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Abstract We obtain new simple sufficient conditions to ensure the stability and strong
stability of maximal hypersurfaces (without boundary) immersed in an arbitrary space-
time. Several applications to maximal hypersurfaces in a spatially open or closed
spacetime endowed with an infinitesimal causal symmetry are also given.
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1 Introduction

Along the last decades, maximal hypersurfaces in Lorentzian manifolds have attracted
a real interest from both physical and mathematical points of view. Its relevance in
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general relativity is widely justified (see [21] for details). By one hand, this kind
of hypersurfaces plays an important role in the analysis of the Einstein constraint
equations, providing the simplest initial data set to solve them [12–14], [15, Chap.
VI], [33]. Each maximal hypersurface describes, in some cosmological models, the
transition between the expanding and contracting phases of a relativistic universe.
Moreover, the existence of constant mean curvature hypersurfaces (and, in particular,
the maximal ones) may provide useful information on the existence of past or future
singularities [8]. Moreover, the deep understanding of this sort of hypersurfaces is
essential to prove the positivity of the gravitational mass. Maximal hypersurfaces
are also interesting in numerical relativity, where they are often used to integrate the
Einstein equations forward in time. Finally, we mention that in asymptotically flat
spacetimes, frequently maximal hypersurfaces produce a foliation of the spacetime,
defining a time function [21].

From a mathematical point of view, a maximal hypersurface is (locally) a critical
point of a natural variational problem, namely, the volume functional (see, for instance,
[7]). In addition, the study the maximal hypersurfaces of a spacetime may be used to
understand its structure [6].

On the other hand, maximal hypersurfaces are well known because of their nice
Calabi–Bernstein-type properties and they have contributed to the discovery of new
nonlinear elliptic problems. In fact, a function defining a maximal graph in the (n+1)-
dimensional Lorentz–Minkowski spacetime L

n+1, with n ≥ 2, satisfies an elliptic
second order PDE similar to the equation of minimal graphs in Euclidean space Rn+1,
but with a new and surprising behaviour of its entire solutions: the only entire solu-
tions of the maximal hypersurface equation in L

n+1 are the affine functions defining
spacelike hyperplanes. This theorem was previously proved by Calabi [9] for n ≤ 3
and later extended for arbitrary dimension by Cheng and Yau [11]. The result is known
as Calabi–Bernstein theorem. Recall that the Bernstein theorem for minimal graphs
in the Euclidean space Rn+1, holds only for n ≤ 7, [28]. An important auxiliary result
in [11] was the introduction of a new tool, the so-called Omori–Yau generalized max-
imum principle [23,32]. By means of this technique, many uniqueness results were
obtained. For instance, Nishikawa [22] proved that a complete maximal hypersur-
face in a locally symmetric Lorentzian manifold whose Ricci tensor satisfies a natural
assumption on timelike tangent vectors, must be totally geodesic (Remark 5.10).

In this paper, we are interested in a remarkable subfamily of maximal hypersur-
faces: the stable maximal hypersurfaces. This subfamily falls between that of the
volume-maximizing spacelike hypersurfaces and that of the totality of all maximal
hypersurfaces. There are several notions of stability but, basically, a stable maximal
surface is volume-minimizing relative to nearby spacelike hypersurfaces with the same
boundary.

Recall that a spacelike hypersurface S in a spacetime is maximal if its mean curva-
ture vanishes. Since maximality is equivalent to the vanishing of the first variation of
volume under spacelike deformations of the hypersurface living the boundary fixed,
then maximality is a necessary condition for a spacelike hypersurface to be volume
maximizing. However, if for some deformation the second variation of volume is posi-
tive, then there are nearby spacelike hypersurfaces of greater volume and the maximal
hypersurface is called unstable. For instance, although the equator of De Sitter space-
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time is a hypersurface with null mean curvature, it is a saddle point of the volume
functional.

In this work we say that a maximal hypersurface is stable, if it is not unstable, i.e.,
if its second variation of volume is non-positive. When this last quantity is negative,
we say that the maximal hypersurface is strongly stable. In this case, the maximal
hypersurface is in fact, volume-maximizing relative to nearby spacelike hypersurfaces
with the same boundary.

If we consider an open (without boundary) maximal hypersurface, it is called stable
(resp. strongly stable) if S is stable (resp. strongly stable) for every relatively com-
pact domain in S. Note that that when S is a compact without boundary maximal
hypersurface, the variation can be defined on all S.

From a physical point of view, a complete maximal strongly stable hypersurface
typically describes the turn around epoch which separates the expansion from the
recontraction phase in a spacetime. Taking into account this interpretation, Brill and
Flaherty [8] studied the strong stability of compact (without boundary) maximal hyper-
surfaces immersed in certain spacetimes (see also, [18]). Recall that a spacetime is
said spatially closed if it admits a complete compact spacelike hypersurfaces. On the
contrary, the spacetime is called spatially open.

In this paper, we deal with stability and and strong stability of maximal hyper-
surfaces (without boundary) immersed in spacetimes. So, we establish a sufficient
condition (see, Lemma (1) in Sect. 2), which assures stability or strong stability of
maximal hypersurfaces in an arbitrary spacetime. In Sect. 3, as an application of the
Lemma (1), we obtain several results of stability and strongly stability for arbitrary
spacetimes, which obey an usual energy condition, in particular stability in spacetimes,
which satisfies the Einstein vacuum equations is studied.

On the other hand, we also deal with stable and strongly stable maximal hyper-
surfaces in a wide class of spacetimes with a causal infinitesimal symmetry. In
general relativity, symmetry is usually based on the assumption of the existence of
a one-parameter group of transformations generated by a Killing or, more gener-
ally, conformal vector field. In fact, an usual simplification for the search of exact
solutions to the Einstein equation is to assume the existence a priori of an infinitesi-
mal symmetry (see [16,17] for instance). Although the same causal character for the
infinitesimal symmetry is not always assumed, the timelike, or causal in general, is a
natural choice. Moreover, this choice is supported by very well-known examples of
exact solutions (stationary, pp-waves, Robertson–Walker spacetimes, . . .). A complete
general approach to symmetries in general relativity can be found in [34]. Theorem 6,
in Sect. 3 provides a clear and simple condition on the conformal factor which assures
the stability or strongly stability of a maximal hypersurface immersed in a spacetime
with an infinitesimal causal symmetry.

Finally, Sect. 4 is devoted to analyse the stability and strong stability of maximal
hypersurfaces in a relevant family of cosmological models.

2 Sep up

Let (M, g) be a (n + 1)-dimensional spacetime, that is, (M, g) is a time-oriented
(connected) Lorentzian manifold. Given an n-dimensional manifold S, an immersion
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x : S → M is said to be spacelike if the Lorentzian metric given by g induces,
via x , a Riemannian metric g on S. In this case, S is called a spacelike hypersurface.
Since the Lorentzian manifold (M, g) is time-oriented, we can take, for each spacelike
hypersurface S in M , the vector field N ∈ X⊥(S) as the only globally defined unitary
timelike vector field normal to S in the time-orientation of the spacetime.

Let us represent by ∇ and ∇ the Levi-Civita connections of the metric g and g,
respectively. The Gauss and Weingarten formulas of S are respectively

∇XY = ∇XY − gS (AX,Y )N , (1)

AX = −∇X N , (2)

for all X,Y ∈ X(S), where A is the shape operator associated to N . Recall that the
mean curvature function relative to N is H := −(1/n)trace(A). The mean curvature
is zero if and only if the spacelike hypersurface is, locally, a critical point of the n-
dimensional area functional for compactly supported normal variations. A spacelike
hypersurface with H = 0 is called a maximal hypersurface.

Let x : Sn → Mn+1 be a spacelike hypersurface immersed in a spacetime (M, g).
We denote by g the induced metric on x(S) ≡ S. Let N be the future-directed unit
normal vector field to S and let A be the shape operator associated to N .

Given a normal variation of S, the corresponding variational vector field along S is
represented by φ N , where φ is a function on S. The variation have compact support
when the function φ have compact support on S, i.e., φ ∈ C∞

0 (S).
Recall that the volume of a compact set � ⊂ S is given by

Vol(�) =
∫

�

ωS,

where ωS is the induced Riemannian volume element of S.
The second variation of the volume functional of the maximal hypersurface �, with

boundary, is given by (see [4], for instance),

d2

ds2

∣∣
s=0Vol(�s) =

∫
S

[
�φ − Ric(N , N ) φ − trace

(
A2

)
φ
]

φ ωS, (3)

where supp(φ) ⊂ �.
Taking (3) into account, it useful to define the quadratic form

Q(φ, φ) =
∫
S

[
�φ −

(
Ric(N , N ) + trace

(
A2

))
φ
]
φ ωS, φ ∈ C∞

0 (S), (4)

where Ric denotes the Ricci tensor of M and � the Laplacian with respect to the
induced metric g. A maximal hypersurface (without boundary) S is called stable if
Q(φ, φ) ≤ 0 for all compact supported function φ on S. Analogously, the maximal
hypersurface will be strongly stable if Q(φ, φ) < 0 for all function φ with compact
support and non identically null. For the case of a minimal surface immersed in certain
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Riemannian 3-manifolds, Barta [5] proved that the existence of a positive function u
defined on a minimal hypersurface such that Lu = 0, being L the corresponding Jacobi
operator for the Riemannian case, ensures the stability of the minimal hypersurface
(see also, [19]).

Next, we obtain a stronger analogous result for maximal hypersurfaces in the
Lorentzian ambient, via its respective Jacobi operator,

Lu = �u −
[
Ric(N , N ) + trace

(
A2

)]
u. (5)

Lemma 1 Let S be a maximal hypersurface in a spacetime (M, g). If there exists a
positive function u ∈ C∞(S) satisfying Lu ≤ 0 (resp. Lu < 0), then S is stable (resp.
strongly stable).

Proof Assume that there exists such a positive function u. Let φ = ϕu be an arbitrary
compact supported function, for a certain ϕ ∈ C∞

0 (S).
If we denote by ∇ the gradient the gradient operator of S and using

∫
S
φ�φ ωS =

∫
S

(
ϕ2u�u + ϕu2�ϕ + 2ϕu g(∇ϕ ,∇u)

)
ωS,

we obtain,

Q(φ, φ) =
∫
S

[
ϕ2u

(
�u −

(
trace(A2) + Ric(N , N )

)
u
)

+ ϕu2�ϕ + 2ϕu g(∇ϕ , ∇u)
]
ωS

≤
∫
S

(
ϕu2�ϕ + 2ϕu g(∇ϕ ,∇u)

)
ωS =

∫
S

(
1

2
g(∇ϕ2 , ∇u2) + ϕu2�ϕ

)
ωS

= −
∫
S

|∇ϕ|2u2ωS ≤ 0.

In the last step we have taken into account that

div(u2∇ϕ2) = g(∇ϕ2 ,∇u2) + u2�ϕ2 = g(∇ϕ2 ,∇u2) + 2u2(ϕ�ϕ + |∇ϕ|2).

On the other hand, if φ is not zero and Lu < 0, then

∫
S

[
ϕ2u

(
�u −

(
trace(A2) + Ric(N , N )

)
u
)]

ωS < 0

and Q(φ, φ) < 0. ��

Remark 2 Observe that in the previous result, if the function u on the maximal hyper-
surface S satisfies Lu ≤ 0 and the points p ∈ M such that Lu(p) = 0 are isolated
points, we also can assert that S is strongly stable.
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3 First results

We recall that a spacetime obeys the timelike convergent condition (TCC) if its Ricci
tensor satisfies

Ric(Z , Z) ≥ 0,

for all timelike vector Z ∈ X(M). It is normally argued that TCC is the mathematical
translation that gravity, on average, attracts, [27].

On the other hand, a spacetime is said to have non-vanishing matter fields, or obeys
the ubiquitous energy condition (UEC) [30], if Ric(Z , Z) > 0, for every timelike
tangent vector Z . This last energy condition is stronger than TCC and roughly means
a real presence of matter at any point of the spacetime.

The following theorem assures stability and strong stability under the previous
energy conditions.

Theorem 3 Every maximal hypersurface immersed in a spacetime satisfying the TCC
(resp. UEC) is stable (resp. strongly stable).

Proof It is enough to apply Lemma 1 to the constant function u ≡ 1 defined on the
maximal hypersurface. ��
Remark 4 As a direct consequence of the previous Theorem, a complete maximal
hypersurface in a spacetime, which satisfies the UEC, describe the turn around epoch,
which separates the expansion from the recontraction phase.

On the other hand, when the spacetime is a vacuum solution, i.e., a time-oriented
Lorentzian manifold whose Einstein tensor vanishes identically, it is well known that
Einstein equation is equivalent to

Ric = 0.

The following result extends [8, Th. 4.1] to spatially open spacetimes.

Corollary 5 Every complete maximal hypersurface S immersed in a spacetime which
satisfies the Einstein vacuum equations must be stable. Moreover, either S is strongly
stable or is a totally geodesic spacelike hypersurface.

3.1 Stabilility of maximal hypersurfaces in spacetimes with a causal
infinitesimal symmetry

Recall that vector field K ∈ X(M), defined on a spacetime (M, g) is conformal if
there exists a smooth function ρ (conformal factor) such that

LK g = 2ρg, (6)

where L denotes the Lie derivative.
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Equation (6) is equivalent to

g
(∇X K ,Y

) + g
(∇Y K , X

) = 2ρ g (X,Y ). (7)

It is well-known that a vector field K is conformal if and only if the stages φs of all
its (local) flows are conformal maps. When ρ vanishes identically, K is a Killing
vector field, and the stages φs of all its (local) flows are isometries (see, [24]).
In this work, we are interested in symmetries given by a causal conformal vector
field.

From now on, we assume that the spacetime (M, g) admits a causal or timelike
conformal vector field K , according to each case. The existence of a timelike conformal
vector field is a natural choice, since the integral curves of such a timelike infinitesimal
symmetry provide a privileged class of observers or test particles in the spacetime (see,
[10,16]).

On the other hand, the existence of a timelike Killing vector field on a spacetime
(M, g) is specially useful to study its geometry. It is well-known that around each point
p, there exists coordinates (t, x1, . . . , xn) such that K = ∂t and all the components gi j
of the metric are independent of t ; this justifies the name stationary for the spacetime.
The observers along K (stationary observers) not only see a non-changing metric but
also find a constant E = g(∂t , γ ′) for any geodesic γ . Thus, photons and freely falling
particles has constant energy E for these observers. When the timelike Killing vector
field K is irrotational, i.e. the orthogonal distribution K⊥ is involutive, then a local
warped product structure appears (see, [24, Chap. 12]) and there exists coordinates
with g0i = 0, for i = 1, . . . , n, where we denote t := x0. In this case, the spacetime is
said static and the observers along K measure a metric with no crossed terms between
space and time. Since the orthogonal distribution is involutive, the Frobenious theorem
(see, [31]) assures the existence of restspaces for every observer along K and the local
flow of K keeps the restspaces.

A more general family is given when the spacetime admits a timelike conformal
vector field. In this case the spacetime is called conformally stationary (see, [3,16]).
If K is a timelike conformal vector field and its corresponding conformal factor is
constant on all the spacetime, then K is said to be homothetical (see, [16]).

Another important case arises when K is a lightlike and closed vector field (and
consequently parallel). Such a spacetime is known as pp-wave spacetime (see, [29]).
It models electromagnetic or gravitational radiation moving at the speed of light. Its
recent interest can be explained by its applications to string theory and gravitational
waves.

Let S be an immersed maximal hypersurface in a spacetime (M, g), which admits
a causal conformal vector field K ∈ X(M), with conformal factor ρ ∈ C∞(M).

Consider the distinguished function u := −g(K , N ) on S, where N denotes the
future-directed normal unitary vector field on the maximal hypersurface. Let X p ∈
TpS be, p ∈ S an arbitrary tangent vector, so

X p(u) = −g(∇X p K , N ) − g(K ,∇X p N ) = g(∇N K , X p) + g(AK�, X p),
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where K� denotes the tangential component of K along S, i.e., K� = K+g(K , N )N .
Therefore,

∇u = A K� + (∇N K
)�

. (8)

We need to apply the Jacobi operator L to the function u. In order to perform that, we
compute its Laplacian.

Given p ∈ S, making use of the exponential map, we can extend the unitary normal
vector field on a tubular neighbourhood Ũ of a suitable open subset U ⊂ S, with
p ∈ U . Taking a local orthonormal frame {Ei }i=1,...,n around p ∈ S and extending it
on an open subset of Ũ satisfying [Ei , N ] = 0 for all i = 1, . . . , n, we have

�u =
∑
i

[
g
(∇Ei (A K�), Ei

) + g(∇Ei (∇N K )�, Ei )
]

=
∑
i

[
g(AEi ,∇Ei K

�) + g((∇Ei A)K�, Ei ) + g(∇Ei (∇N K )�, Ei )
]
. (9)

Now, for the first addend of (9) we have

∑
i

g(AEi ,∇Ei K
�) = −g(K , N ) trace(A2) +

∑
i

g(AEi ,∇Ei K ). (10)

On the other hand, making use of the Codazzi equation on the second addend, we
obtain

∑
i

g((∇Ei A)K�, Ei ) = −
∑
i

g(R(Ei , K
�)N , Ei ) +

∑
i

g((∇K� A)Ei , Ei ).

(11)

Moreover, taking into account that tensor derivations commute with contractions,

∑
i

g((∇K� A)Ei , Ei ) = −n g(K�,∇H) (12)

Therefore, since S is maximal, Eq. (11) can be written as

∑
i

g((∇Ei A)K�, Ei ) = −Ric(K�, N ). (13)

Finally, we compute the last term of Eq. (9),

∑
i

g(∇Ei (∇N K )�, Ei )

=
∑
i

g(∇Ei (∇N K )�, Ei )

=
∑
i

g(∇Ei ∇N K , Ei ) +
∑
i

g(∇Ei g(∇N K , N )N , Ei )
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=
∑
i

[
g(R(Ei , N )K , Ei ) + g(∇N∇Ei K , Ei ) + g(∇N K , N ) g(∇Ei N , Ei )

]

= Ric(N , K ) + N
(
div(K )

) + N
(
g(∇N K , N )

) +
∑
i

g(AEi ,∇Ei K )

−n g(∇N K , N ) H, (14)

where div denotes the divergence operator of M and the mean curvature.
Since, the vector field K is conformal, we have

div(K ) = (n + 1) ρ and g(∇N K , N ) = −ρ.

Making use of (9), (10), (13) and (14), with H = 0, we obtain

�u = −g(K , N )
[
trace(A2) + Ric(N , N )

]
+ n N (ρ) + 2

∑
i

g(AEi ,∇Ei K )

(15)

Moreover, the last term of (15) vanishes. Indeed,

∑
i

g(AEi ,∇Ei K ) =
∑
i, j

g(AEi , E j ) g(E j ,∇Ei K )

= −
∑
i, j

[
g(AEi , E j ) g(Ei ,∇E j K ) + ρ g(AEi , E j ) g(Ei , E j )

]

= −
∑
i

[
g(AEi ,∇Ei K ) + ρ g(AEi , Ei )

]
,

where we have used that K is conformal. Hence,

∑
i

g(AEi ,∇Ei K ) = 1

2
ρ nH = 0.

Therefore, we obtain

�u = −g(K , N )
[
trace(A2) + Ric(N , N )

]
+ n g(N ,∇ρ), (16)

or equivalently,
Lu = n g(N ,∇ρ

)
. (17)

As a direct consequence of (16) we can enunciate a first result.

Theorem 6 Let (M, g) be a spacetime, which admits a causal conformal vector field
K , with conformal factor ρ.

(i) If ∇ρ is a future-directed causal vector field, then every maximal hypersurface in
M is strongly causal.

123



129 Page 10 of 14 D. de la Fuente et al.

(ii) If the vector field ∇ρ is is at each point p ∈ M a future-directed causal vector or
the zero vector, then every maximal hypersurface in M is stable.

Observe that from Remark 2, if ∇ρ is a future-directed causal vector field, up to
possibly some isolated points, where the gradient vanishes, then (i) in the previous
theorem also holds.

In particular, from the Theorem 6, we obtain,

Corollary 7 Let (M, g) be a spacetime which admits a causal Killing vector field.
Then every maximal hypersurface in M is stable. Specifically, in stationary and pp-
waves spacetimes every maximal hypersurface is stable.

On the other hand, from formula (16) we can also provide the following results.

Theorem 8 Let (M, g) be a spacetime, which admits a causal conformal vector field
such that the gradient of the conformal factor is a causal past-directed vector field,
then every maximal compact hypersurface must be unstable.

Proof It is enough to observe that u is a positive compact supported function on the
hypersurface satisfying Q(u, u) > 0. ��

4 Stability of maximal hypersurfaces in generalized Robertson–Walker
spacetimes

In this section, we focus on a special kind of spacetimes admitting a conformal vector
field, the generalized Robertson–Walker (GRW) spacetimes. This class of cosmo-
logical models are warped products I × f F with base an open interval (I,−dt2),
fiber a Riemannian manifold (F, gF ) whose sectional curvature is not assumed to be
constant and warping function f (t) defined on I (see, [2]). Thus, this family of space-
times widely extends to the classically called Robertson–Walker (RW) spacetimes.
Recall that the class of Robertson–Walker spacetimes includes the usual big-bang
cosmological models, the de Sitter spacetime, the steady state spacetime, the Lorentz–
Minkowsky spacetime and the Einstein’s static spacetime, among others. Unlikely to
these spacetimes, the GRW spacetimes are not necessarily spatially-homogeneous.
Note that being spatially-homogeneous, which is reasonable as a first approximation
of the large scale structure of the universe, could not be appropriate when we consider
a more accurate scale. Thus, a GRW spacetime could be a suitable spacetime to model
a universe with inhomogeneous spacelike geometry [25]. On the other hand, small
deformations of the metric on the fiber of classical Robertson–Walker spacetimes fit
into the class of GRW spacetimes. Therefore, GRW spacetimes are useful to analyze
if a property of a RW spacetime M is stable, i.e. if it remains true for spacetimes close
to M in a certain topology defined on a suitable family of spacetimes [20]. In fact, a
deformation s �→ g(s)

F
of the metric of F provides a one parameter family of GRW

spacetimes close to M when s approaches to 0. Note also that a conformal change
of the metric of a GRW spacetime with a conformal factor which only depends on t ,
produces a new GRW spacetime.
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Specifically, let (F, gF ) be an n(≥ 2)-dimensional (connected) Riemannian mani-
fold, I an open interval in R endowed with the metric −dt2, and f a positive smooth
function defined on I . Then, the product manifold I × F endowed with the Lorentzian
metric

ḡ = −π∗
I
(dt2) + f (πI )

2 π∗
F
(gF ), (18)

where πI and πF denote the projections onto I and F , respectively, is called a gen-
eralized Robertson–Walker (GRW) spacetime with fiber (F, gF ), base (I,−dt2) and
warping function f . Usually, the previous Lorentzian warped product is represented
by M = I × f F .

The family of spacelike hypersurfaces �t = {t} × F = {(t, p) : p ∈ F}, t ∈ I ,
constitutes a foliation of M by totally umbilical leaves of constant mean curvature
H = f ′(t)

f (t) that we will call spacelike slices. We will say that a spacelike hypersurface
x : S −→ M is contained in a slab if it is contained between two spacelike slices, that
is, if the height function τ := t ◦ x is such that τ(S) ⊆ [t1, t2] for t1, t2 ∈ I , t1 < t2.

The behaviour of warping function (or scale factor) has important consequences for
this sort of cosmological models. If for each p ∈ F , we parametrize the worldline of
each galaxy I × {p} by γp (t) = (t, p), since ∂t is the velocity of each γp , they are its
integral curves. In particular, the function t is the common proper time of all galaxies.
Let us consider a fixed spacelike slice �t . The distance between two galaxies γp and γq

in �t is f (t) d(p, q), where d is the Riemannian distance in the fiber F . In particular,
when f has positive derivative (resp. negative derivative) the spaces �t are expanding
(resp. contracting). Moreover, if f ′′ > 0 (resp. f ′′ < 0) the GRW spacetimes models
universes in accelerated expansion (resp. contraction). On the other hand, when f ′ > 0
and f ′′ < 0, the spacetime time is in decelerated expansion. This is the case of the
well-known Einstein–de Sitter spacetime.

In the context of GRW spacetimes, it is not difficult to see that the TCC is equivalent
to

f ′′ ≤ 0, RicF (X, X) ≥ (n − 1)( f f ′′ − f ′2)gF (X, X), (19)

for all X tangent to the fiber F , where RicF denotes the Ricci tensor of (F, gF ).
On the other hand, a GRW spacetime satisfies the ubiquitous energy condition if

(19) holds, with f ′′ < 0.
For an arbitrary spacetime a weaker energy condition is the null convergence con-

dition (NCC) which reads Ric(Z , Z) ≥ 0 for all null tangent vector Z. So, this energy
condition only applies to light particles. It is easy to see that a GRW spacetime M
obeys the NCC if and only if

RicF − (n − 1) f 2(log f )′′ ≥ 0,

where RicF denotes the Ricci curvature of the fiber at any arbitrary direction. It is
clearly that if the Ricci curvature of the fiber is positive definite and the warping
function satisfies (log f )′′ ≤ 0, then the GRW spacetime obeys the NCC.

Note that f ′′ ≤ 0 implies (log f )′′ ≤ 0. Nevertheless, the last inequality can be
compatible with certain accelerated expanding models (see, [1]). So the well-known
steady state spacetime is given as a GRW spacetime with fiberRn and warping function
f (t) = et .
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On other hand, in a GRW spacetime there is a remarkable timelike conformal vector
field, K = f (t) ∂t , satisfying LK g = 2 f ′(t) g. Thus, the conformal factor is given by
ρ = f ′(t), and

∇ρ = − f ′′(t)∂t .

Now, we can to state a new result in the case of GRW spacetimes.

Theorem 9 Every maximal hypersurface in a GRW spacetime, whose warping func-
tion satisfies the convexity condition f ′′ ≤ 0 (resp. f ′′ < 0) is stable (resp. strongly
stable).

Under some natural assumptions on the convexity of the warping function and on
the geometry of the spacetime, we obtain the next theorem. A technical lemma by
Omori and Yau ([23,32]) is necessary.

Lemma 10 Let S be a complete Riemannian manifold whose Ricci curvature is
bounded away from below and let u : S −→ R be a smooth function bounded from
below (resp. bounded from above). Then, for each ε > 0, there is a point pε ∈ S such
that

(1) |∇u(pε)| < ε,
(2) �u(pε) > −ε (resp. �u(pε) < ε),
(3) inf(u) ≤ u(pε) < inf(u) + ε (resp. sup(u) − ε < u(pε) ≤ sup(u)).

Theorem 11 Let S a complete maximal hypersurface in aGRW spacetimewhose fiber
has sectional curvature bounded from below and whose warping function satisfies
(log f )′′ ≤ 0 (resp. (log f )′′ < 0). If S lies in a slab, then it is stable (resp. strongly
stable).

Proof Let us define the auxiliary smooth function F(τ ) = ∫ τ

infτ f (s) ds ∈ C∞(S),
which is bounded because S lies in a slab. A straightforward computation gives

�
(
F(τ )

) = −n f ′(τ ).

Taking into account [26, Lemma 7], the Ricci curvature of the maximal hypersurface
S is bounded from below. Making use of the Lemma 10 we have that for each ε > 0,
there exists a point pε ∈ S such that

|∇F(τ (pε)| < ε, and − ε ≤ �
(
F(τ )

)
(pε) = −n f ′(τ (pε)),

with inf
(
F(τ (S))

) ≤ F(τ (pε)) ≤ inf
(
F(τ (S))

) + ε.
Since inf

(
F(τ (S))

) = F
(
infτ(S)

)
, doing ε → 0+ we get

0 ≤ −n f ′(inf τ(S)
)

and
f ′(inf τ(S)

)
f
(
inf τ(S)

) ≤ 0.
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Analogously, since F(τ ) is bounded from above, we obtain that

f ′(sup τ(S)
)

f
(
sup τ(S)

) ≥ 0.

Taking into account the the function f ′(t)
f (t) is non-increasing, we obtain that f ′(τ ) =

0 and as a consequence f ′′(τ ) ≤ 0.
Note that under the assumption (log f )′′ < 0, the same reasoning gives f ′′ < 0. ��
Finally, we can provide an application to the relevant family of the Friedman–

Robertson–Walker spacetimes, well known in cosmology. These spacetimes constitute
a family of exact solutions of the Einstein equations and physically represent realistic
universe models. Since a Friedman–Roberson–Walker is a Robertson–Walker space-
time filled with perfect fluid, which is a dust, then its warping function f satisfies
f ′′ < 0 (see, [24, Chap. 12]).

Corollary 12 In a Friedman–Robertson–Walker spacetime, any maximal hypersur-
face is strongly stable.

As a direct consequence, a complete maximal hypersurface in a Friedman–
Robertson–Walker spacetime describes the turn around epoch.
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