity
of the redshifts does not occur in re-collapsing closed LTB models (for which there is
no distributional source at the 3-sphere equator).

Acknowledgements SN acknowledges financial support from SEP–CONACYT postgraduate grants pro-
gram. RAS acknowledges financial support from SEP–CONACYT Grant 239639.

A. Calculation of limits

A..1 K > 0

From (3) we have the following relations

η = arccos (1 − αR) , sin η = √
1 − cos η = √

αR
√
2 − αR,

t − tbb = 1

β

{
arccos (1 − αR) − √

αR
√
2 − αR

}
,

where α = K
M and β = K

3
2

M = αK
1
2 .

Derivating respect to r and isolating R′ we obtain an expression which involves
gradients which vanish at S, so R′ vanishes also along the hypersurface.

Derivating once again and substituting

R′′ = 1

4

15M ∗ D(F ∗ B + G) + H + I + J

K 4RM(K R − 2M)

where

F =
(
K ′2M − 4

5
K ′M ′K − 2

5
K ′′KM + 4

15
M ′′K 2

)
(K R − 2M),

G = 4

15
t ′′bb

(
2MK

7
2 − RK

9
2

)
,

H = 2K 4MR3K ′′ + 8K 4MR2M ′′ − 16K 3M2R2K ′′ − 16K 3M2RM ′′ + 24K 2M3RK ′′,
I = 4K 4MR2K ′R′ − 3K 3MR3K ′2 + 4K 4M2R′2 − 8K 4MRM ′R′ + 4K 4R2M ′2,
J = 48K 2M2RK ′M ′ − 60KM3RK ′2 − 32K 3MR2K ′M ′ + 40K 2M2R2K ′2.

Note that at S, I and J vanish. As not all functions vanish at S, R′′ is not necessarily
of the form 0/0. In general, in radial profiles K R �= 2M so R′′ is finite. From our
choice of free functions H does not vanish at S.

We now analyze the term K ′/(2−2K ), as the numerator and denominator are zero
at the hypersurface, using the choice of free functions previously used we obtain that

123



94 Page 22 of 22 S. Nájera, R. A. Sussman

there is no limit at S, so the term is singular. In the general case, L’Hôpital’s rule gives

lim
r→ π

2

K ′

2 − 2K
= lim

r→ π
2

K ′′

K ′ (39)

which necessarily gives a 0/0 form,∞/0 formor no limit as K ′ is 0 at the hypersurface.
The term

Ṙ′
√
1 − K

= 1

2

2M ′
R − 2MR′

R2 − K ′
√
1 − K

√
2M
R − K

clearly is of the form 0/0 at S. As R′, M ′, K ′ and
√
1 − K have zeros of the same

order, this limit is well defined.
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5. Bolejko, K., Krasiński, A., Hellaby, C., Célérier, M.: Structures in the Universe by Exact Methods.
Cambridge University Press, Cambridge (2012)

6. Padmanabhan, T.: Theoretical Astrophysics, volume III: Galaxies and Cosmology. Cambridge Uni-
versity Press, Cambridge (2002)

7. Peebles, P.J.E.: TheLarge-Scale Structure of theUniverse. PrincetonUniversity Press, Princeton (1980)
8. Bonnor, W.B.: Closed Tolman models of the universe. Class. Quantum Gravity 2, 781 (1985)
9. Schmidt, H.J.: Surface layers in general relativity and their relation to surface tensions. Gen. Relat.

Gravit. 16, 1053 (1984)
10. Humphreys, N.P., Maartens, R., Matravers, D.R.: Regular spherical dust spacetimes. Gen. Relativ.

Gravit. 44, 3197 (2012)
11. Hellaby, C., Lake, K.: Shell crossings an the Tolman model. Astrophys. J. 290, 381 (1985) Hellaby C.,

Lake K.: Astrophys. J. 300, 461 (erratum) (1986)
12. Taub, A.H.: Space-times with distribution valued curvature tensors. J. Math. Phys. 21(6), 1423 (1980)
13. Mars, M., Senovilla, J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions.

Class. Quantum Gravity 10, 1865 (1993)
14. Borja, R., Senovilla, J.M.M., Vera, R.: Junction conditions in quadratic gravity: thin shells and double

layers. Class. Quantum Gravity 33, 105008 (2016)
15. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press,

Cambridge (1973)
16. Sussman,R.A., Trujillo, L.G.:Anewapproach to initial value variables for theLematre–Tolman–Bondi

dust solutions. Class. Quantum Gravity 19, 2897 (2002)

123

http://arxiv.org/abs/gr-qc/0904v2

	Geometric and physical properties of closed ever expanding dust models
	Abstract
	1 Introduction
	2 LTB models with Λ=0
	3 Ever expanding closed models
	3.1 Regularity of ever expanding closed models

	4 Lanczos–Israel formalism for closed models
	4.1 Application to the LTB metric
	4.2 Surface tension

	5 The spatially flat case K=0
	6 The case K<0
	7 Case Λ>0
	8 Radial null geodesics at the interface
	9 Redshift
	10 A model with K>0
	11 Conclusions and discussion
	Acknowledgements
	A. Calculation of limits
	A..1 K>0

	References




