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Abstract Modified gravity theories include f (R)-gravity models that are usually
constrained by the cosmological evolutionary scenario. However, it has been recently
shown that they can also be constrained by the signatures of accretion disk around
constant Ricci curvature Kerr- f (R0) stellar sized black holes. Our aim here is to use
another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters
of specific f (R)-gravity prescriptions. We shall assume that a Kerr- f (R0) solution
asymptotically describes Earth’s weak gravity near its surface. In this spacetime, we
shall study oppositely directed light beams from source/observer moving on non-
geodesic and geodesic circular trajectories and calculate the time gap, when the beams
re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it
to show how the flat space value is corrected by the Ricci curvature, the mass and the
spin of the gravitating source. Under the assumption that the magnitude of corrections
are of the order of residual uncertainties in the delay measurement, we derive the
allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay
can be used to constrain the parameters of specific f (R) prescriptions. Despite using
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the weak field gravity near Earth’s surface, it turns out that the model parameter
ranges still remain the same as those obtained from the strong field accretion disk
phenomenon.

Keywords Sagnac delay · Spinning spacetime · Gravitation

1 Introduction

Modified gravity theories typically include f (R)-gravity models that are mostly con-
strained by cosmological evolutionary scenario (see, e.g., [1]). On the other hand, the
work pioneered by Pérez et al. [2] seems to be the first in the direction of constrain-
ing such models using the strong field effect of accretion into stellar sized spinning
black holes characterized by the constant Ricci curvature Kerr- f (R0) gravity solu-
tion, which is a chargeless case of the more general Kerr–Newman black hole analyzed
in [3] for thermodynamic and stability properties. The Kerr- f (R0) gravity solution
formally resembles the Carter solution [4] of general relativity but physically very
different from it. We want to clarify that, in the present context, the constant Ricci
curvature R0 appearing in the Carter metric has nothing to do with the general rel-
ativistic cosmological constant (Λ ≈ 10−56cm−2) but can take on any real value.
Indeed, a range of real values for the Ricci curvature R0 can be obtained from various
theoretical considerations such as the event horizon or stability of circular orbits [2]
or by experimental facts as considered here.

For instance, in Pérez et al. [2], the authors obtained adimensional curvature ranges
(−∞, 10−6] and [− 1.2×10−3, 6.67×10−4] in the cases of Schwarzschild and Kerr
black holes in f (R0) gravity, respectively. The lower limit in the latter appear since
accretion disk observations of Cygnus-X-1 in the soft state rule out curvature values
below − 1.2 × 10−3. These ranges of curvature in turn fix the parameters of specific
f (R) prescriptions.

The present work aims to constrain the f (R)-gravity prescriptions exploiting a
hardcore experimental fact, viz., the residual uncertainty in the terrestrial Sagnac
delay observations in 1971 and 1985 experiments. For this purpose, we shall assume
that the weak gravitational field of spinning Earth near its surface is asymptotically
described by the Kerr- f (R0) gravity solution or Carter solution [3]. We shall therefore
first calculate the exact Sagnac delay for non-geodesic and geodesic source/observer
circular orbits on the equatorial plane of the Earth and then make Parametric Post
Newtonian expansions. Our strategy is to identify the observed residual uncertainties
in the delay with the leading order corrections to the delay that depend on the local
Ricci curvature. This would provide the desired ranges of R0, which in turn would be
used to constrain the specific f (R) prescriptions.

The merit of the present work is that the Sagnac delay observations (from Hafele–
Keating experiment [5,6]) in the weak gravity of horizonless Earth corresponding to
low Ricci curvature can lead to the same constraints on the f (R) gravity prescriptions
as are obtained from strong gravity accretion disk around Kerr- f (R0) gravity black
holes.
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Hafele and Keating in their historic around-the-Earth 1971 experiment carried
portable atomic clocks circumnavigating the Earth, once eastward and again west-
ward, and confirmed the special relativistic Sagnac effect attributable to Earth’s spin.
The clocks will have equal energies but not equal time rates leading to a synchro-
nization discontinuity between them when they reunite. Schlegel [7] has shown that
this discontinuity is exactly the same as the light synchronization discontinuity or by
another name, the Sagnac delay. Allan et al. [8] reported in 1985 an equivalent 90
day run of the around-the-world relativistic Sagnac experiment with electromagnetic
signals transmitted by GPS satellites, which directly tested the light synchronization
discontinuity more accurately. However, even though the delay is caused by spinning
Earth, it is not a mass or spin dependent effect to the observed leading order.

A laboratory simulation of the effect is as follows. Consider a circular turntable of
radius R having a light source/receiver (meaning the source and the receiver at the
same point) fixed on the turntable. A beam of light split into two at the source/receiver
are made to follow the same closed path along the rim in opposite directions before they
are re-united at the source/receiver. If the turntable is not rotating, the beams will arrive
at the same time at the source/receiver and an interference fringe will appear. When
the turntable rotates with angular velocity ω, the arrival times at the source/receiver
will be different for co-rotating and counter-rotating beams: longer in the former case
and shorter in the latter. This difference in arrival times is called the flat space Sagnac
delay (named after the discoverer), which to leading order in ω is:

δτS = 4ω · S
c2 , (1)

where S is the area of the projection, orthogonal to the rotation axis, of the closed path
followed by the waves contouring the turntable, c is the speed of light in vacuum and
ω is the angular velocity of the turntable. It is possible to move ahead from special
relativity and consider Kerr- f (R0) corrections to the Sagnac delay (1) due to mass
and rotation, when the “turntable” is assumed to be a massive rotating compact object
like the Earth. The effect has been previously investigated using different solutions of
Einstein’s general relativity (see, e.g., [9–14]).

The paper is organized as follows: In Sect. 2, we briefly describe the f (R)-gravity
equations and their solution for a massive spinning compact object. In Sects. 3–5, we
shall compute the mass and rotation induced corrections to flat space Sagnac delay
for circular motion on the equator. In Sect. 6, we shall derive constraints on R0 from
residual error and show in Sect. 7 how the ranges of R0 constrain the parameters in
two illustrative examples of f (R)-gravity. Section 8 concludes the paper. We shall
choose units such that 16πG = c = 1 unless specifically restored.

2 f (R) gravity equations and Kerr- f (R0) solution

The f (R)-gravity action generalizes Einstein–Hilbert action S[g] = ∫
R

√−gd4x to

S[g] =
∫

[R + f (R) + Lmatt]√−gd4x, (2)
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where g is the determinant of the metric tensor and f (R) is an arbitrary function of
R. In the metric formalism, the field equations can be obtained by varying the metric,
which yields (see, e.g., [2,3]):

Rμν[1 + f ′(R)] − 1

2
[R + f (R)] gμν + [∇μ∇ν − gμν�

]
f ′(R) + Tμν = 0, (3)

where Rμν is the Ricci tensor, � ≡ ∇β∇β and f ′(R) ≡ d f (R)/dR and the stress
tensor is defined by

Tμν = −2√−g

δ
(√−gLmatt

)

δgμν
, (4)

where Lmatt is the matter Lagrangian. Taking trace of Eq. (3), we get

R[1 + f ′(R)] − 2 [R + f (R)] − 3� f ′(R) + T = 0. (5)

Equation (3) are a system of fourth-order nonlinear equations in gμν . In the case of
constant Ricci scalar R ≡ R0, and in vacuum Tμν = 0, Eq. (3) reduces to

Rμν = Λgμν, (6)

Λ = f (R0)

f ′(R0) − 1
, (7)

and by Eq. (5), R0 satisfies

R0 = 2 f (R0)

f ′(R0) − 1
. (8)

By appearance, Eq. (6) looks like Einstein’s general relativity equations with a fixed
cosmological constant Λ but this similitude is merely notational. As emphasized pre-
viously, in the present context the curvature R0, and thus Λ, can take on arbitrary real
values depending on the imposed local physical criteria.

In view of Eqs. (6–8), giving Λ ≡ R0/2, the spinning Carter solution [4] can be
interpreted as f (R)-gravity solution with constant Ricci curvature R0, which reads

dτ 2 = Δr

ρ2Ξ2

[
dt − a sin2 θdφ

]2 − Δθ sin2 θ

ρ2Ξ2

[
(r2 + a2)dφ − adt

]2

− ρ2

Δr
dr2 − ρ2

Δθ

dθ2, (9)

where for convenience, we have written γ ≡ R0
12 > 0, so that

Δr = (r2 + a2)
(

1 − γ r2
)

− 2Mr, (10)

ρ2 = r2 + a2 cos2 θ, (11)

Δθ = 1 + γ a2 cos2 θ, (12)

Ξ = 1 + γ a2, (13)
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where M is the (asymptotic) mass of the source, a is the ratio between the angular
momentum J and the mass M,

a = J

M
. (14)

When γ = 0, one recovers the usual Kerr solution of general relativity in Boyer-
Lindquist coordinates. We shall compute the Sagnac delay for two types of equatorial
orbits in the ensuing sections and consider only the weak field effects from corre-
sponding expansions.

3 Non-geodesic equatorial orbit

We shall follow the method developed by Tartaglia [12]. Consider that the
source/receiver, sending two oppositely directed light beams, is orbiting around a
rotating black hole described by metric (9), along a circumference on the equatorial
plane θ = π/2. Suitably placed mirrors send back to their origin both beams after
a circular trip about the rotating central mass. Assume further that source/receiver is
orbiting the central mass at a radius r = R = const. Then the metric (9) reduces to

dτ 2 = R2 − 2MR + a2 − γ R2(R2 + a2)

R2(1 + a2γ )2 (dt − adφ)2

− 1

R2(1 + a2γ )2 [(R2 + a2)dφ − adt]2. (15)

Assuming uniform rotation, the rotation angle φ0 of the source/receiver is

φ0 = ω0t. (16)

Since this ω0 is not required to satisfy Kepler’s third law, the motion is non-geodesic
(see Sect. 5). Using dφ = dφ0 = ω0dt in Eq. (15), we obtain

dτ 2 = R2[1 − (R2 + a2){ω2
0 + (aω0 − 1)2γ }] − 2MR(aω0 − 1)2

R2(1 + a2γ )2 dt2. (17)

For light moving along the same circular path it must obey dτ = 0. Assuming Ω to
be the angular velocity of light motion along the path, we have

R2[1−(R2+a2){Ω2+(aΩ−1)2γ }]−2MR(aΩ−1)2 = 0, a2γ �= −1. (18)

Solving Eq. (18), one finds two roots that represent the angular velocity Ω± of light
for the co- and counter rotating light motion given by

Ω± = 2aM/R + a(R2 + a2)γ

R2 + 2(M/R)a2 + a2
{
1 + (R2 + a2)γ

}

±
√
R2 − 2MR + a2 − R2(R2 + a2)γ

R2 + 2(M/R)a2 + a2
{
1 + (R2 + a2)γ

} . (19)
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The rotation angles φ± for light are then

φ± = Ω±t. (20)

Eliminating t between Eqs. (16) and (20), we obtain

φ± = Ω±
ω0

φ0. (21)

The first intersection of the world lines of the two light rays with the one of the orbiting
source/receiver after the emission at time t = 0 is, when the angles are

φ+ = φ0 + 2π, (22)

φ− = φ0 − 2π, (23)

which give
Ω±
ω0

φ0 = φ0 ± 2π. (24)

Solving for φ0, we have

φ0± = ∓ 2πω0

Ω± − ω0
. (25)

Putting the expressions from (19), we obtain

φ0± = ∓ 2πω0/

[
2aM/R + a(R2 + a2)γ

R2 + 2(M/R)a2 + a2{1 + (R2 + a2)γ }

±
√
R2 − 2MR + a2 − R2(R2 + a2)γ

R2 + 2(M/R)a2 + a2
{
1 + (R2 + a2)γ

} − ω0

]

. (26)

The proper time at the rotating source/receiver, deduced from Eq. (17) using Eq. (16),
is

dτ =
√
R2

[
1 − (R2 + a2)

{
ω2

0 + (aω0 − 1)2 γ
}] − 2MR(aω0 − 1)2

R(1 + a2γ )

dφ0

ω0
. (27)

Finally, integrating between φ0− and φ0+ , we obtain the exact Sagnac delay

δτ =
√
R2

[
1 − (

R2 + a2
) {

ω2
0 + (aω0 − 1)2 γ

}] − 2MR (aω0 − 1)2

R
(
1 + a2γ

)
φ0+ − φ0−

ω0
.

(28)
Using the integration limits from Eq. (26), we explicitly write it out as

δτ = 4π

R

[{
R3 + 2Ma2 + a2R + a2R(R2 + a2)γ

}
ω0 − 2Ma
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− aR(R2 + a2)γ
]
/
[(

1 + a2γ
) {

1 − 2M/R + 4a(M/R)ω0

− (R2 + 2Ma2/R + a2)ω2
0 − (aω0 − 1)2(R2 + a2)γ

}1/2
]

. (29)

Equation (29) is the exact Sagnac delay and is often interpreted as the gravitational
analogue of the Bohm–Aharonov effect [15] although the light beams are not truly
moving in the gravitation free space. The best situation for the gravitational Bohm–
Aharonov effect is when the light beams are induced to move along a flat space torus
(see for details, Semon [16]). Nevertheless, as shown by Ruggiero [17], expression
(29) completely agrees with the one of the gravito-electromagnetic Bohm–Aharonov
interpretation [18]. For the viewpoint of Bohm–Aharonov quantum interference in
general relativity, see [16,19,20].

On the other hand, we can imagine a static source/receiver keeping a fixed position
in a coordinate system defined by distant fixed stars (ω0 = 0). For him, a Sagnac delay
will also occur under the condition that a �= 0, given by

δτ0 = − 8πa{M + γ R(a2 + R2)/2}
R(1 + a2γ )

√
1 − 2M/R − (a2 + R2)γ

. (30)

A post-Newtonian first order approximation for a static observer sending a pair of light
beams in opposite directions along a closed triangular circuit, instead of a circle, was
worked out by Cohen and Mashhoon [21] and they found the same result as above in
that approximation. So what is important is not the shape but the closedness of the
orbit.

4 Post-Newtonian expansion

We obtain that δτ in Eq. (29) is the Sagnac delay for non-geodesic circular equatorial
motion. In most cases many terms in this equation are very small allowing Post-
Newtonian series approximations, which we do below. Let us first assume that β =
ω0R 
 1, and develop Eq. (29) in powers of β retaining terms only up to the second
order. The result is

δτ � − 8πa
{
M + γ R(a2 + R2)/2

}

R(1 + a2γ )
√

1 − 2M/R − (a2 + R2)γ

+ 4π
{
R2 − 2MR + a2 − R2(a2 + R2)γ

}

R(1 + a2γ )
{
1 − 2M/R − (a2 + R2)γ

}3/2 β

−12πa
[{M + γ R(a2 + R2)/2}{1 − 2MR + a2/R2 − (a2 + R2)γ }]

R(1 + a2γ )
{
1 − 2M/R − (a2 + R2)γ

}5/2
β2,

(31)

which displays that the first term is just δτ0 of Eq. (30), as expected. Now we perform
a successive post-Newtonian approximation in ε = M/R 
 1 and in a/R 
 1, and
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using the expression δτS = 4ω0S = 4πω0R2 = 4πβR, we obtain the final result

δτ � δτS

{

1 + γ R2

2
− γ a2

(

1 + γ R2

2

)}

+ 4πRMω0

{

1 + 3γ R2

2
− γ a2

(

1 + 3γ R2

2

)}

− 8πaM

R

{
1 + γ R2 − γ a2

(
1 + γ R2

)}
. (32)

This expression reduces to the corresponding one of Tartaglia [12] when γ = 0.
Equation (32) can be re-organized as

δτ �
(

δτS + 4πRMω0 − 8πaM

R

)

+ terms dependent on γ. (33)

The corrections to δτS due to γ, M and a are evident. However, the flat space Sagnac
effect δτS is not completely recovered even when the correction terms containing

M and a are negligible, due to the appearance of an extra term γ R2

2 , which comes
in as a contribution of constant curvature scalar R0, at an orbit radius of Earth (say)

r = R⊕. The terms proportional to
(

γ R2

2

)
or

(
R0R2/24

)
can be interpreted as an

f (R0) contribution, provided it does not vanish. We shall estimate the bounds on R0
soon.

5 Geodesic equatorial orbit

The equatorial orbit in Sect. 3 was not geodesic or in free fall since the source/receiver
was at the Earth’s radius R⊕ sharing its constant rotational velocity ω0 = Ω⊕ =
7.30 × 10−5 rad/s, but the motion was not required to satisfy Kepler’s third law. Here
we are considering a circular geodesic orbit of the source/receiver at some arbitrary
radius on the equator (θ = π/2) and sending light signals circumnavigating the Earth.
The rotational velocity ω± of the satellite is now determined by the circular geodesic
itself as follows.

Defining the velocity four-vector ẋν = dxν

dτ
, the Lagrangian can be written as

L = 1

2
gμν ẋ

μ ẋν (34)

and the Euler–Lagrange r -equation is

d

dτ

(
∂L

∂ ṙ

)

= ∂L

∂r
. (35)
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Since in metric (9), grμ = 0 for r �= μ, we have

d

dτ
(grr ṙ) = 1

2
gμν,r ẋ

μ ẋν . (36)

Circular orbits are defined by the conditions

ṙ = r̈ = 0, (37)

so that the Eq. (35) yields

gtt,r ṫ
2 + 2gtφ,r ṫ φ̇ + gφφ,r φ̇

2 = 0. (38)

Defining ω = φ̇/ṫ , this equation yields the quadratic equation

gφφ,rω
2 + 2gtφ,rω + gtt,r = 0. (39)

From the metric (9), putting dr = 0 at r = R = const. and dθ = 0 at θ = π/2, we
find

dτ 2 = gttdt
2 + 2gtφdtdφ + gφφdφ2,

where

gtt = 1 − 2M

R
− γ

(
a2 + R2

)
, gtφ = 2aM

R
+ γ a

(
a2 + R2

)

gφφ = −2a2M

R
−

(
a2 + R2

) (
1 + a2γ

)
. (40)

The source/receiver rotational velocities ω± then follow from the two roots of Eq. (38),
using Eq. (39),

ω± =
(
aM
R2 − aRγ

)
±

√
M
R − γ R2

a2M
R2 − R − a2Rγ

,

δτS± = 4πR2ω±. (41)

The above δτS± is the exact delay for geodesic motion. One could treat this result as
representing the effect of cosmological constant Λ on the Sagnac delay. When a = 0,

γ = 0, we have ω± = ∓
√

M
R3 , which is just Kepler’s third law. We now expand

Eq. (40) up to first order in (a/R) and obtain

ω± =
(

γ R − M

R2

) ( a

R

)
± 1

R

√
M

R
− γ R2. (42)
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Noting that ω± = const. (since r = R = const. for circular orbits), we can insert it
into the first order delay to obtain δτS± = 4πR2ω±, so that

δτ
geod
S± = ±4π

[√
MR − γ R4 ∓

( a

R

) (
M − γ R3

)]

. (43)

The Kerr terms follow at γ = 0, when we recover the formula derived by Lichtenegger
and Iorio [22]:

δτ± = ±4π
√
MR ∓ 4πa

(
M

R

)

. (44)

6 Constraints on R0 from the terrestrial Sagnac data

We shall consider that the source/receiver is orbiting along a circular path close to the
spinning Earth, assuming that Earth’s gravity near its surface (weak field) is described
by the Carter metric of Kerr- f (R0) gravity. The gravitational field of the Earth has
already been described in the weak field by the Kerr metric leading, for instance,
to the Lense-Thirring (LT) precession already well tested by LAGEOS and Gravity
Probe—Gravity Probe—B missions [23–26]. Hackmann and Lämmerzahl [27–29]
have recently given an expression of LT precession that is valid up to first order
in the Kerr parameter a for a more general axisymmetric six-parameter Plebański–
Demiański spacetime, of which the presently considered f (R0) - Kerr solution is just
a special case [27]. See also [28,29] for more complete details.

To obtain bounds on R0 from the terrestrial Sagnac delay, we consider the relevant
Earth data:

R⊕ = 6, 378, 137 m,

Ω⊕ = 7.30 × 10−5 rad/s,

rg = GM⊕/c2 = 4.35 × 10−3 m,

a = a⊕ = 9.81 × 106 m2/s,

c = 3 × 108 m/s. (45)

The basic total Sagnac delay δτS = 4πω0R2/c2, with ω0 = Ω⊕, R = R⊕, due to the
east and westward equatorial motion of the source/receiver, works out to

δτS = 2 × 2Ω⊕
c2 × πR2⊕ = 4.148 × 10−7s = 2 × 207.4 ns. (46)

As well known, this famous value 1
2δτS (= 207.4 ns) is the one way delay (either

east or westward circumnavigation) compared to a stationary clock on Earth that has
been measured (excluding velocity and altitude factors) by Hafele and Keating in their
famous airborne atomic clock experiment [5,6]. Schlegel [7] explained that the Hafele–
Keating value of clock synchronization discontinuity between the flying equatorial
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clocks and the stationary clock on Earth is exactly the Sagnac delay 2Ω⊕
c2 πR2⊕. We

shall now consider various corrections contributing to the one way basic delay 1
2δτ .

6.1 Correction to delay for non-geodesic equatorial motion

The Hafele–Keating around-the-world experiment involved portable atomic clocks
that had undergone non-geodesic equatorial motion because those were propelled by
the aircraft engine. Therefore, Eq. (32) for total observed delay δτ is applicable and
the corrections contributed by M, ω0, γ and a to the one way basic Sagnac delay 1

2δτS

can be obtained by computing 1
2 (δτ − δτS). Putting in the relevant Earth values in the

expression (32) for δτ , using δτS = 4.148 × 10−7s, and restoring γ = R0
12 , we obtain

Δτ corr
non−geo = 1

2
(δτ − δτS) (47)

= 6.98 × 1014R0 − 6.22 × 10−14R2
0. (48)

The dependence of correction on the unknown Ricci curvature R0 is evident. In order
to have an idea of its possible numerical range, let us consider the underlying metric
signature of (9) by putting a = 0. Then, one has Δr = r2

(
1 − γ r2

) − 2Mr . If
γ r2 ≥ 1, then Δr < 0, which would imply an invalid metric signature (t, r, θ, φ) →
(−,+,−,−). Therefore, one must have

0 ≤ γ r2 < 1, (49)

yielding a valid signature (t, r, θ, φ) → (+,−,−,−). This signature must be pre-
served throughout the spacetime and the inequality (48) should be canonical. Then
the constraint (48) reads

0 ≤ R0 <
12

R2⊕
. (50)

Using the above inequality, with R⊕ from (44), we get the range 0 ≤ R0 < 2.95 ×
10−13 m−2, which must not be violated.

We now assume, as an input, that the correction Δτ corr
non−geo in (47) is sunk in the

observed maximum residual error ∼ 10 ns [5,6], i.e., we assume that (using the
conversion 1 s = 109 ns):

109 × Δτ corr
non−geo = 10 ns, (51)

which yields two roots R(1)
0 = 1.43 × 10−14 m−2 and R(2)

0 = 1.22 × 1028 m−2. The
latter root is discarded since we are considering an experiment in the weak field limit
in the vicinity of the Earth’s surface, where curvature is expected to be extremely low,
a = a⊕. Thus, one ends up with a slightly sharper range given by

0 ≤ R0 < 1.43 × 10−14 m−2. (52)
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We shall see below that this range can be sharpened further using the geodesic motion.

6.2 Correction to delay for geodesic equatorial motion

It should be noted that Allan, Weiss and Ashby [8] reported in 1985 an equivalent 90
day run of the around-the-world relativistic Sagnac experiment with electromagnetic
signals transmitted by GPS satellites, which directly test the synchronization discon-
tinuity leading to reduced residual error of ∼ 5 ns. Here we are enumerating a delay,
where the source/receiver and electromagnetic signals are undergoing geodesic (free
fall satellites) motion, unlike in the Hafele–Keating airborne experiment. So, some
difference in the range of R0 would be expected here, even if the same circular orbital
radius R⊕ is chosen. Recall the one way delay:

(
1

2

)

δτ
geo
S± = ±2π

[√
MR − γ R4

]

+
( a

R

) (
M − γ R3

)
.

In order that the delay be not imaginary (reality constraint), the first term in (42)
provides a curvature range

0 ≤ R0 <
12GM⊕
c2R3

geo
, (53)

which is specific to geodesic motion. Choose an approximate orbit radius around the
Earth, Rgeo = 7 × 106 m [12], then the signature constraint (48) immediately gives
0 ≤ R0 < 1.54 × 10−22 m−2. We can try to find the value of R0 from the correction
term: Restoring γ,G and c, and R = Rgeo in Eq. (42), we obtain the one way delay

(
1

2

)

δτ
geod
S �

∣
∣
∣
∣
∣
2π

c

√
GM⊕Rgeo

c2

∣
∣
∣
∣
∣

[

1 + c2R0R3
geod

24GM⊕

]

= 3670 ×
[
1 + 3.25 × 1021R0

]
ns. (54)

A free fall satellite transmitting light in geodesic motion in both directions at the radius
Rgeo is predicted to measure the basic two way delay (just double, 2 × 3670 ns =
7.34 × 10−6 s). Precisely, this is the value also obtained by Tartaglia [12]. As in
(46), we constrain the correction term Δτ corr

geod, that is, the second term in Eq. (53), by
0 ≤ Δτ corr

geod ≤ the observed error residual, to find

Δτ corr
geod = 1.2 × 1025R0ns ⇒ R0 = Δτ corr

geod

1.2
× 10−25 m−2 (ns)−1 . (55)

Experiments involving geodesic motion of clocks in circular orbit have not been done.
Nevertheless, taking into account the refined error residual ∼ 5 ns [8] to the basic

123



Terrestrial Sagnac delay constraining modified gravity… Page 13 of 19 44

delay 3670 ns, the corresponding range of R0 becomes1

Δτ corr
geod = 1.2 × 1025R0 ns ∼ 5 ns

⇒ 0 ≤ R0 ≤ 4.16 × 10−25 m−2, (56)

which we argue to be the range associated with the free fall geodesic motion that is seen
to be finer than the previous range (51) by over ten orders of magnitude. Incidentally,
Ruggiero [26] has shown how the presence ofR0 affects the Kepler rotational velocity,
precession of the pericenter and the angular velocity of the gravitomagnetic preces-
sion. The accuracy achieved in the Gravity-Probe-B experiment, completed several
years ago, is 7.2 milliarcseconds/year2 and it is possible to deduce an estimate3 |k|
≤ 10−26 m−2, which is quite near the upper limit derived in (56). We shall consider
only the interval (55) for our computation below as it is a bit finer.

7 Illustrative examples of f (R)-gravity

The examples of specific f (R)-gravity models and their analyses are patterned after
those in Pérez et al. [2]. Since the Sagnac delay allows only a positive range of R0 as
in (56), we do not discuss negative values of R0 in what follows.

(1) Consider the model
f (R) = αRβ, (57)

where the constants α, β and the constant Ricci scalar R0 are related by Eq. (8) as

R0 =
[

1

α (β − 2)

] 1
β−1

. (58)

Note that β > 0 and small positive values of α > 0 are necessary conditions that
ensure the passage to general relativity for small values of the Ricci scalar R. With
rg = GM⊕/c2 = 4.35 × 10−3 m, and the adimensional curvature defined as

R0 = R0r
2
g , (59)

the range (55), 0 ≤ R0 ≤ 4.16×10−25 m−2, now translates to the adimensional range

0 ≤ R0 < 7.87 × 10−30. (60)

Further, with Rg = r2
g , the parameter α is redefined as α′ = αRβ−1

g so that one can
rewrite Eq. (57) as

1 Even if the error residual is a bit higher, it does not significantly alter the limit on R0.
2 We thank an anonymous reviewer for pointing it out to us.
3 Ruggiero’s notation k is the same as R0/4 or Λ/2 in our notation.
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Fig. 1 Plot of α′ (β,R0) as a function of β > 0 and R0

R0 =
[

1

α′ (β − 2)

] 1
β−1 ⇒ α′ (β,R0) = 1

R
β−1
0

[
1

β − 2

]

. (61)

It is clear from the above that β = 2 is ruled out because the Eq. (60) is not defined and
β > 2 is ruled out as it leads to very large values of α′, hence of α, thereby preventing
the passage to general relativity.

From the Fig. 1, within the interval β ∈ (0, 2), we then find that α′ ∈ (−∞, 0) for
the range 0 ≤ R0 < 7.87 × 10−30, which leads to the following constraints on the
parameters of the model

α′ ∈ (−∞, 0), β ∈ (0, 2), R0 ∈ (0, 7.87 × 10−30]. (62)

These constraints are further modified when the generic viability conditions of f (R)-
gravity are imposed. These are (see, e.g., [1])

−1 < f ′(R0) < 0, (63)

f ′′(R0) > 0. (64)

The first condition ensures an effective positive gravitational constant and the second
condition is necessary to avoid the Dolgov–Kawasaki [30] instability of the Ricci
scalar. The two conditions respectively yield

− 1 < αβRβ−1
0 < 0, (65)

αβ(β − 1)Rβ−2
0 > 0. (66)
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In view of the second part of (65) giving α < 0, the inequality (66) yields

0 < β < 1. (67)

Because of the inequality (66), we can write using the first part of (65) another valid
inequality:

αRβ−1
0 > −1 ⇒ α > − 1

Rβ−1
0

. (68)

The following are the limits on α induced by the two limiting values of β. If β =
0, α > −R0 and for β = 1, α > −1. Together with α < 0 from (65), the range for
α is then α ∈ (−R0, 0). Thus the final range of parameters finally constrained by the
viability/instability conditions is

α ∈ (−R0, 0), β ∈ (0, 1),R0 ∈ (0, 7.87 × 10−30]. (69)

The first two intervals are the same as in [2], while the curvature interval is much
smaller representing the weak field of the Earth.

(2) The chosen function is

f (R) = εR ln
R
α

, (70)

where the parameters ε and α and the constant Ricci scalar R0 are related by Eq. (8)
as

α = R0 exp

(
1

ε
− 1

)

. (71)

Adimensionalizing as before, we have

α′ (ε,R0) = R0 exp

(
1

ε
− 1

)

. (72)

From Eq. (70) and as illustrated in Figs. 2 and 3, it follows that two cases are
possible for R0 > 0:

ε ∈ (−∞, 0) ⇒ α′ ∈
(

0, e−1
R0

)
, (73)

ε ∈ (0,∞) ⇒ α′ ∈
(
e−1

R0,∞
)

. (74)

The viability condition (63) and the stability condition (64) then respectively imply

− 1 < ε

(

1 + ln
R0

α′

)

< 0, (75)

ε

R0
> 0. (76)

For R0 > 0, as suggested by the Sagnac delay data, the only possibility from the last
inequality is that ε > 0, and from the inequality (75), it follows that α′ ∈ (

e−1
R0,∞

)
.

Summarizing, the constraints on the parameters of this model are
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Fig. 2 Plot of α′ (ε,R0) as a function of ε ∈ (0, 8) and R0

Fig. 3 Plot of α′ (ε,R0) as a function of ε ∈ (− 8, 0) and R0

ε > 0, α′ ∈
(
e−1

R0,∞
)

, R0 ∈ (0, 7.87 × 10−30]. (77)

The above two examples show that the free parameters of the models are constrained
to remain in the same interval although the interval for curvature is considerably much
smaller than that corresponding to strong curvature accretion disk phenomenon [2],
which is R0 ∈ [−1.2 × 10−3, 6.67 × 10−4].
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8 Conclusions

The terrestrial Sagnac effect being investigated in the f (R0)-Kerr gravity in this paper
is probably the first of its kind, to our knowledge. The spinning source introduces a
synchronization discontinuity (interpreted as the Sagnac effect [5–8]) between two
oppositely directed light beams when they are re-united. Three main conclusions of
the work are as follows:

(1) Equations (29) and (41) for the exact Sagnac delay in the f (R0)-Kerr gravity are
the pivotal results of this paper. Approximations have been made to expose, in
Eqs. (32) and (43), the leading order corrections due to M, a, ω0 and R0 to flat
space value δτS measured in the weak field Hafele–Keating experiment.

(2) For our purposes, we do not need the basic terrestrial value δτS but need only
the corrections thereto. Using the more refined error residual, together with the
input assumption that the correction Δτ corr

geod is sunken in the error residual, viz.,
0 ≤ Δτ corr

geod ≤ error residual ∼ 5 ns, we end up with the range (56), viz., 0 ≤
R0 ≤ 4.16 × 10−25 m−2. Since it is sharper than that from non-geodesic motion,
it is used to fix parameters of specific f (R)-gravity models.

(3) Pérez et al. [2] obtained the range for R0 using the accretion disk phe-
nomenon in the strong field of the X-ray binary Cygnus X-1 black hole,
which yielded an adimensional R0 ∈ [−1.2 × 10−3, 6.67 × 10−4]. It fol-
lows that our obtained range in (56), viz., in R0 ∈ (0, 7.87 × 10−30] from
the terrestrial scenario is much smaller, which is expected, since in the vicin-
ity of Earth’s surface, gravity is weak. Following their analysis, the parameters
of the same f (R)-gravity models have been constrained by (69) and (77),
which are found to be the same as those in Pérez et al. [2] despite the
fact that our circular motions lie in the weak field of spinning horizonless
Earth.

As a curiousity, since the field equations (6) for constant Ricci scalar f (R)-gravity
anyway resemble Kerr–de Sitter equations, one could identify R0 = 2Λ and com-
pare the limits on cosmological constant Λ obtained in the literature. Kagramanova
et al. [31] derived several limits ranging from |Λ| ≤ 6 × 10−24 m−2 (gravitational
time delay) to |Λ| ≤ 10−41 m−2 (perhelion shift). Similarly, Sereno and Jetzer [32]
considered observations that cover distance scales between ∼ 108 to ∼ 1015 km
and showed that the best constraint |Λ| ≤ 10−42 m−2 comes from the perihelion
precessions of Earth and Mars, a conclusion reached also in [31]. All the limits
are evidently far larger than the cosmology motivated value Λ ∼ 10−52 m−2 and
it seems hopeless to try to determine it from local effects. Nonetheless, our limit
|Λ| = R0

2 ≤ 2.08 × 10−25 m−2 comes closer to that obtained by Kagramanova et
al. [31] using the gravitational time delay experiment as well as to that argued by
Ruggiero [26], viz., |Λ| ≤ 10−26 m−2, on the basis of high accuracy of the Gravity
Probe-B experiment.

Acknowledgements Part of the reported study was funded by RFBR according to the research project No.
16-32-00323.
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