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Abstract We explore wave fronts of null geodesics in the Gödel metric emitted from
point sources both at, and away from, the origin. For constant time wave fronts emitted
by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses
where spatially disconnected portions of the wave front appear, connect to the main
wave front, and then later break free and vanish. These blue sky metamorphoses in
the constant time wave fronts highlight the non-causal features of the Gödel metric.
We introduce a concept of physical distance along the null geodesics, and show that
for wave fronts of constant physical distance, the reorganization of the points making
up the wave front leads to the removal of cusp ridges.

Keywords Gravitational lensing · Cosmology · Null geodesics · Wave fronts

1 Introduction

The Gödel metric, introduced by Gödel [1], provides a model universe that is an exact
solution to the Einstein field equations with rotational and non-causal features. The
metric represents a cosmological solution in which any position in the space–time
lies along a stationary world-line about which all other points rotate [2,3]. The study
of Gödel’s metric played an important historical role in clarifying the philosophical
underpinnings of general relativity, particularly in regards to Mach’s principle [4].

While the Gödel space–time is generally considered to be an unsuitable cosmo-
logical solution, it has a number of interesting properties that allow it to serve as a
test-bed for physics in other, more relevant and sometimes more complicated, space–
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times. One interesting feature of the Gödel metric is that it allows for closed time-like
curves [5], a property shared by solutions with space–time singularities but without
event horizons. While this implies that causality is not preserved in the Gödel universe,
the existence of closed time-like curves makes the Gödel metric similar to the extreme
Kerr (spin parameter a2 > m2) solution. The Gödel and Kerr metrics also share a
common rotational property, manifested in the metric by off-diagonal dt dφ terms.

These interesting properties have led to more recent work introducing a series
of Gödel type metrics and examining their properties, for instance in Griffiths and
Santos [6], Carneiro [7] and Romano and Goebel [8]. Németi et al. [9] provides
excellent visualizations of the light cones, closed time-like geodesics and other features
in Gödel type rotating universes. Other authors, for example Gleiser et al. [10] and
Natário [11], have considered properties of the closed time-like geodesics in these
space–times, and Slobodov [12] has shown how changing the topology can be used to
remove them.

In this paper, we are interested in exploring the null geodesics of the Gödel metric
and examining wave fronts of the null geodesics emanating from a single point source.
Null geodesics control the causal properties of space–times, and the time evolution of
the wave front sweeps out causally connected regions. Thus, studying the singularities
of the wave front and its evolution provides a window into understanding the space–
time structure.

The study of wave front singularities is itself an area of mathematical physics
research with a long history. The subject is well described in the general case by
Arnol’d [13]. Studying wave fronts of light rays in space–times allows one to under-
stand how gravitational lensing arises in a given metric [14]. Space–time gravitational
lensing, without the typical thin-lens approximations used in applied studies, has been
discussed in general in papers [15,16]. In addition, it has been studied in the context of
the Schwarzschild metric by Fritelli et al. [17], and Rauch and Blandford [18] studied
the Kerr metric. The discussion of the formation of wave fronts in the Gödel space–time
allows us to consider gravitational lensing in a different, cosmological style metric.
Our work expands on an initial discussion of wave fronts in Gödel metrics given by
Buser et al. [19].

Of particular interest to us is the impact of rotation and non-causal features on
null wave fronts and gravitational lensing. In standard cosmological space–times, one
can define a precise cosmological time, τ , and it makes sense to draw wave fronts of
constant τ . It is less clear in black hole space–times what the wave front slicing should
be. This is complicated further in the extreme Kerr case where the standard Boyer–
Lindquist t coordinate has closed time-like curves, as occurs in the Gödel metric. One
of our purposes in examining null wave fronts from point sources in the Gödel case is
to understand how to draw sensible wave fronts in more physical metrics.

In the first sections of this paper, we derive the equations of motion for null geodesics
and indicate how the range in constants of integration are used to sweep out a ini-
tial sphere’s worth of null geodesics. We then consider the properties of single null
geodesics originating at the origin, r = 0, and away from the origin. In Sect. 5, we
show how wave fronts of constant t coordinate evolve for point sources at and away
from the origin. Section 6 introduces a new physical distance, δp, in the context of
rotating space–times which we believe is a better marker in which to define wave
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fronts of null geodesics. Wave fronts of constant δp are drawn, and we discuss the
influence this choice makes on the wave front singularities.

2 Null geodesics of Gödel metric

The Gödel space–time metric is given by

ds2 = dz2 − 2

ω2 dt
2 + 2

ω2 dr
2 − 2

ω2

(
sinh4 r − sinh2 r

)
dφ2 + 4

√
2

ω2 (sinh2 r)dt dφ,

(1)
where ω is the vorticity of a pressure-free perfect fluid [5]. In these coordinates, there
is a closed null curve at rG = log(1 + √

2) and invariance under changes in z. To find
the null geodesics, we consider the Lagrangian

L = 1

2
gabẋ

a ẋb = 0

= 1

2
ż2 − ṫ2

ω2 + ṙ2

ω2 − 1

ω2

(
sinh4 r − sinh2 r

)
φ̇2 + 2

√
2

ω2 (sinh2 r) ṫ φ̇, (2)

where the dot indicates a derivative with respect to s, an affine parameter. The condition
that the Lagrangian be equal to zero indicates that we will find null geodesics. We will
use that condition to determine the initial conditions and the range of the constants of
integration.

Clearly momentum is conserved in the z direction so that

ż = pz . (3)

For the r coordinate, the Euler–Lagrange equation yields

r̈ =
(
−2 sinh3 r cosh r + sinh r cosh r

)
φ̇2 + 2

√
2(sinh r cosh r)ṫ φ̇. (4)

The situation for t and φ is more complicated. The fact that Lagrangian does not
depend on the t or φ coordinates implies the existence of conserved momenta pt and
pφ . However, the presence of the ṫ φ̇ term means that the Euler–Lagrange equations
for t and φ are coupled:

−2

ω2 (sinh4 r − sinh2 r)φ̇ + 2
√

2

ω2 (sinh2 r)ṫ = pφ (5)

2
√

2

ω2 (sinh2 r)φ̇ − 2

ω2 ṫ = −pt . (6)

The negative sign in front of pt in Eq. (6) allows positive pt to be associated with
generally increasing t values. Algebraically solving for ṫ and φ̇ and introducing vr = ṙ ,
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we have five first order ordinary differential equations for light rays in the Gödel space–
time:

ż = pz (7)

ṫ = ω2

2

( √
2 pφ

1 + sinh2 r
+ pt (1 − sinh2 r)

1 + sinh2 r

)
≡ ft (r) (8)

φ̇ = ω2

2

(
pφ

sinh2 r (1 + sinh2 r)
−

√
2 pt

1 + sinh2 r

)
≡ fφ(r) (9)

ṙ = vr (10)

v̇r =
(
−2 sinh3 r cosh r + sinh r cosh r

)
f 2
φ + 2

√
2 sinh r cosh r ft fφ (11)

In general, we can integrate null geodesics assuming that ω = 1. Different values of
ω do not change the overall findings of this paper. The initial values of z and t can be
set to zero with generality because the metric and null geodesics are invariant under
shifts in t and z.

We will be interested in wave fronts of null geodesics emitted from the origin at
ro = 0 as well as wave fronts for general points away from the origin but within the
closed null curve at rG = log(1 + √

2). The condition that the geodesics are null
geodesics is enforced by setting the Lagrangian to zero at s = 0, which we enforce
by solving Eq. (2) for vr at the initial point. This leads to

vro = ±
√

f 2
to − ω2

2
p2
z + (sinh4 ro − sinh2 ro) f 2

φo − 2
√

2(sinh2 ro) fφo fto (12)

where ro is the initial radius and fto and fφo are the functions defined in Eqs. (8) and
(9) evaluated at the initial radius. As we will see, requiring the term under the square
root to be positive will set limits on the initial momentum pz and pφ .

For null geodesics starting at, or passing through, the origin, the angular momentum
pφ must be zero so that the sinh2 r term in the denominator of fφ in Eq. (9) does not lead
to an infinity. This is the same general condition that in a flat plane, all geodesics passing
through the origin have no angular momentum. In this case, the initial conditions for
null geodesics consist of ro = 0, to = 0, zo = 0, and then Eq. (12) implies

vro = +ω

2

√
ω2 p2

t − 2p2
z . (13)

This in turn implies that p2
z < ω2 p2

t /2, or that the z momentum fall in the range

−
√

ω2 p2
t /2 < pz < +

√
ω2 p2

t /2. The time momentum, pt , is free to take any value,
so we can choose pt = 1 and ω = 1 in general. At the origin, the initial value of φ

is free, and different choices of φo in the range 0 < φo < 2π result in different null
geodesics emitted from the origin in a circle’s worth of directions spanning the z = 0
plane. In practice for rays beginning at the origin, we set pt = 1, pick a pz value and
a φo value, and then use Eq. (13) to set the value of vr at s = 0.
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Null geodesics that begin at ro �= 0 have different initial conditions and restrictions
on the momenta. The φ rotational symmetry allows us to take light rays that are emitted
from a point ro �= 0 and φo = 0 with to = 0 and zo = 0. Then the null geodesic
condition is enforced by setting vro as in Eq. (12). This implies a more complicated
set of conditions on the momentum. First, in order to ensure that vro is real, the z
momentum is restricted to the range

|pz | <

√
2

ω2

(
f 2
to + (sinh4 ro − sinh2 ro) f 2

φo − 2
√

2 sinh2 ro fto fφo
)
. (14)

The range of the momentum pφ is then found by requiring the term in the parenthesis of
Eq. (14) to be positive. Multiplying out the functions f 2

t , f 2
φ and ft fφ from Eqs. (8) and

(9) results in a quadratic equation for pφ whose solution implies that pφ be restricted
to a range between pφ− and pφ+ given by

pφ± = pt sinh2 ro

⎛
⎝√

2 ±
√

2 + 1 − sinh2 ro
sinh2 ro

⎞
⎠ . (15)

Again, there are no restriction on pt , so that we set pt = 1 to ensure that at the initial
locus of the null wave front, t increases. Choosing a pφ within the limits implied by
Eq. (15) and subsequently a value of pz in the range set by Eq. (14) spans a sphere’s
worth of null geodesics originating at a point (to = 0, ro �= 0, φo = 0, zo = 0).
Equation (12) will then set vro for initially incoming and outgoing light rays.

3 Numerical integration

While Buser et al. [19] showed that an analytic approach to integrating the null
geodesics is possible, we find it easier to work with numerical integrations. We imple-
ment numerical integration using a modification of the Runge–Kutta–Fehlberg 4–5
adaptive step-size approach outlined in Press et el. [20]. Adaptive step-size approaches
allow one to monitor the accumulated error in the null geodesics. Because there are
no singularities in, or near, the differential equations we are integrating, we are able
to keep overall error to less than one part in 108 generically.

We are ultimately interested in wave fronts, with each null geodesic advancing
the local region of the wave front. We locate each null geodesic’s contribution to the
t = t1 wave front by the geodesic’s position when in a bin t1 + ε for small ε. If more
than one time step is within the same time bin, we take only the first time step. Our
three-dimensional visualizations are accomplished by separate code that receives data
points from the adaptive step-size numerical integration program and then sorts and
orders the data according to time (or later constant physical distance). This allows us
to examine movies of the moving wave-fronts.

One modification we make to the adaptive step-size approach is to give an upper
limit to the step-size. This is because in regions where the differential equations are
particularly smooth or flat, the natural growth in step-size makes the null geodesics
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take larger steps than our desired wave front spacing. In general, the region where the
geodesics take naturally smaller steps is when the r coordinate returns close to ro,
and the region where the adaptive step-size leads to larger steps is near the outer-most
radius—which is actually the area of the greatest physical interest.

4 Features of null geodesics

The constant z momentum implies that the null geodesic path in the z = 0 plane
determines many of the important features of the geodesics. We first consider rays
that pass through the origin, and then we consider null geodesics that do not pass the
origin. The perspective that we will take is that there is an observer at the origin who
has arranged sensors throughout the region r < rG with which she can communicate.

Figure 1 shows the path in the z = 0 plane of three light rays that originate at the
origin. Each null geodesic has pz = 0 and pt = 1 for ω = 1. The initial value of φ

determines the direction of the null geodesics. The orbits are closed, and they extend
out to the rG limit where they become tangent to the circle of radius rG .

For geodesics passing through the origin, the time coordinate remains timelike
along the entire geodesic. For rays with pz = 0, the derivative of t is zero at rG ,
as one can see from Eq. (8) with pφ = 0. However, for all rays, the t coordinate
monotonically increases with the affine parameter s. As we will see, this implies that
it will be possible to construct a simply-connected wave front of constant coordinate
time, t , from different null geodesics originating at the origin with different φ and pz
values. Because the null geodesics that pass through the origin can not exit the r < rG
region, we will refer to that region as the observable region in what follows.

When pz is not zero, helix shaped null geodesics result as in Fig. 2. These geodesics
project into the z = 0 plane as the ellipses, but they do not extend all the way to the
rG limit. The maximum value of r for a given pz can be found analytically by solving

Fig. 1 Three null geodesics
with initial ro = 0 and pz = 0.
The solid, short dashed, and long
dashed geodesics correspond to
initial φ values of 0, π/4 and
π/2. The trajectories are closed
loops in the z = 0 plane that
extend to rG = log(1 + √

2)

shown as a lightly dashed circle
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Fig. 2 A null geodesic with
pz = 0.125 and initial φo = 0.
The negative y axis points
towards the lower left and the
entire geodesic projects into the
z = 0 plane as a closed curve

the equation L = 0 from Eq. (2) for ṙ and using the functions ft and fφ defined in
Eqs. (8) and (9). With pφ = 0 as is required for rays passing through the origin, the
maximum value of r for a given pz value is the solution to

sinh2 r = ω2 p2
t − 2p2

z

ω2 p2
t + 2p2

z

. (16)

In the pz = 0 limit this reduces to sinh2 r = 1 which is solved by r = rG .
The unusual non-causal features of the Gödel metric manifest themselves when

considering null geodesics originating at ro �= 0. Figure 3 shows the advancement of
the coordinate time, t , as a function of the radial coordinate, r , for a null geodesic with
initial conditions ro = 0.5, φo = to = zo = 0, pt = +1, pφ = 0.35, and pz = 0. In
terms of the affine parameter, both the t and r coordinates advance smoothly in s, but the
time coordinate undergoes a brief period where it decreases with the affine parameter,
leading to the loop in Fig. 3. As a result, the null geodesic exits the observable region
r < rG at time tA and re-enters at an earlier time tB .

In the z = 0 plane the geodesic is once again a closed curve when we project to
points in the (x, y) cartesian plane using

x = r cos φ y = r sin φ. (17)

However, this null geodesic extends past rG centered on the origin. While the values
of the (t, r, φ, z, vr ) coordinates continue to integrate smoothly across this barrier,
the meaning of t and φ coordinates switch with φ no longer a space-like coordinate.
Thus, the dotted portion of the geodesic in Fig. 4 is not a correct interpretation of the
geodesic path through “space.” We simply draw it to highlight the continuity of the
geodesic path.

Due to the change in how the t coordinate advances in the region r > rG , the
null geodesic re-enters the observable region at a time earlier than it left. This means
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Fig. 3 A plot of the coordinate
time versus the radial coordinate
for a null geodesic with pz = 0
and initial pφ = 0.35
originating at ro = 0.5. The
dotted line shows the radius
rG = log(1 + √

2). After the
null geodesic crosses the rG
radius, the time coordinate loops
back so that the time of re-entry
tB is less than the time of exit tA

Fig. 4 A null geodesic with
pz = 0 and initial pφ = 0.35
originating at ro = 0.5. The
dotted circle indicates the radius
rG = log(1 + √

2). The null
geodesic cycles clockwise until
reaching rG at time tA . The
dotted curve shows the
continuation of the null
geodesics outside the circle of
radius rG falsely using
(x = r cos φ, y = r sin φ). The
null geodesic re-enters the
r < rG region at time tB < tA

that for a brief time, to an observer at the origin, the null geodesic would appear to
be in two places at the same time. As a result of the non-monotonic advance of the
time coordinate for null geodesics originating at places other than ro = 0, the Gödel
universe constant time wave fronts as constructed by an observer at the origin will
display unusual features with a disconnected section appearing out of the blue sky
along the rG boundary.
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5 Wave fronts of constant time

A recent paper by Buser et al. [19] explores the development of null wave fronts
of constant coordinate time in the Gödel space–time created by a point source at
the origin. We reproduce and expand slightly on their results and then consider light
wave fronts from point sources not at the origin. These wave fronts are significantly
impacted by the non-causal features of the Gödel metric. A wave front of constant
t intervals corresponds to wave fronts of constant proper times as observed by a
stationary observer at the origin.

5.1 Wave fronts emitted from r = 0

We begin by considering the wave front in the z = 0 plane emitted from a point source
at the origin. This wave front is generated by setting ro = 0, pz = 0, and pφ = 0
while varying φo in the range zero to 2π . At any given time, the wave front itself is
circular. As shown in Fig. 5, the wave front expands from a point at the origin to the
radius rG and then rebounds, closing back up to a point before expanding back out.

Because of the rotational aspects of the Gödel space–time, a movie of the wave
front expansion would show a rotation of the points in the circle. Portions of the null
geodesic with φo = 0 are shown in Fig. 5, with arrows indicating the direction light
rays are moving locally. Because the circle rG is a null curve, the wave front rotates
faster as it approaches rG and generally slows back down (in coordinate time) after
rebounding from that limiting circle.

In the full configuration space of (t, r, φ, z, vt , vr , vφ, vz) there is a surface that
Ehlers and Newman [15] refers to as the “lifted wave front.” The null geodesics are
orthogonal to these lifted wave fronts, and the wave fronts show no caustics. In the

Fig. 5 Dots outline two null
geodesic wave fronts of constant
coordinate time emitted by a
point source at the origin for
pz = 0. The inner front is at t1,
with the outer front at a later
time t2. The front expands
outward with a slow rotation at
t1 but rotates quickly in a
clockwise direction at t2
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Fig. 6 Null wave fronts of constant coordinate time emitted from a point source at the origin. The z axis
points towards the upper right corner, and the viewpoint is fixed in all frames. An initial spherical front
develops a set of cusp ridges as the wave front stretches vertically and oscillates radially. The wave front
cycles between the second and sixth frame as time advances

Gödel space–time, there are off-diagonal dt dφ terms that influence the definition of
orthogonal. As a result, the projection of the lifted front into spatial dimensions, in this
case the z = 0 plane, leads to the appearance that the null geodesics are not moving
orthogonal to the wave fronts. One can see this particularly clearly at larger radius in
Fig. 5 where the direction of the null geodesic in the projected dimension is not at a
visually apparent right angle to the wave front.

Figure 6 shows six plots at successive times of the wave front in three space. The
wave front begins as a local sphere, but because the rays that travel more radially, with
lower pz values, reach a limiting cylinder of radius rG first, they rebound earlier than
rays traveling more along the axis of the cylinder. Individually, the light rays are all
following helical motions as in Fig. 2, so that the entire wave front is rotating.

At any constant z slice, the wave front is circular. Since the individual null geodesics
are helixes that all pass repeatedly through points on the z axis, the circle’s worth of
points with the same pz value and differing initial φ values collapse simultaneously
along the z axis. There are always at most two twist points, and the wave front cycles
in visual appearance between the second and final pictures.

Towards the ends of the wave front, we see a cusp ridge. This form of wave front
singularity is common in wave fronts with axial symmetry. This cusp ridge appears
when a circular portion of the wave front with the same pz value but different initial
φ values catches up with and passes a different circle with a slightly larger pz value.
Even though ż = dz/ds = pz is constant along the ray, we are plotting wave fronts of
constant time, and dz/dt = pz/ ft varies with the radius of the ring. Figure 7 plots the
z and r coordinates against the t coordinate for two rings with close pz values. We see
that a ring with a lower pz value temporarily over-takes one with a higher pz value,
achieving a larger z coordinate for a short time. These rings cross back over at a time
when they have the same radius, which is approximately the location of the cusp at
that time.
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Fig. 7 Plots of the r and z coordinates against t for two neighboring rings emitted from ro = 0. The dotted
line corresponds to a ring with pz = 0.30 and the solid line corresponds to pz = 0.32. The ring with the
lower pz value has a larger peak in its radial extension and rebounds more rapidly in terms of time from
this extension, passing through a ring with larger pz value. This results in the formation of a cusp ridge

5.2 Wave fronts emitted from r �= 0

We now consider light-like wave fronts emitted by a point source away from the origin
in the z = 0 plane. Our perspective is that there is an observer at the origin who has
placed throughout the cylinder given by r < rG detectors with which she can re-
construct the wave front. Ultimately, we will ignore the portions of the wave front that
pass outside this cylinder as the observer at the origin can not receive light signals
from detectors placed there.

Figure 8 shows the constant t wave front in the z = 0 plane associated with a point
source at ro = 0.5, φo = 0, pz = 0. Here pφ is varied and vro is allowed to have
positive (initially outgoing directions) and negative (initially incoming directions)
values to achieve the circle’s worth of initial directions. We continue to plot the spatial
position of the wave fronts using Eq. (17). We do this even though ultimately we
consider the portion of the wave front outside the radius r = rG , drawn as a dotted
circle, to be un-observable. Nevertheless, this choice allows us to highlight the fact
that a blue sky metamorphosis of the constant time wave front occurs outside the
observable region. This portion of the wave front re-enters the observable region and
connects to the portion of the wave front that proceeded uniformly away from the
initial location.

Because the wave front is not expanding from the origin, we have broken the
axial symmetry of the wave front, and new wave front singularities arise. We see the
appearance of a portion of the wave front “out of thin air” or “out of the blue sky.” This
segment of the wave front has a “sickle” shape (Arnol’d language) or “lips” (Thom’s
language) [13]. These lips connect to the main portion of the wave front and two cusp
singularities appear, although only one is inside the observable region. Following the
wave front in time, a new set of lips breaks free from the main wave front and vanishes,
again outside the observable region.
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Fig. 8 Null wave fronts of constant coordinate time emitted by a point source at ro = 0.5 at six successive
coordinate times. Due to the non-causal nature of the time coordinate, we see that the wavefront undergoes
a bifurcation where a new portion appears outside the region observable from the origin and then connects
up to the main part of the wavefront. A section later breaks off, shrinks and disappears outside rG

Figure 9 shows in three dimensions the appearance of a portion of the constant time
wave front that has entered the observable region due to the blue sky metamorphosis.
This initially disconnected portion of the wave front merges with the outward expand-
ing wave front slightly later. In Fig. 10, we see two views of the wave front at the same
time from the top and bottom. As with the wave fronts emitted from the origin, there is
a pair of twist points and a circular cusp ridge near the ends of the wave front. Unlike
the wave front emitted from the origin, the twist points and circular cusp ridges are
no longer symmetric with a line parallel to the z axis. Each circular cusp ridge tilts
relative to the x − y plane. In addition, there is a new cusp ridge along the bottom
where the lips from the blue sky metamorphosis have joined the overall wave front.

6 Defining a constant physical distance

The unusual features of the time coordinate along null geodesics that do not pass
through the origin in the Gödel space–time raise questions about the meaning of
constant time wave fronts in general metrics. In some other metrics, the standard time
coordinate may be interpreted in manner that makes more sense. The clearest examples
are the Friedman–Robertson–Walker (FRW) cosmological metrics,

ds2 = −dt2 + a2(t)dS2, (18)
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Fig. 9 On the left, portion of the lips created in a blue sky metamorphosis appear along the cylinder of
radius rG centered at the origin and then combine with the main wave front, as shown at a later time on the
right. The positive z axis points into page

Fig. 10 A top and bottom view at the same time of a wave front of light emitted from a position ro = 0.5
at a late time. A cusp ridge forms along the bottom side of the wave front where the lips of the blue sky
metamorphosis have attached. The top view shows a cusp ridge on each end of the wave front

where there is an easily identified spatial part of the metric, a2(t)dS2, and a clearly pre-
ferred time slicing of the space–time. Alternately, in asymptotically flat space–times,
for example the Schwarzschild black hole metric in the typical (t, r, θ, φ) coordinates,
one could draw constant time wave fronts and interpret these as the wave fronts asso-
ciated with the time observed by a stationary observer at infinity. Even though one can
make a clear explanation of what the wave fronts mean in this case, these wave fronts
have a disadvantage that they appear to “hang-up” on the black hole event horizon.

Returning to the FRW case, Eq. (18) implies that the constant time slicing of wave
fronts is sensible because it is also a slicing that represents wave fronts of constant
physical distance traveled by the light-rays, an insight pointed out by Frittelli and
Peters [21]. Because light moves at constant speed, time intervals associated with
local freely-falling reference frames are truly the correct intervals of time to use to
separate the wave fronts.

For this reason, we seek to understand wave fronts of constant physical distance.
In metrics that are diagonal, the constant physical distance is simply integrated along
the light ray path using the spatial 3-metric. The situation is slightly more complicated
in the Gödel metric by the presence of the off-diagonal dt dφ term and by the fact
that neither the t nor φ coordinate has a consistent meaning as a temporal or spatial
coordinate at all locations along the light ray. This implies that we should consider
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two different, but related, coordinate transformations that diagonalize the metric and
allow for a clear determination of the spatial 3-metric.

We are working with Gödel metric in the form of Eq. (1). It is convenient to pull
out the time and angular parts of the metric and write them as

A = 2

ω2 (19)

B = 4
√

2

ω2 sinh2 r (20)

C = 2

ω2

(
sinh4 r − sinh2 r

)
(21)

so that the metric has the form

ds2 = −Adt2 + Bdt dφ − Cdφ2 + · · · (22)

Inside the observable region, we will introduce a time-like coordinate τ related to t
and φ by

dτ = √
Adt − B

2
√
A
dφ. (23)

In terms of this new coordinate, we see that the metric becomes diagonal and there is
no mixing of the τ and φ coordinates:

ds2 = −dτ 2 + 2

ω2 dr
2 + dz2 +

(
B2

4A
− C

)
dφ2. (24)

The function in front of dφ2,

B2

4A
− C = 2

ω2 (sinh4 r + sinh2 r),

is manifestly positive, so under this coordinate transformation, we can define a physical
distance δp along the light ray by integrating

δp =
∫ f

i
ds

√
2

ω2 ṙ
2 + ż2 + 2

ω2 (sinh4 r + sinh2 r)φ̇2 (25)

for r < rG .
Outside the observable region, we introduce a coordinate Φ defined by

dΦ = √
Cdφ − B

2
√
C
dt. (26)

In terms of this coordinate, the metric takes the form

ds2 = −dΦ2 +
(
B2

4C
− A

)
dt2 + 2

ω2 dr
2 + dz2 (27)
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and the term in front of dt2,

B2

4C
− A = 2

ω2

(
2 sinh2 r

sinh2 r − 1
− 1

)
,

is positive for r > rG = log(1 + √
2). In these coordinates, dΦ measures a time

interval and the spatial 3-metric is identified by the remaining three terms. Thus for
r > rG , the physical distance is integrated from

δp =
∫ f

i
ds

√
2

ω2 ṙ
2 + ż2 + 2

ω2

(
2 sinh2 r

sinh2 r − 1
− 1

)
ṫ2. (28)

In practice, we are integrating the null geodesics, Eqs. (7)–(11) numerically. To keep
track of the physical distance along the null geodesics, we simultaneously integrate a
sixth ordinary differential equation

δ̇p =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
ω2 v2

r + p2
z + 2

ω2 (sinh4 r + sinh2 r) f 2
φ r < rG

√
2
ω2 v2

r + p2
z + 2

ω2

(
2 sinh2 r
sinh2 −1

− 1
)
f 2
t r > rG

, (29)

where we have used the form of the differential equations. We will use the boundary
condition δp = 0 at s = 0. By construction, the physical distance δp will be a
monotonically increasing function along the null geodesics, regardless of the origin
of the wave fronts. At the boundary r = rG , the physical distance δp is continuous
with a discontinuity in the first derivative.

7 Wave fronts of constant distance

We show three successive constant δp wave fronts in Fig. 11 for a null wave front
emitted from the origin. We see that the general shape of the constant δp wave fronts
are similar to those of constant t , with a significant difference that the cusp ridges
towards the ends of the wave front have vanished. In terms of progression in δp, rings
with the same pz values remain stacked and do not pass each other as we saw that they
did in Fig. 7 when we were considering wave fronts of constant time. The constant δp
wave fronts rotate in the same manner as the constant t wave fronts.

Three successive wave fronts of constant δp for wave fronts emitted from ro = 0.5
are shown in Fig. 12. Of course, the light rays that make up the wave front continue
to leave and re-enter the r < rG observable region, and so in the central panel of this
figure, we do see a disconnected portion of the wave front re-entering the observable
region. This re-entering portion reconnects with the outwardly expanding wave front,
and a cusp ridge continues to form where these portions of the wave front connect.
As with the wave front emitted from the origin, the cusp ridges near the end of the
expanding wave front have vanished.
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Fig. 11 Wave fronts of constant physical distance in the Gödel space time emitted from the origin. The z
axis is oriented up and towards the right to best show the features of the wave front. The cusp ridge present
in the constant time wave fronts is missing in the wave fronts of constant physical distance

Fig. 12 Wave fronts of constant physical distance emitted from ro = 0.5. The cusp ridge vanishes compared
to the wave fronts of constant time. Portions of the wave front continue to re-enter from outside the observable
region r < rG , but no longer demonstrate the blue sky metamorphosis. The z axis is oriented slightly into
the page to best show the detached incoming portion of the constant distance wave front

If we were to trace the light rays and wave fronts outside the observable region, we
would not see a blue sky metamorphosis. The rays that return to the observable region
do so without appearing “out of nowhere” or at an earlier time or distance, as was the
case with the constant time wave front. There is simply a portion of the wave front
that has exited the observable region and is re-entering after traveling some physical
distance.

8 Discussion

In this paper, we have examined the wave fronts of null geodesics in the Gödel space–
time emanating both from the origin and from ro �= 0. We see that the non-causal
features of the Gödel space–time manifest themselves for wave fronts emanating from
a position at ro �= 0 because null geodesics extend outside the radius rG and the time
coordinate along these geodesics is not monotonically increasing. In this case, the
wave front develops a blue sky metamorphosis where a brand new portion of the wave
front, shaped like lips, appears disconnected from the overall wave front. These results
for wave fronts emitted from points not at the origin expand the understanding of null
geodesic wave fronts from the work presented in Buser et al. [19].

By switching to wave fronts of constant physical distance along the null geodesic,
we are able to provide a more physical understanding of wave front evolution in the
Gödel space–time. For wave fronts emanating from the origin or away from the origin,
it is interesting to note that there is a loss of the cusp ridges towards the ends of the
wave front. Cusp ridges are stable features of wave front singularities in the sense that
small perturbations of the system do not remove them [13]. We find it intriguing that
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the reorganization of points on the wave front from those with constant time to those
with constant physical distance is significant enough of a reorganization to remove
what is generally considered to be a stable feature under small system perturbations.

For wave fronts of non-origin initial location, we see that the wave fronts lose
the “blue-sky” style metamorphosis when we transition to constant δp wave fronts.
However, they do not lose the appearance of disconnected sections of the wave front
which leave and then re-enter the observable region, reconnecting with the main section
of the wave front. While we consider the constant δp slicing of the wave fronts to be
more physical, we note that the appearance of a disconnected region does not vanish.
Nevertheless, the constant coordinate time wave fronts do help explain the ability for
the Gödel metric to support closed time-like curves.

Future work will thoroughly examine the conditions under which switching from a
constant coordinate t wave front to a constant physical distance wave front preserves or
destroys features of null geodesic wave fronts such as cusps or disconnected regions.
The issue is subtle because when wave fronts are viewed in their entirety, they are
inherently non-local, and a global time coordinate may not exist. Cusps are physical
things associated with an increase in magnification: light rays have focussed there.
Hence, the removal of cusps through a global reorganization of the wave front is
troubling as it becomes unclear whether light really focussed or not. Our preliminary
examination indicates that the cusps in the Gödel metric’s constant time wave fronts
are due to the rebounding off of the r = rG null surface. They appear to be similar
to the accumulation of light at an event horizon when viewed in constant time slices.
Our initial work indicates that when a constant density spherical dust cloud of radius
r > 2m is connected to a Schwarzschild exterior, that both the constant time and
constant physical distance wave fronts maintain axially symmetric cusp ridges. While
this suggests that the presence of null surfaces is introducing artificial wave front
singularities, more analytic and numerical work is needed to confirm this result.

While the Gödel space–time is interesting in its own right, our primary interest
in studying wave fronts of null geodesics in this space–time relate to our interest in
a similar problem in the Kerr metric. There are two relevant similarities. First, both
metrics have off-diagonal terms associated with rotational features. Second, in the case
of the extremal Kerr metrics with a2 > m2, the metrics admit closed time-like curves.
Thus, the work done in this paper to derive an expression for physical distances directly
carries over to the Kerr case. It is our intention to examine wave front singularities in
the Kerr metric using wave fronts of constant physical distance in a future paper.
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