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Abstract We establish the result that the standard Boulware–Deser spacetime can
radiate. This allows us to model the dynamics of a spherically symmetric radiat-
ing dynamical star in five-dimensional Einstein–Gauss–Bonnet gravity with three
spacetime regions. The local internal region is a two-component system consisting
of standard pressure-free, null radiation and an additional string fluid with energy
density and nonzero pressure obeying all physically realistic energy conditions. The
middle region is purely radiative which matches to a third region which is the vacuum
Boulware–Deser exterior. Our approach allows for all three spacetime regions to be
modeled by the same class of metric functions. A large family of solutions to the field
equations are presented for various realistic equations of state. A comparison of our
solutions with earlier well known results is undertaken and we show that Einstein–
Gauss–Bonnet analogues of these solutions, including those of Husain, are contained
in our family. We also generalise our results to higher dimensions.

Keywords Equations of state · Boulware–Deser spacetimes · Radiating stars

1 Introduction

1.1 Alternate theories of gravity

A rekindled interest in alternate and higher dimensional theories of gravity has arisen
in recent times. The reason for studying these new theories is the fact that conven-
tional Einstein gravity has shortcomings. An example is the fact that the late time
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expansion of the universe is noted in observations, but isn’t a direct consequence of
standard general relativity. One approach to modify general relativity is the introduc-
tion of nonlinear forms of the Riemann and Ricci tensor, and the Ricci scalar. The
second order equations of motion resulting from linear forms is advantageous in four
dimensions; however as shown by Lovelock [1,2] it is possible to introduce a poly-
nomial form of the Lagrangian which is of quadratic order. This form generates the
Einstein–Gauss–Bonnet (EGB) action. Curvature terms which are quadratic in the
spacetime appear as corrections to Einstein gravity, and this theory can be considered
a consequence of low energy string theory [3,4]. These higher order curvature terms
will have no consequence in four-dimensional gravity unless some surface term is
involved. An interesting point to note is that the equations of motion which result from
the EGB action are still second order and quasilinear. If the higher order quantities are
vanquished or absent, conventional Einstein gravity is regained [5]. Many results are
reported in the literature on solutions in EGB gravity. The well known Boulware–Deser
solution [6] was an early higher dimensional analogue of the vacuum Schwarszchild
solution from general relativity. Bhawal [7] studied the higher dimensional geodesic
motion of a Boulware–Deser black hole spacetime and performed comparisons with
the higher dimensional Schwarszchild geometry. More recently Davis [8] derived the
generalised Israel junction conditions on a membrane and Anabalon et al. [9] found
a vacuum solution in EGB gravity with the Kerr-Schild ansatz in five-dimensional
space. Recent investigations [10–12] have reported new solutions to the EGB field
equations for a static spherically symmetric interior of a perfect fluid. The notion of
gravitational collapse has also been looked upon. Maeda [13] studied the gravitational
contraction of dust in EGB gravity, and efforts have been made to find asymptoti-
cally AdS black hole solutions in EGB gravity [14–16]. Ghosh et al. [17] studied the
gravitational contraction of a spherical cloud of inhomogeneous dust in EGB theory,
and Ghosh and Maharaj [18] presented null dust solutions in third order Lovelock
gravity for a spherically symmetric string cloud background in arbitrary dimensions.
Upon finding black hole solutions, an important task is to study the conserved charges
such as the angular momentum; Peng [19] looked at quasi-local conserved charges of
dyonic rotating black holes in both EGB gravity and four-dimensional conformal Weyl
gravity. Dawood and Ghosh [20] characterised a large family of solutions to Einstein’s
equations for a spherically symmetric type II fluid, and showed that the well known
black hole solutions are a particular case of this larger family. Ghosh and Dawood
[21] further generalised these results to higher dimensions. Ghosh and Dadhich [22]
studied the gravitational collapse of a type II fluid in higher dimensions and noted that
due to the presence of strange quark matter, as well as the higher dimensions, there
was a shrinkage of the initial data space.

These solutions and that of [6] are the EGB generalisations of the vacuum solutions
in general relativity. In this paper we will discuss another such generalisation: an EGB
Vaidya-like solution.

1.2 The problem

Although the outside geometry as well as the matching conditions have been studied
extensively in general relativity with the Vaidya metric [23], we are faced with the
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following ansatz in the EGB theory: How do we model a five-dimensional realistic,
collapsing astrophysical star with a core containing a null fluid and a string fluid
which matches to an intermediate radiating Boulware–Deser spacetime enclosed by
the Boulware–Deser vacuum exterior?This question is vital for a better understanding
of the thermodynamics, dynamics and gravitational collapse in realistic stars, in the
context of EGB gravity. The class of spacetimes which forms a natural candidate
for models of such interiors are the radiating Boulware–Deser spacetimes. The idea
of a radiating Vaidya-like Boulware–Deser spacetime was first brought to light by
Kobayashi [24]. The matter fields in these spacetimes will be analagous to those
in the four-dimensional generalised Vaidya metrics with type I and type II matter
distributions. A general type I matter field (whose energy momentum tensor has three
spacelike and one timelike eigenvector), describes null matter, and a type II matter field
(whose energy momentum tensor has double null eigenvectors) describes a string fluid
and null radiation. A stellar interior with a type II distribution can be matched naturally
to an external radiating zone described by a pure radiating Boulware–Deser spacetime,
and then finally, this radiation zone can be matched smoothly to the conventional
Boulware–Deser vacuum exterior.

1.3 This paper

In the five-dimensional Boulware–Deser spacetime the constant M̃ can be related
to the mass within a hypersurface. We show that it is possible for M̃ to depend on
the spacetime coordinates; the variable M̃ is consistent with the field equations with a
modified energy momentum tensor. Hence, with a type II fluid (consisting of a null fluid
and a string source), the standard Boulware–Deser spacetime radiates. In this paper we
generate solutions to the radiating interior Boulware–Deser spacetime with null matter
and a string fluid for various thermodynamically realistic equations of state. It turns
out that it is possible to directly integrate the resulting partial differential equations
for linear, quadratic and polytropic equations of state. In recent times Dominguez and
Gallo [25] found solutions to the EGB equations which represented dynamic black
holes as well as EGB versions of the original Vaidya (dS/AdS) solution, the monopole
and the Husain black hole [26]. Our solutions for the linear cases as well as the total
solution set are the EGB analogues of those found in [26–28] respectively. We also
further generalise our results in higher dimensions for pedagogical completeness.

This paper is organised as follows: In the next section, an outline of the theory
of EGB gravity is presented as well as the general modified field equations. The
Boulware–Deser spacetime is discussed in the following section followed by a detailed
description of a radiating Boulware–Deser metric in Sect. 4. Here, the relevant def-
initions relating to the modified geometry of the spacetime are presented along with
the EGB field equations and energy conditions for a physically reasonable model. In
Sect. 5 a complete description of how to model an isolated, spherical five-dimensional
astrophysical radiating star via the Boulware–Deser geometry is given. In the section
following this, solutions to the EGB field equations for the gravitational mass are
systematically presented for various realistic equations of state. In Sect. 7 the higher
dimensional analogue of the Boulware–Deser metric is discussed and the generalised
solutions for equations of state are tabulated.
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2 Einstein–Gauss–Bonnet theory

The modified form of the Einstein–Hilbert action in five dimensions is

S = 1

16π

∫ √−g [(R − 2Λ + αLGB)] d5x + Smatter , (1)

which is called the Gauss–Bonnet action where α is the Einstein–Gauss–Bonnet (EGB)
coupling constant, R is the five-dimensional Ricci scalar, LGB is the Lovelock term
and Λ is the cosmological constant. The above action has no direct affect in dimensions
of four or less since the Lovelock term does not contribute to the field equations, but is
generally nonzero in dimensions higher than four. The cogency of the Lovelock term
lies in the fact that the equations of motion are second order and quasilinear despite
the fact that the Langrangian is quadratic in the Riemann-curvature tensor, the Ricci
tensor and the Ricci scalar.

The EGB field equations may be written as

Gab = κTab, (2)

where

Gab = Gab − α

2
Hab. (3)

In the above, Gab is the Einstein tensor, Tab is the energy momentum tensor and Hab

is the Lanczos tensor defined as

Hab = gabLGB − 4RRab + 8RacR
c
b

+8Racbd R
cd − 4RacdeRb

cde, (4)

where the Lovelock term has the form

LGB = R2 + Rabcd R
abcd − 4Rcd R

cd . (5)

In the limit where α → 0, the above Lovelock term (and hence, the Lanczos term)
will vanish and conventional Einstein gravity will be regained.

3 The Boulware–Deser spacetime

A static, spherically symmetric, exterior vacuum solution of the modified action (1)
was first given by Boulware and Deser [6]. The form of the metric is given by

ds2 = − f (r)dt2 + 1

f (r)
dr2

+ r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (6)
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where

f (r) = 1 + r2

4α

⎛
⎝1 −

√
1 + 16M̃α

r4

⎞
⎠ .

In the line element (6), M̃ is the gravitational constant mass of the five-dimensional
hypersurface. For our purposes it will be prudent to express (6) in retarded coordinates.
Utilising the transformation

v = t −
∫

dr
f (r)

,

the Boulware–Deser metric (6) becomes

ds2 = − f (r)dv2 − 2dvdr

+ r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (7)

where (xa) = (v, r, θ, φ, ψ). As M̃ is a constant mass, all the components of (3)
vanish since the Boulware–Deser spacetime is vacuum.

4 An inhomogeneous radiating Boulware–Deser interior

If we consider a radiating inhomogeneous spacetime in EGB gravity then we can obtain
a Vaidya-like metric by allowing the mass function to depend on both the retarded null
coordinate and the radius of the star

M̃ −→ M(v, r). (8)

Thus we will have

ds2 = − f (v, r)dv2 − 2dvdr

+ r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (9)

where

f (v, r) = 1 + r2

4α

(
1 −

√
1 + 16M(v, r)α

r4

)
. (10)
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The nonvanishing components of the Einstein tensor Ga
b are

G0
0 = G1

1 = − 3

2
√

1 + 16αM
r4

×
[

1

αr2
+ 8M

r4
+ 2Mr

r3
− r4

√
1 + 16αM

r4

]
, (11a)

G1
0 = 3Mv

r3
√

1 + 16αM
r4

, (11b)

G2
2 = G3

3 = G4
4 = − −1

2r8α + 32α2r4M

×
[
−3r8

√
1 + 16αM

r4
+ 2Mrrαr6 + 3r8 + 32α2r2Mrr − 16α2r2M2

r

+72αr4M + 128α2rMr + 128α2M2 − 48αr4M

√
1 + 16αM

r4

]
, (11c)

where

Mv = ∂M

∂v
, Mr = ∂M

∂r
.

The nonvanishing components of (4) become

H0
0 = H1

1 = − 3

α2r3(r4 + 16αM)

×
[
r7
√

1 + 16αM

r4
+ 2αr4Mr

√
1 + 16αM

r4

−r7 − 2αr4Mr − 32α2MMr + 8αr3M

√
1 + 16αM

r4
− 16αr3M

]
, (12a)

H1
0 =

6Mv

[
r4
√

1 + 16αM
r4 − r4 − 16αM

]

αr3(r4 + 16αM)
, (12b)

H2
2 = H3

3 = H4
4 =

(
1 + 16αM

r4

)− 1
2

α2r4(r4 + 16αM)

×
[

2αr6Mrr

√
1 + 16αM

r4
+ 3r8

√
1 + 16αM

r4
− 2αr6Mrr − 3r8

+32α2r2MMrr − 32α2r2MMrr + 16α2r2M2

−128α2rMr − 128α2M2 + 48αr4M

√
1 + 16αM

r4
− 72αr4M

]
. (12c)
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4.1 The EGB field equations

Using the above expressions (11) and (12), we can calculate the nonzero components
of (3). It is remarkable to note that despite the complexity of the nonzero components of
the Einstein and Lanczos tensors, their combinations yield rather simple expressions.
These are given by

G0
0 = G1

1 = − 3

r3 Mr, (13a)

G1
0 = 3

r3
Mv, (13b)

G2
2 = G3

3 = G4
4 = − 1

r2
Mrr. (13c)

The modified curvature components (13) are generated by an appropriate matter field.
Comparing (13) with the field equations (2) gives rise to an energy momentum tensor
of the form

Tab = μlalb + (ρ̃ + P)(lanb + lbna) + Pgab, (14)

where

la = δ0
a,

na = 1

2

[
1 + r2

4α

(
1 −

√
1 + 16Mα

r4

)]
δ0
a + δ1

a,

with lclc = ncnc = 0 and lcnc = −1. The null vector la is a double null eigenvector
of the energy momentum tensor (14). Using the form of the energy momentum tensor
(14) with (13), we acquire the EGB field equations Ga

b = κT a
b in the form

μ = − 3

κr3
Mv, (15a)

ρ̃ = 3

κr3
Mr, (15b)

P = − 1

κr2
Mrr. (15c)

As Mv �= 0, in general it is clear that the Boulware–Deser class of spacetimes radiates.
When ρ̃ = P = 0, the above expressions reduce to the single solution obtained for
the radiating Boulware–Deser metric when M = M(v). Furthermore when μ = ρ̃ =
P = 0, we regain the vacuum case with constant mass.

The energy conditions for this kind of fluid are

1. The weak and strong energy conditions:

μ ≥ 0, ρ̃ ≥ 0, P ≥ 0 (μ �= 0). (16)
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2. The dominant energy condition:

μ ≥ 0, ρ̃ ≥ P ≥ 0 (μ �= 0). (17)

In the case when M = M(v) the above energy conditions all reduce to μ ≥ 0, and if
M = M(r), then μ = 0 and the matter field becomes a type I fluid.

Finally, we are in the position to state the following theorem:

Theorem 1 Consider the five-dimensional spacetime

ds2 = −
[

1 + r2

4α

(
1 −

√
1 + 16Mα

r4

)]
dv2 − 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2),

from a regular epoch, where M = M(v, r) (v is the null retarded time coordinate and r
is the radius) is differentiable in the entire spacetime, and obeys all physically reason-
able energy conditions. This spacetime is then consistent with an energy momentum
tensor which is a unique combination of the type I and type II matter fields. This
geometry represents a solution to the EGB field equations with a superposition of
null radiation and a string fluid. In the relevant limit, we regain the radiating case
(M = M(v)) and the Boulware–Deser spacetime (M = M̃ = const.) when α �= 0,
and Einstein gravity when α = 0.

5 The model for an isolated, radiating and dynamic star in five
dimensions

Any spherically symmetric five-dimensional astrophysical star is a combination of
three distinct concentric zones: the innermost zone is the stellar interior where there
are two component matter sources, namely null fluid matter together with radiation.
The middle zone is a purely radiative zone while the outermost zone is the vacuum
Boulware–Deser exterior (6) that extends approximately to a radius of one light year
(for solar mass stars) beyond which galactic dynamics will take over. In this section
we briefly outline how to model all three of these zones under a combined framework
using a generalised Boulware–Deser class of metric.

5.1 Stellar interior: M = M(v, r)

As described earlier, the best possible candidate for the spacetime of a stellar interior
with the mass parameter (8) is

ds2 = − f (v, r)dv2 − 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (18)
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where

f (v, r) = 1 + r2

4α

(
1 −

√
1 + 16M(v, r)α

r4

)
.

The mass function M which depends on the coordinates v and r can be uniquely
obtained via the Einstein field equations with the two component matter sources. Let
M(v, r) be one such solution for a given combination of fluid and radiation fields.
This solution then completely describes the solution of the interior of the star, up to
a boundary surface given by r = rb. Beyond this boundary we enter a pure radiation
zone.

5.2 Radiation zone: M = M(v)

In this zone the matter field is a single component null matter field and the spacetime
is well described by the radiating Boulware–Deser metric

ds2 = − f1(v, r)dv2 − 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (19)

with

f1(v, r) = 1 + r2

4α

(
1 −

√
1 + 16M1(v)α

r4

)
.

We can naturally relate the Boulware–Deser mass function M1(v) in the radiation
zone to the generalised Boulware–Deser mass function in the stellar interior in the
following way

M1(v) = M(v, rb), (20)

so that M is a function of the retarded coordinate v. This radiation zone continues
until some retarded null coordinate value v = V0, beyond which the spacetime is the
conventional Boulware–Deser vacuum (as dictated by Birkhoff’s theorem).

5.3 Boulware–Deser exterior: M = M̃

This vacuum region is described by the exterior static subset of the completely extended
Boulware–Deser manifold, and the metric is given by

ds2 = − f̃ (r)dv2 − 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (21)
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with

f̃ (r) = 1 + r2

4α

⎛
⎝1 −

√
1 + 16M̃α

r4

⎞
⎠ .

Here the static mass M̃ is related to the radiating Boulware–Deser mass M1(v) by

M̃ = M1(V0), (22)

which is constant.

5.4 Matching conditions at the boundary surfaces: complete mass function

We note here that the spacetime is divided into three distinct regions for our above
mentioned stellar model: the interior region, the radiation zone and the vacuum
Boulware–Deser exterior region. The first boundary surface between the inner and
the intermediate zone, given by r = rb, is a timelike boundary, whereas the second
boundary surface given by v = V0 is a null boundary. The important point that all the
three zones are described by the same class of metric makes the matching conditions
between boundaries extremely transparent. To match the first fundamental form all
we need is the mass function to be continuous across these boundaries. Hence the
complete C2 mass function for an isolated stellar model can be given in the following
form:

M(v, r) =

⎧⎪⎨
⎪⎩
M(v, r) r ≤ rb , v ≤ V0

M1(v) ≡ M(v, rb) r > rb , v ≤ V0

M̃ ≡ M1(V0) ≡ M(V0, rb) r > rb , v > V0

(23)

We can easily check that this mass function is a solution to the EGB field equations
in all three zones mentioned above, and hence it completely describes the spacetime
of an isolated collapsing star. To match the second fundamental form, we need the
partial derivatives of the mass functions across the boundaries to be continuous. These
conditions are given by

∂

∂v
M(v, rb) = ∂

∂v
M1(v), (24a)

∂

∂r
M(v, r)

∣∣∣∣
r=rb

= 0, (24b)

∂

∂v
M1(v)

∣∣∣∣
v=V0

= 0, (24c)

where r = rb is the timelike boundary [from equating (7)–(19)] and v = V0 is the null
boundary [from equating (19)–(21)]. These boundaries serve as the matching surfaces
for the three concentric regions which can be seen in Fig. 1.
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Fig. 1 Depiction of a five-dimensional spacetime divided into the three distinct regions

It is therefore necessary to find physically relevant mass functions, with the structure
of (23), to model a dynamical radiating star which is isolated. We achieve this by
imposing specific equations of state.

6 Solutions with equations of state

In this section, we will consider various equations of state to solve the system (15).

6.1 Case I(a): P = kρ̃

If we assume a linear equation of state P = kρ̃ in the field equations where k is a
constant, we then arrive at

r2Mrr + 3krMr = 0, (25)

which is a second order linear partial differential equation. Since the derivatives occur
in one variable, we can integrate it as an ordinary differential equation via reduction
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of order. There are two solutions. For the case when k = 1
3 , the solution is given

by

M(v, r) = c1(v) ln(r) + c2(v),

where c1(v) and c2(v) are functions of integration. For k �= 1
3 , the second solution is

M(v, r) = c1(v)
r1−3k

1 − 3k
+ c2(v). (26)

6.2 Case I(b): P = kρ̃ + k2

Assuming P = kρ̃ + k2 in the field equations (15) yields

Mrr + 3k

r
Mr + κk2r2 = 0, (27)

which takes the form of a Cauchy–Euler equation. If we let y(v, r) = Mr we get the
first order linear equation

y′ + 3k

r
y = −κk2r2, (28)

which can be easily integrated to give

y = −κk2
r3

3k + 1
+ c1(v)

r3k
. (29)

Again, two cases arise. When k = 1
3 the first solution for M(v, r) is given by

M(v, r) = c1(v) ln(r) + c2(v) − κk2r4

16
.

The second solution for the mass with k �= 1
3 is given by

M(v, r) = c2(v) + c1(v)
r1−3k

1 − 3k
− κk2

4(3k + 1)
r4, (30)

which contains (26) as well as several of the seminal others contained in [25]. It should
be noted that this solution also contains the EGB analogues of those found in [26,27].
These are summarised in Table 1.
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Table 1 Solutions contained within the system (30)

Solution M(v, r) c1(v) and c2(v) k-indices

Monopole-EGB ar
2 c1(v) = a

2 ,c2(v) = 0 k, k2 = 0

Charged Vaidya-EGB g(v) − q(v)2

2r c1 = q(v)2

2 , c2 = g(v) k = 1, k2 = 0

dS/AdS Λ
6 r3 c1(v) = c2(v) = 0 k = const.

k2 = −Λ(k+1)
κ

Husain-EGB g(v) − q(v)

(3k−1)r3k−1 c1(v) = −q(v)
2 , c2(v) = g(v) k, k2 = const.

Boulware–Deser–Wheeler M0 c1 = c2 = 0

6.3 Case II(a): P = kρ̃2

If we assume a quadratic equation of state P = kρ̃2, in the field equations (15), we
have

r5Mrr + 9k

κ
rM2

r = 0, (31)

which is a second order nonlinear equation. A reduction of the order yields the fol-
lowing

y′ + η

r4
y2 = 0, (32)

which is a first order nonlinear equation with η = 9k/κ . Integration yields

y = −1
η

3r3 + c1(v)
. (33)

Therefore the mass can be expressed as

M(v, r) = −
∫ (

1
η

3r3 + c1(v)

)
dr + c2(v). (34)

The integral on the right hand side of the above expression admits two solutions. When
the constant c1 = 0 the solution is

M(v, r) = − 3

4η
r4 + c2(v). (35)

When c1 �= 0 the above integral can be evaluated via partial fraction decomposition.
The final expression for the mass M is given by
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M(v, r) = c2(v) − r
3c1(v)

+
(

η

3c1(v)

)1/3 ( 1

3η

)

×

⎡
⎢⎢⎢⎣

1

2
ln

⎛
⎜⎜⎜⎝

(
r +

(
η

3c1(v)

)1/3
)2

r2 −
(

η
3c1(v)

)1/3 +
(

η
3c1(v)

)2/3

⎞
⎟⎟⎟⎠

+√
3 arctan

⎛
⎜⎝

2r −
(

η
3c1(v)

)1/3

√
3
(

η
3c1(v)

)1/3

⎞
⎟⎠
⎤
⎥⎦ . (36)

As far as we are aware, this solution is not found anywhere in the previous literature.

6.4 Case II(b): P = kρ̃2 + k2ρ̃ + k3

Imposing the equation of state P = kρ̃2 + k2ρ̃ + k3 in the field equations (15) yields

Mrr + 9k

κr4
M2

r + 3k2

r
Mr + k3κr = 0. (37)

Reducing the order of the above equation yields

y′ + 3k2

r
y + k3κr = − η

r4
y2, (38)

with η = 9k/κ , which is a Riccati differential equation. Integration of the above
equation gives

y = − r3

2η
tan

(
1

2

√
ε(ln(r) − c1(v))

)

×
(

− r3

2η
(
√

ε + 3 + 3k2)

)
. (39)

In the above expression, we have the following: ε = 4βη − 9k2
2 − 109 − 18k2 and

β = κk3. Hence, the expression for the mass is given by

M(v, r) = −
∫ [

r3

2η
tan

(
1

2

√
ε(ln(r) − c1(v))

)

×
(
r3

2η
(
√

ε + 3 + 3k2)

)]
dr + c2(v). (40)

It should be noted that when k2 = k3 = 0 in the above solution (40), we regain Case
II(a), which is to be expected.
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6.5 Case III: P = kρ̃γ

If we assume the equation of state P = kρ̃γ , where γ is a constant, we then have

Mrr + kκ

(
3

κ

)γ

r2−3γ Mγ
r = 0. (41)

Reducing the order of the above equation yields

y′ + kκ

(
3

κ

)γ

r2−3γ yγ = 0,

which is a separable equation. Its general solution is given by

y =
[
(γ − 1)

(
kκ

(
3

κ

)γ r3−3γ

3 − 3γ
+ c1(v)

)] 1
1−γ

. (42)

Therefore we can express the mass M as

M(v, r) = c2(v) +
∫ [

(γ − 1)

(
kκ

(
3

κ

)γ

× r3−3γ

3 − 3γ
+ c1(v)

)] 1
1−γ

dr. (43)

It should be noted that in the works of [22,25,27], it appears that solutions only
for a linear and/or generalised linear equation of state are provided in conventional
general relativity in the Vaidya spacetime. Brassel et al. [28] further found solutions
for both linear cases as well as quadratic and generalised quadratic equations of state.
It should be noted that Husain [26] found a general integral quadrature similar to
ours above for the polytropic equation of state in the generalised Vaidya spacetime,
however ours differs in the fact that we are dealing with the EGB theory of gravity. In
the case of [27], a series solution approach was used to obtain solutions, whereas in
our case, a direct integration of the EGB field equations was undertaken. Also we have
not assumed separability of the mass functions. This, in a sense, makes our solutions
(which are the EGB analogues of those found in [27]) more general.

7 Higher dimensional Boulware–Deser spacetime

Higher dimensional Boulware–Deser spacetimes have been studied in various physical
scenarios. Bhawal [7] studied the geodesic motion inside a Boulware–Deser black hole
in arbitrary dimensions and Dominguez and Gallo [25] found solutions of radiating
black holes for certain equations of state. Ghosh and Dadhich [22] also considered
type II black hole solutions and gravitational collapse with a quark equation of state
in higher dimensions. Dadhich and Pons [29] found static black hole solutions in both
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Einstein and EGB gravity in higher dimensions by considering the topology of the
product of two spheres Sn × Sn . This topology comprised of black rings and branes
and new solutions were obtained, also, for constant curvature. Gravitational collapse
as well as other features may be affected by additional dimensions.

The N -dimensional Boulware–Deser metric is given by

ds2 = − f (r)dv2 − 2dvdr + r2dΩ2
n−2, (44)

with

dΩ2
N−2 =

N−2∑
i=1

⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ (dθ i )2,

and where

f (r) = 1 + r2

2α̂

(
1 −

√
8α̂

N − 3

(
2M

rN−1

))
.

In the above α̂ = α(N −3)(N −4). If we consider an inhomogeneous radiating metric
with

M −→ M(v, r),

the nonzero components of (3) are given by

G0
0 = G1

1 = − (N − 2)Mr

r(N−2)
, (45a)

G1
0 = (N − 2)Mv

r(N−2)
, (45b)

G2
2 = G3

3 = · · · = Gθ(N−2)
θ(N−2) = − Mrr

r(N−3)
. (45c)

The EGB field equations are thus

μ = (N − 2)Mv

κrN−2 , (46a)

ρ̃ = (N − 2)Mr

κrN−2 , (46b)

P = − Mrr

κrN−3 . (46c)

As in the previous section, we find solutions to the EGB field equations and these are
presented in Table 2. We do not give the details of the integrations as they are similar to
the five-dimensional case. It is also important to note that Theorem 1 can be extended
to hold in higher dimensions. We state this as follows:
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Table 2 Equations of state and the higher dimensional gravitational mass

Equation of state P = P(ρ̃) M(v, r)

Linear P = kρ̃ M(v, r) = c1(v) ln(r) + c2(v), (k = 1
N−2 )

M(v, r) = c1(v) r
1−(N−2)k

1−(N−2)k + c2(v), (k �= 1
N−2 )

Generalised linear P = kρ̃ + k2 M(v, r) = c1(v) ln(r) + c2(v)

− κk2
(N−2)k+N−2

rN−1

N−1 , (k = 1
N−2 )

M(v, r) = − κk2
(N−2)k+N−2

rN−1

N−1

+c1(v) r
1−(N−2)k

1−(N−2)k + c2(v) (k �= 1
N−2 )

Quadratic P = kρ̃2 M(v, r) = (2 − N )
∫ rN−2

c1(v)(N−2)rN−2+η
dr + c2(v)

η = k(N−2)2

κ

Generalised quadratic P = kρ̃2+ M(v, r) = − 1
2η

∫ [(
rN−2 tan( 1

2
√

ς(ln r − c1(v))
)

k2ρ̃ + k3 ×(
√

ς + N − 2 + ξ)
]
dr + c2(v)

ς = 4βη − N2 − 2Nξ − ξ2 + 4ξ − 4, ξ = k2(N − 2),

β = κk3

Polytropic P = kρ̃γ M(v, r) = ∫ [
κk(γ + 1)

(
N−2

κ

)γ

× rN−2−γ (N−2)

N−2−γ (N−2)
+ (1 − γ )c1(v)

] 1
1−γ

dr + c2(v)

Theorem 2 Consider an N-dimensional spacetime given by

ds2 = − f (r)dv2 − 2dvdr + r2dΩ2
n−2,

with

dΩ2
N−2 =

N−2∑
i=1

⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ (dθ i )2,

and

f (r) = 1 + r2

2α̂

(
1 −

√
8α̂

N − 3

(
2M

rN−1

))
,

where α̂ = α(N−3)(N−4) and M = M(v, r), which obeys all physically reasonable
energy conditions and is differentiable in the entire spacetime. This spacetime is then
consistent with an energy momentum tensor which is a unique combination of the type
I and type II matter fields, and represents a solution to the EGB field equations with a
superposition of null radiation and a string fluid. Again, in the relevant limit, we regain
the radiating case (M = M(v)) and the Boulware–Deser spacetime (M = M̃ =
const.) when α �= 0, and the Einstein gravity when α = 0.
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8 Discussion

We have established the principal result that the standard Boulware–Deser spacetime
can be made to radiate. In this paper we considered a five-dimensional spherically
symmetric radiating star in Einstein–Gauss–Bonnet (EGB) gravity. We noted that
any astrophysical star is a combination of three concentric zones: the innermost two-
component zone of matter which can be modeled by an inhomogeneous radiating
Boulware–Deser metric, the radiation zone in the middle and the outermost zone
which is the Boulware–Deser vacuum exterior. A large family of solutions to the EGB
field equations were presented for various realistic equations of state. It was shown that
solutions were possible via a direct integration of second order differential equations.
Many of these solutions cannot be found by the approach used by Wang and Wu [27]
in conventional Einstein gravity; they assumed a restrictive series form of the mass
function. Other mass functions have been shown to exist in five and higher dimensions
which are physically reasonable. It is easy to show the existence of a dynamical star
which is radiating, by matching the mass function (23) at the two boundaries. We
illustrate this notion with the generalised linear equation of state

P = kρ̃ + k2.

At the first interface r = rb, between the two-component region and the null Boulware–
Deser zone, the mass function is written as

M1(v) = c2(v) + c1(v)
r1−3k
b

1 − 3k
− κk2

4(3k + 1)
r4b. (47)

At the second interface, between this null zone and the vacuum exterior region, the
mass function is

M̃ = c2(V0) + c1(V0)
r1−3k
b

1 − 3k
− κk2

4(3k + 1)
r4b. (48)

It is clear that the forms (47) and (48) are always possible due to the freedom permitted
by the integration functions c1(v) and c2(v). A comparison with earlier results was
undertaken and we showed that our solutions generalise earlier results in EGB gravity,
including the EGB analogue of Husain’s solution [26]. We then generalised our results
to higher dimensions.

An important point to note is the nonlinear nature of gravity, and even more specif-
ically, modified gravity. Despite the fact that the energy momentum tensor can be
written as a combination of radiation, matter and modified curvature parts, these
quantities intertwine in the metric in such a way as to give physically interesting
and reasonable solutions that can be used to model a dynamic star in dimensions five
or higher. If the radiation part is absent, for example, then the EGB field equations
force the matter that remains to obey an equation of state ρ̃ + pr = 0 (pr is the radial
pressure), which is that of an AdS-like space, and is not appropriate for stellar mod-
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eling. It is also important to note that if the Gauss-Bonnet connection term tends to
zero (α → 0), Einstein gravity is regained.

The work presented in this paper can be enhanced by the natural idea of gravitational
collapse; whether or not there are special classes of Boulware–Deser mass functions
which have an end state of collapse which is regular or singular. This will be a future
endeavour.
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