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Abstract We investigate the motion of electrically charged test particles in spacetimes
with closed timelike curves, a subset of the black hole or wormhole Reissner–
Nordström-NUT spacetimes without periodic identification of time. We show that,
while in the wormhole case there are closed worldlines inside a potential well, the
wordlines of initially distant charged observers moving under the action of the Lorentz
force can never close or self-intersect. This means that for these observers causality is
preserved, which is an instance of our weak chronology protection criterion.

Keywords Einstein–Maxwell · NUT · Charged test particle · Causality

1 Introduction

A variety of solutions to the equations of general relativity describe spacetimes with
closed timelike curves (CTCs). The common view regarding these is that they violate
causality, “for, one could imagine that with a suitable rocketship one could travel
round such a curve” [1] and eventually return to one’s original spacetime position
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after a finite proper time lapse, thus opening the possibility for time travel. In [2],
Hawking examined this possibility and gave a number of arguments which strongly
support the chronology protection conjecture: “The laws of physics do not allow the
appearance of closed timelike curves”.

Basically, what Hawking proved is that the creation of CTCs in a finite region
of an initially causal (CTC-less) spacetime is classically forbidden by the average
weak energy condition. If this is waived, then quantum back-reaction effects come
to the rescue to prevent the appearance of CTCs. However these arguments do not
rule out the possibility of spacetimes with eternal CTCs. Such a possibility was first
considered by Gödel [3]. CTCs exist in the inner region (r < 0) of the Kerr or
Kerr–Newman spacetimes. Other stationary solutions of the Einstein–Maxwell equa-
tions which present CTCs are the Taub-NUT spacetime [4,5] and its electromagnetic
extensions, the Reissner–Nordström-NUT or Brill spacetimes [6]. These are charac-
terized by a gravimagnetic or NUT charge and, similarly to the case of the magnetic
monopole with its Dirac string, present one or two line metric singularities known as
Misner strings. These can be removed if time is periodically identified with a period
proportional to the NUT charge [7]. However there are then CTCs everywhere in the
stationary sector, so that the spacetime is definitely acausal. Another drawback of this
periodicity in time is that the spacetime cannot be consistently extended beyond the
second (interior) horizon. The other option is to abstain from this periodic identifi-
cation, and so to retain the Misner string singularities. As implied in [8], and shown
explicitly in [9,10], the Brill spacetimes are then geodesically complete, i.e. the Mis-
ner string singularities do not show up in the geodesic motion. However there are still
CTCs in a stationary neighborhood of the Misner strings.

The point of view advocated in [9,10] is that the presence of closed timelike curves
does not in itself give rise to causality violations, which can arise only if it is possible
for an observer to follow such CTCs. Freely falling observers follow geodesics, so
a necessary condition for causality preservation should be that the spacetime should
be free from closed timelike geodesics (CTGs). These have been shown to be absent
from the Taub-NUT spacetime (without time periodicity) in [9], and from the Brill
spacetimes in [10], provided the parameter fixing the strength of the Misner strings
is chosen in a certain range. Another class of observers are not freely falling because
they carry electric charge, and so travel in an Einstein–Maxwell spacetime as charged
test particles following the Lorentz force law. Causality will be preserved if their
worldlines are not closed or self-intersecting. Such a question, i.e. the possibility for a
charged particle to move along a CTC in the Gödel universe under the effect of a weak
sourceless magnetic field, was previously addressed in [11]. The existence of closed
wordlines (CWLs) of a charged particle was investigated in [10] in the case of a very
special Brill spacetime. It was found that CWLs do occur inside a potential well, but
it was argued that the worldlines followed by charged observers which are initially
distant (and thus outside the potential well) will necessarily be causal. Finally, more
adventurous observers could try to follow CTCs by using a “suitable rocketship”, but
one can argue that the (classical) back-reaction of the energy expended to follow a
non-geodesic path (in the case of an uncharged spaceship) would ultimately be so
large that it would deform the background spacetime geometry in such a way as to
preserve chronology. If the arguments concerning these various instances of observer
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wordlines prove to be correct, then we can formulate the weak chronology protection
criterion (WCP):

Spacetimes with closed timelike curves do not classically violate causality, if
no worldline followed by an initially distant observer can possibly be closed or
self-intersecting.

The purpose of the present paper is to study the motion of charged particles, with
the question of CWLs in mind, in a class of Brill spacetimes more general than that
considered in [10]. This motion was recently analyzed in [12] in the case of the electric
Kerr–Newman-NUT spacetime, but the question of causality was not investigated
there. Here, in order to have a simple tractable form for the effective potential, we
restrict to the case of the massless magnetic Reissner–Nordström-NUT spacetime,
considering the whole range of black hole, extreme black hole and wormhole solutions.

In the next section, we summarize the general results of [10] concerning the motion
of an electrically charged test particle in a Brill spacetime. We then specialize to the
case of the massless and electrically neutral spacetimes (with only magnetic and NUT
charges) in Sect. 3, where we analyze the possible circular orbits. This analysis is used
in Sect. 4 to prove that, for this class of Brill spacetimes, the Lorentz-force motion of
an initially distant charged observer is always causal. Our conclusions are summarized
in the last section.

2 Charged particle motion in the Brill spacetime

The Reissner–Nordström-NUT solution of the Einstein–Maxwell system of equations
is given by

ds2 = − f (dt − 2n(cos θ + C) dϕ)2 + f −1dr2 + (r2 + n2)(dθ2 + sin2 θdϕ2),

A = �(dt − 2n(cos θ + C) dϕ), (2.1)

with

f = (r − m)2 + b2

r2 + n2 , � = qr + p(r2 − n2)/2n

r2 + n2 ,

(b2 = q2 + p2 − m2 − n2) . (2.2)

This solution depends on four parameters associated with conserved charges, the mass
m, the NUT or gravimagnetic charge n, the electric charge q and the magnetic charge
p. We assume here n �= 0. In this case, if time is not periodically identified the
maximal analytic extension of the spacetime (2.1) is geodesically complete [10], and
corresponds to a black hole for b2 < 0, to an extreme black hole for b2 = 0 and to a
traversable Lorentzian wormhole for b2 > 0.

The above solution was first given (in the Taub form) for C = 0 by Brill [6].
An unphysical local coordinate transformation t → t − 2nCϕ generates the family
of solutions (2.1) depending on the additional parameter C , which we shall refer to
as Brill spacetimes for simplicity. As shown in [10], for any |C | > 1 there are Brill
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spacetimes with closed null geodesics, so to ensure the possibility of weak chronology
protection we restrict to |C | ≤ 1. The parameter C governs the strength of the Misner
string metric singularities at θ = 0 and/or π . The commonly preferred values are
C = 1 (singularity at θ = 0), C = −1 (singularity at θ = π ), or C = 0 (two
symmetrical singularities at θ = 0 and θ = π ).

The equations of motion of of a charged particle with mass mc and charge qc may
be derived from the Lagrangian

L = 1

2
gμν ẋ

μ ẋν + κAμ ẋ
μ, (2.3)

where ˙ = d/dτ , with τ the proper time, and κ = qc/mc. The momenta pμ =
gμν ẋν + κAμ conjugate to the cyclic variables t and ϕ are constants of the motion,
pt = −E and pϕ = Jz + 2nCE . Noting that the electromagnetic gauge chosen in
(2.1) is such that Aϕ = 0, we obtain the equations of motion for the time and azimutal
coordinates:

ṫ − 2n(cos θ + C) ϕ̇ = f −1E [E(r) = E + κ�(r)] , (2.4)

ϕ̇ = Jz − 2nE cos θ

(r2 + n2) sin2 θ
. (2.5)

This last equation is the same as in the case of a neutral particle [8]. Also, the part
of the Lagrangian (2.3) which depends explicitly on the coordinate θ is

Lθ = 1

2
gϕϕϕ̇2 + gtϕϕ̇(ṫ + κAt ), (2.6)

with At = −�/ f . Owing to (2.4), this actually does not depend on κ [10], so that the
equation of motion for θ ,

[(r2 + n2)θ̇ ]˙= (r2 + n2) sin θ cos θ ϕ̇2 − 2nE sin θ ϕ̇, (2.7)

is also the same as for a neutral particle. The angular equations of motion can be first
integrated [8] to

�L + �S = �J , (2.8)

meaning that the constant total vector angular momentum �J = (Jx , Jy, Jz) is the
sum of the usual orbital angular momentum (rescaled by a factor (r2 + n2)/r2))
�L = (r2 + n2) r̂ ∧ ˙̂r , where r̂ is a unit vector normal to the two-sphere, and a NUT
charge contribution �S = 2nEr̂ . It follows from the orthogonality of �L and �S that

�J · r̂ = 2nE . (2.9)

so that [8] the spherical sections r = constant of the orbits are small circles (parallels)
C with polar axis �J and colatitude η = arccos(2nE/J ), where J 2 ≡ �J 2. Squaring
(2.8) leads to

�L2 = l2 ≡ J 2 − 4n2E2, (2.10)
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which can be rewritten as

(r2 + n2)2[θ̇2 + sin2 θ ϕ̇2] = l2 . (2.11)

As discussed in [13], the system of Eqs. (2.5) and (2.11) can be completely integrated
by introducing the Mino time λ, related to the proper time by

dτ =
(
r2 + n2

)
dλ . (2.12)

We only give here the solution for θ(λ):

cos θ = cos ψ cos η + sin ψ sin η cos(Jλ), (2.13)

with ψ = arccos(Jz/J ). This shows that the Mino period of the angular motion is
2π/J .

The time evolution can be split [13] according to

t (λ) = tr (λ) + tθ (λ), (2.14)

where the radial and angular contributions to t (λ) solve the equations

dtr
dλ

= (r2 + n2)
E(r)

f (r)
, (2.15)

dtθ
dλ

= 2n(cos θ + C)(Jz − 2nE cos θ)

sin2 θ
. (2.16)

The solution to Eq. (2.15) depends on the solution of the equation for radial motion
(2.18). The solution to Eq. (2.16) is, up to an additive constant,

tθ (λ) = 4n2Eλ + 2n(C + 1) arctan

[
cos ψ − cos η

1 − cos(ψ − η)
tan

Jλ

2

]

+2n(C − 1) arctan

[
cos ψ + cos η

1 + cos(ψ − η)
tan

Jλ

2

]
, (2.17)

in the interval −π/J < λ < π/J .
Finally, after eliminating in the Hamiltonian H associated with (2.3) the angular and

temporal velocities in terms of the constants of the motion l and E , and conventionally
normalizing proper time by setting H = −1/2, we obtain the effective radial equation
[10]

ṙ2 + W (r) = 0,

[
W (r) ≡ f (r)

(
1 + l2

r2 + n2

)
− E2(r)

]
, (2.18)

where E(r) has been defined in (2.4). In the stationary sector ( f (r) > 0), E2(r) must
remain positive, so that the sign of E(r) is a constant of the motion. From (2.15), a
necessary condition for coordinate time and proper time to have the same orientation
is E(r) > 0. This condition, which ensures that the radial contribution tr (λ) is an
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increasing function, is not sufficient, because the angular contribution tθ (λ) is not
generically increasing. Indeed, as shown in [10], for parallels C which do not circle a
Misner string, tθ (λ) is in the large a decreasing function of Mino time for all values
of the parameter C . So it could be possible for the time coordinate t = tr + tθ to take
again the same value after a finite lapse of Mino or proper time. If after this lapse
the radial and angular coordinates also took again the same values, then the wordline
would be closed (or self-intersecting). In order to investigate this possibility, it is first
necessary to discuss the possible radial motions determined by (2.18).

3 Circular orbits: case of the massless magnetic Brill spacetime

The discussion of the radial motion depends on the position of the stationary points
of the effective potential W (r),

W (r) = W ′(r) = 0. (3.1)

which correspond to circular orbits. The equation W (r) = 0 is generically of fourth
order [12]. However it can be reduced to a second-order equation if W (r) is even in r ,
i.e. in the special case m = 0, q = 0 of a massless magnetic Brill spacetime, to which
we now restrict. The effective energy can then be written

E(r) = E0 + β

2
y

(
0 < y = n2

r2 + n2 ≤ 1

)
, (3.2)

with β = −2κp/n, and
E0 = E(∞) = E − β/4. (3.3)

Note that the choice E(r) > 0 implies E0 > 0 in the case of orbits extending to
infinity, i.e. if E2

0 > 1. On account of (3.2) the effective potential (2.18) reduces to

W (y) = Ay2 + By + D (3.4)

with
A = αl

2 − β2/4, B = α + l
2 − βE0, D = 1 − E2

0 , (3.5)

where we have put l = l/n, α = b
2 − 1 with b

2 = b2/n2 ≥ −1 (the very special case
p2 = n2 treated in [10] corresponds to α = 0).

3.1 Circular orbits with r = 0

The equation W ′(r) = 0 has two solutions. The first is r = 0, with effective energy
E(0) = E0 + β/2 given by the positive root of

W (y = 1) = A + B + D = (α + 1)(l
2 + 1) − E(0)2 = 0. (3.6)
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The corresponding orbit is stable or unstable, depending on whether the second deriva-
tive

W ′′
r (0) = − 2

n2 W ′
y(1) = − 2

n2 (2A + B) = − 2

n2

[
α + l

2 + 2αl
2 − βE(0)

]
(3.7)

is positive or negative. In the black-hole or extreme-black-hole case, −2 ≤ α ≤ −1,
W (0) < 0 for all E(0) > 0, so that r = 0 cannot be a stationary point. In the wormhole
case α > −1, the effective energy is

E(0) = bγ

(
b ≡ √

α + 1, γ ≡
√
l
2 + 1

)
. (3.8)

If

β >
α + l

2 + 2αl
2

bγ
= α

γ

b
+ l

2 b

γ
= 2bγ − γ

b
− b

γ
, (3.9)

r = 0 is a minimum of W (stable orbit). On the contrary, if the inequality (3.9) is
reversed, r = 0 is a maximum and this orbit is unstable.

3.2 Circular orbits with r �= 0

The second solution is dW/dy = 0, i.e. y = y0, with

y0 = − B

2A
. (3.10)

Then W = 0 if B2 = 4AD, i.e.

4αl
2
E2

0 − 2β(α + l
2
)E0 + β2 + (α − l

2
)2 = 0, (3.11)

with discriminant
� = (β2 − 4αl

2
)(α − l

2
)2. (3.12)

This is clearly non-negative if α ≤ 0. If α > 0, the discriminant is non-negative
provided

β2 ≥ 4αl
2

(3.13)

(A ≤ 0). Then (3.11) is solved by

E0 = β(α + l
2
) − δ(α − l

2
)

4αl
2 , (3.14)

where we have put

δ ≡ sign(α − l
2
)

√
β2 − 4αl

2
. (3.15)
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Further defining

z ≡ β − δ

2l
2 , (3.16)

we can rewrite (3.14) as

E0 = 1 + z2

2z
. (3.17)

It follows from (3.17) that E2
0 > 1 (the limiting value E2

0 = 1 for z2 = 1 generi-
cally corresponding from (A.2), see the “Appendix”, to an orbit at infinity), so that
W (r0) = 0 > W (∞) = 1 − E2

0 , i.e. the extremum at r = r0, if it exists, is a local
maximum (another way to see this is to compute W ′′

r (±r0) = (4r2
0 y

4
0/n4)W ′′

y (y0) =
(8r2

0 y
4
0/n4)A ≤ 0).

From its definition, y0 = n2/(r2
0 +n2) given by (3.10) must be positive and smaller

than 1. As shown in the “Appendix”, this means that circular orbits with r0 �= 0 exist
only if the test particle charge-to-mass ratio κ and scaled orbital angular momentum
l satisfy the relations

α + l
2 + 2αl

2

b

√
l
2 + 1

< −2κp

n
< α + l

2
(3.18)

(the lower bound being irrelevant in the black-hole case b
2

< 0).

In the very special limiting case l
2 = α = β/2, (3.15) and (3.16) lead to z = 1,

so that also E0 = 1, and A = B = D = 0, leading to W (r) ≡ 0. This means that a
charged test particle with parameters fine tuned to those of the Brill spacetime so that
κ ≡ qe/me = (2n2 − p2)/np can follow a (metastable) circular orbit with any given
radius.

4 Causality

Knowing the stationary points of the effective potential, one can classify the possible
worldlines of a charged test particle. We shall not go here into the details of this analysis,
which leads to results qualitatively similar to those discussed in [10] for α = 0. The
possible orbits are contained in the range of values of r such that W (r) ≤ 0. This range
can be finite (in the wormhole case), corresponding to bound orbits in the potential
well around the minimum r = 0 of W (r) if the inequality (3.9) is satisfied. Or it can be
infinite, with either scattering orbits reflected on the potential barrier (if the maximum
of the effective potential W (0) or W (±r0) is positive), or traversing orbits going from
r = +∞ to r = −∞ (if the maximum is negative).

The only possibly causality violating wordlines, in the sense of our WCP criterion,
correspond to scattering orbits followed by a charged observer. These wordlines can
self-intersect at an event M1 if:

1. the Mino time delay

�λ = 2
∫ r1

rturn
[−W (r)]−1/2 dr

r2 + n2 (4.1)
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(where rturn is the turning point, W (rturn) = 0) is an integer multiple of the period
2π/J , so that the angular coordinates take again the same values, and

2. the coordinate time delay

�t = 2
∫ r1

rturn

dt

dλ
[−W (r)]−1/2 dr

r2 + n2 (4.2)

vanishes. As discussed in [10], for an initially distant observer this will generically
not occur, because at distances (to the black hole horizon or to the wormhole neck,
according to the sign of b2) large before the characteristic length n, the potentially
negative angular contribution dtθ /dλ (which does not depend on the distance r ) will
easily be balanced by the positive definite radial contribution dtr/dλ � E0r2 [see
(2.15) and (2.16)].

But this argument breaks down if the turning point is close to the maximum, i.e. if
W ′(rturn) is small. Then the observer can spend a long proper time near the turning
point, making a large number of turns N before returning to infinity, so that the integral
in (4.2) will be of the order of

�t � N�1t (rmax ), (4.3)

where �1t (rmax ) = �1tr (rmax ) + �1tθ , the time lapse during a Mino period 2π/J
for a particle on an unstable circular orbit, is not obviously positive definite. From
(2.15) and (2.17), the radial and angular components of �1t (r) are given by

�1t (r) = 2π

J
(r2 + n2)

E(r)

f (r)
, (4.4)

�1tθ = 2πn

[
4nE

J
+ (C + 1)sgn(Jz − 2nE) + (C − 1)sgn(Jz + 2nE)

]
,

(4.5)

For |C | ≤ 1, a lower bound for �1tθ is

�1tθ ≥ 2πn

[
4nE

J
− 2

]
, (4.6)

the lower bound being attained for all orbits if C = ±1, and for orbits with −2nE <

Jz < 2nE for other values of C . Thus the lower bound for the net time lapse during
one period is

�1t (r) ≥ 2πn2

J

(
�(r) + 4E − 2

J

n

)
, (4.7)

where

�(r) = E(r)

y f (r)
> 0, (4.8)
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and E is related to E0 by (3.3). The lower bound (4.7) is not positive definite because
J ≥ 2nE . It is positive provided1

�(r) = (�(r) + 4E)2 −
(

2J

n

)2

= �(r)2 + 8E�(r) − 4l
2

> 0 (4.9)

[where we have used (2.10)]. We now investigate whether �(r) can vanish in the two
cases of circular orbits (r = 0 and r = r0 �= 0) discussed in Sect. 3.

4.1 r = 0

In this case, �(0) = E(0)/b
2 = γ /b, E = bγ − β/4, leading to

�(0) = b
−2

[
(1 + 4b

2
)γ 2 − 2βbγ + 4b

2
]
. (4.10)

�(0) is positive definite if β < 0. If β > 0, �(0) vanishes for

γ = γ± ≡ b

4b
2 + 1

[
−β ±

√
β2 − 4(4b

2 + 1)

]
. (4.11)

From (3.8), γ = γ+ is possible only if γ+ ≥ 1, which is ensured if

β ≥ 4b + 1

2b
≥ 2

√
2 (4.12)

(with equality for b
2 = 1/8). For β ≥ 4b + 1/b, �(0) can also vanish for γ = γ−.

Thus, the wordlines of charged particles circling the wormhole neck r = 0 can be
closed if their orbital angular momentum matches the value(s) (4.11). However these
circular orbits are stable, because �(0) = 0 can be written

β = 2bγ + γ

2b
+ 2b

γ
≥ 2(bγ + 1), (4.13)

which is stronger than the stability condition (3.9).2

1 The positivity condition (4.9), derived under the assumption �(r) + 4E > 0, is sufficient because

�(r) + 4E ≤ 0 is possible only if E < 0, so that 4(l
2 − E�(r)) > 0 ≥ �(r)(�(r) + 4E).

2 Note that (4.13) means E(∞) = bγ − β/2 ≤ −1, leading to W (∞) ≤ 0, so that the CWLs at r = 0
could be accessed by quantum tunnelling from infinity, but only if negative effective energies were allowed,
which we have excluded.
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4.2 r = r0

Using (A.4), we find

�(r0) = E(r0)

y0(1 + αy0)
= 1

y0z
. (4.14)

Using this together with (3.17), (3.3) and (A.1), we obtain3

�(r0) = 1

y2
0 z

2
+ 4(1 + z2)

y0z2 + 2(α + l
2
z2)

y0z2 − 4l
2

(4.15)

= 1

y2
0 z

2
+ 2(α + l

2
z2)

y0z2 + 8

y0
− 4α

z2 (4.16)

= (1 + αy0)
2

y2
0 z

2
− α(α + 4)

z2 + 2(4 + l
2
)

y0
, (4.17)

which is positive definite for −2 ≤ α ≤ 0.
To cover the complementary range α ≥ 0, we use another expression of �(r0),

obtained by inserting (A.3) into (4.15) or (4.17),

(1 + αy0)y
2
0�(r0) = 4αl

2
y2

0 (1 − y0) + 4αy2
0 + (2α + 3l

2 + 8)y0 + 1, (4.18)

which is positive definite for y0 ∈ [0, 1] if α ≥ 0.
So the only possible CWLs with circular orbits have r = 0, but these haveE(∞) < 0

and so cannot attract charged test particles coming from infinity.

5 Conclusion

We have investigated the motion of electrically charged test particles in a spacetime
with closed timelike curves, the Brill or Reissner–Nordström-NUT spacetime with
only magnetic and gravimagnetic (NUT) charges, and without periodic identification
of time. We have argued that causality violations can be observed by an initially distant
charged observer only if he can be attracted by an unstable closed worldline with
circular orbit. It turns out that the only circular orbits around which the net coordinate
time lapse vanishes, corresponding to a closed wordline, are stable. It follows that no
wordline followed by an initially distant charged observer moving under the action of
the Lorentz force can possibly self-intersect, meaning that, in this specific dynamical
framework, causality is preserved in the sense of our weak chronology protection
criterion.

This work should be extended in several directions. First, the same problem should
be investigated in the general case of the Brill spacetime with all four charges non-
vanishing. Our guess is that weak causality should also hold in that case, although a
complete analytical proof seems very difficult, unless methods more powerful than

3 To transform (4.15) into (4.16), we have combined the second and fourth term of (4.15) and used (A.2).

123



60 Page 12 of 14 G. Clément, M. Guenouche

those of the present paper are used. Also, the possible existence of closed or self-
intersecting wordlines should be similarly investigated in the case of other spacetimes
with CTCs, in order to see whether they satisfy weak causality. The simplest cases
are presumably those of three-dimensional spacetimes, such as BTZ [14,15], and
warped AdS black hole spacetimes [16–18], which both admit CTCs. The latter are
self-consistent solutions of the three-dimensional Einstein–Maxwell theory with grav-
itational and electromagnetic Chern–Simons terms [19], so that Lorentz-force motion
of charged observers could be investigated for causality in a fashion similar to that of
the present paper.
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Appendix: Circular orbits with r �= 0

From (3.15) and (3.16), β and δ can be expressed in terms of z as

β = α + l
2
z2

z
, δ = α − l

2
z2

z
. (A.1)

Using this, we obtain from (3.10)

y0 = −δ(α + l
2
) + β(α − l

2
)

2αl
2
δ

= 1 − z2

l
2
z2 − α

, (A.2)

which can be inverted to

z2 = 1 + αy0

1 + l
2
y0

. (A.3)

We also obtain from (A.1) and (A.2) the value of the effective energy E(r0) = E0 +
(β/2)y0:

E(r0) = (l
2 − α)z

l
2
z2 − α

= (1 + l
2
y0)z, (A.4)

so that the effective energy is positive provided

z > 0. (A.5)

In the black-hole case or extreme-black-hole case, −2 ≤ α ≤ −1, (A.3) is positive
definite provided

0 < y0 < yh = − 1

α
, (A.6)

so that the circular orbits must be outside the horizon (r0 > rh). The allowed range of
z is then from (A.2)

0 < z < 1, (A.7)
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leading from (A.1) to the condition for the existence of these circular orbits:

l
2

> β − α. (A.8)

In the wormhole case, α > −1, y0 can vary in the full range 0 < y0 < 1, leading
to the allowed range of z

b

γ
< z < 1 if l

2
> α,

1 < z <
b

γ
if l

2
< α

(A.9)

[where b and γ are related to α and l
2

by (3.8)]. Both cases lead to the same bounds
for the existence of an unstable circular orbit of radius r = ±r0,

α + l
2 + 2αl

2

bγ
< β < α + l

2
. (A.10)

For α > 0, the lower bound ensures that the first existence condition (3.13) is satisfied,
due to the identity

(α + l
2 + 2αl

2
)2 = 4αl

2
b

2
γ 2 + (α − l

2
)2. (A.11)

Note that in the parameter range (A.10) there is also from (3.9) a stable circular orbit
at r = 0.
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