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Abstract The recent LIGO observation sparked interest in the field of gravitational
wave signals. Besides the gravitational wave observation the LIGO collaboration used
the inspiraling black hole pair to constrain the graviton mass. Unlike general relativity,
f (R) theories have a characteristic non-zero mass graviton. We apply this constraint
on the graviton mass to viable f (R) models in order to find the effects on model
parameters. We find it possible to constrain the parameter space with these gravity
wave based observations. We consider the popular Hu–Sawicki model as a case study
and find an appropriate parameter bracket. The result generalizes to other f (R) theories
and can be used to constrain the parameter space.

1 Introduction

The recent observation of gravitational waves [1] provided confirmation for their
hundred-year-old predicted existence. In the early years of general relativity (GR)
alternative models of gravitation were considered; for a long time these alternatives
to general relativity were little more than a curiosity, as the observations of that time
did necessitate anything else. Many of these modified theories of gravity were ruled
out for theoretical reasons but others remained viable as observational tests were not
yet feasible in most cases.

Cosmic microwave background [2] and observations of supernovae [3,4] led to the
discovery of the accelerating expansion of the Universe. The accelerated expansion
can be explained with the cosmological constant, but there are some fundamental
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problems with the cosmological constant [5] and the ΛCDM or concordance model
[6]. Therefore, the modified gravity theories, which received little interest for decades,
have become relevant once again.

The f (R) theories (see e.g. [7,8] for reviews) or fourth order theories, which gen-
eralize the Einstein Hilbert Langrangian as a function of the curvature scalar, have
received considerable attention in the 21st century. In [9] it was shown that the accel-
erating expansion could be explained with an f (R) modification; since then, more
viable models have been proposed (e.g. [10–15]).

In standard general relativity the graviton, which mediates the gravitational force,
has zero mass. General relativity is a metric theory which includes the set postulates of
requiring field equations with linear second order derivatives, satisfying the Newtonian
weak field limit and lacking dependence on any prior geometry. In order to have a
massive graviton, some generalization is needed. The path of least resistance is fixing
the background metric.

It is possible to add a term to the Einstein Hilbert action, thereby causing a massive
graviton [16,17]. There are a number of different terms that produce a massive graviton
but most of these fail to reach the correct Newtonian limit [18,19]. However, while in
general relativity the graviton naturally has a zero mass, this is not the case for f (R)

gravity [7].
In f (R) gravity the graviton has a priori a non-zero mass. As the f (R) theories

are explicitly higher order theories, this in not in contradiction with the demands of
constructing a massive graviton for general relativity. The higher order contribution
in the field equations adds up to an effective graviton mass term. This link between
graviton mass and model dependence can be converted into boundaries for viable
f (R) models.

Solar system observations have set several bounds on the mass of the graviton.
As the dynamics of the solar system are found to follow general relativity extremely
closely, these bounds are rather stringent. If the Newtonian potential is modified to
include a massive graviton, then the Kepler laws produce a limit for the Compton
wavelength of the graviton [20,21]. The bound on graviton mass follows from the
Compton wavelength and mass relation via λg = h/mgc [22], wheremg is the graviton
mass.

Inspiraling binaries are a known source of gravitational waves and provide a pos-
sibility for measuring the graviton mass [20,21,23]. Before the LIGO experiments
the graviton mass had been bounded by binary pulsars [17] instead of a pair of black
holes. Similar studies have been done in the context of f (R) gravity [24]. Assuming a
non-zero massmg graviton would cause the gravitational potential to be of the Yukawa
form r−1e−mgrc/h . The exponential dependence would cause a cut-off of the gravi-
tational interaction at large distances, namely larger than the Compton wavelength.
Such a cut-off has not been observed in the solar system [20] or galaxy clusters [25].
Therefore, these observations set an upper limit for the mass of the graviton mg .

The galaxy cluster limits for the graviton mass are rather stringent, with mgc2 <

2 × 10−29 eV [25], but are model dependent regarding e.g. dark matter assumptions.
These are not directly applicable to f (R) theories as they modify the effects and the
need for dark matter [26–29].
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Black hole superradiance is another source of constraints to the graviton mass. In
the context of bimetric gravity the mass is bounded bymgc2 < 5×10−23 eV [30]. The
gravitational-wave based bounds arise from the dynamics of gravitation and as such
are model-independent. Currently, the best model-independent dynamical bounds for
the graviton mass are those from the recent LIGO observationsmgc2 < 1.2×10−22 eV
[22]. If a supermassive black hole binary is detected in the future, it could introduce
a limit that is more stringent by several orders of magnitude [23].

In the following we will examine the naturally occurring graviton mass in f (R)

gravity [31]. Several studies attempt constrain f (R) theories with both theoretical and
observational means (e.g. [8,32–37]). Previous studies also investigate f (R) gravity
in the context of binaries and the related graviton mass [38,39]. Using the recent LIGO
upper limit on the graviton mass we further constrain the model parameters of some
viable f (R) theories such as the Hu-Sawicki model [10].

2 Equations of motion

In the following we derive the equations of motion describing gravitational waves
and graviton mass arising from the f (R) contribution. We examine an f (R)-modified
gravitational action1

A = 1

2χ

∫
d4x

√−g
(
f (R) + 2χLm

)
, (1)

where χ = 8πG
c4 is the coupling of gravitational equations and Lm is the minimally

coupled matter Lagrangian. Following standard metric variational techniques, we find
the field equations and the trace equation

f ′(R)Rμν − 1

2
f (R)gμν − ∇μ∇ν f

′(R) + gμν� f ′(R) = χTμν (2)

3� f ′(R) + f ′(R)R − 2 f (R) = χT, (3)

respectively, where the energy-momentum tensor Tμν = − 2√−g
δ
√−gLm
δgμν and T = T α

α .
The prime is used to denote the derivatives with respect to R. We study the linear
perturbations hμν and write

gμν = g̃μν + hμν, (4)

where g̃μν is the background metric. In general we use tilde to denote the quantities
calculated with the background metric. The Ricci tensor and scalar can be expanded
respective to the background as

Rμν � R̃μν + δRμν + O(h2), (5)

R � R̃ + δR + O(h2). (6)

1 The signature of the metric is −, +,+, +; the Riemann curvature tensor is Rα
βμν = ∂μΓ α

βν − ∂νΓ α
βμ +

Γ α
κμΓ κ

βν − Γ α
κνΓ κ

βμ and the Ricci tensor is Rμν = Rα
μαν .
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As the first derivative of f (R) appears in the equations of motion, we need an expansion
for this function as well, i.e. f ′(R) � f ′(R̃) + f ′′(R̃)δR + O(4). This expansion is
substituted into (3) which yields

f ′′(R̃)(3�δR + R̃δR) − f ′(R̃)δR = 0. (7)

As we are primarily interested in the propagation of gravitational waves in empty
space, we set Tμν = 0. The variations of the Ricci tensor and scalar can be written in
terms of the metric perturbation hμν (e.g. [40]) such that

δRμν = 1

2

(
∇μ∇νh − ∇μ∇λhλν − ∇ν∇λhμλ + �hμν

)
, (8)

δR = δ(gμνRμν) = �h − ∇μ∇νhμν − R̃μνh
μν. (9)

As this case is gauge invariant we fix the gauge to be the harmonic gauge with

∇μh
μ
λ = 1

2
∇λh, (10)

which further implies ∇μ∇νhμν = 1
2�h.

In order to provide the correct expansion of the Universe, a viable f (R) should
have a de Sitter solution. This requires the background equations, (2) and (3) for

empty space, to have solutions, i.e. f ′(R̃)R̃ = 2 f (R̃) and R̃μν = g̃μν
f (R̃)

2 f ′(R̃)
must

hold true. Using these equalities and the harmonic gauge we find

3 f ′′(R̃)�2h −
(

f (R̃) f ′′(R̃)

f ′(R̃)
+ f ′(R̃)

)
�h +

(
f (R̃) − 2 f 2(R̃) f ′′(R̃)

f ′2(R̃)

)
h = 0.

(11)
The graviton dispersion relation k2 = −m2

g reveals that the plane wave solution
h ∼ eik·x fulfills �h = m2

gh. Therefore, we can write

3 f ′′(R̃)m4
g −

(
f (R̃) f ′′(R̃)

f ′(R̃)
+ f ′(R̃)

)
m2

g +
(
f (R̃) − 2 f 2(R̃) f ′′(R̃)

f ′2(R̃)

)
= 0, (12)

for non-zero perturbations. Thus we obtain two solutions for m2
g ,

m2
1 = f ′2(R̃) − 2 f (R̃) f ′′(R̃)

3 f ′(R̃) f ′′(R̃)
, (13)

m2
2 = 1

2
R̃, (14)

which tell us the perturbations of the metric can be written as a linear combination

hμν = h(1)
μνe

ik(1)
λ xλ + h(2)

μνe
ik(2)

λ xλ

, (15)
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where the quantities h(i)
μν and k(i)

μ are the metric perturbation and four-momentum
related to the corresponding solution mi .

We have found two physically viable solutions for a non-zero graviton mass. The
first solution (13) resembles the stability criterion of [41,42]. Basically this criterion
tells us that the square of the graviton mass must be non-negative. The mass is often
derived with the well-known f (R) scalar-tensor theory equivalence [43–45]. This
solution is not available when f ′′(R) = 0, such as in the case of GR.

The second solution (14) does not depend on f ′′(R) and holds even for GR. This
solution is related to having δR = 0 in (7). In the case of empty space GR we have
R̃ = 0 and m2 = 0 as expected. Clearly, a well-behaved GR limit exists for the second
solution as f ′′(R) → 0. Since for this solution δR = 0, in the situation R̃ = 0, the
perturbation of the metric would simply be

δR ∼ h(1)
μνe

ik(1)
λ xλ

(16)

and only the scalar modes would manifest. Therefore, m2 solutions do not effect
scalar perturbations while the tensor perturbations are affected by both of the
solutions.

The GR limit of the first solution is problematic as it diverges as f ′′(R) → 0. This
reveals an interesting fact that even though f (R) models have to closely resemble
GR, they cannot be infinitely close. This is comparable to the result of the forbidden
Higuchi mass range of the graviton [46–48]. The emergence of these massive modes
in f (R) gravity is discussed in detail in [31].

The second solution is extremely small when m2 ∼ √
Λ, which easily passes all

constraints on graviton mass. Therefore, we focus on the first solution, which can be
constrained. The exact mass state of a graviton emited by two inspiraling black holes is
unknown, however the combination of the two mass states is bounded by observation.
Mergers in f (R) gravity need further study in order to distinguish between these two
states. To our knowledge, such studies have not yet been conducted.

Another, often overlooked, fact is that for GR with Λ (i.e. f (R) = R+Λ) we would
have a non-zero graviton mass, m2

2 = 2Λ. This is due to relaxing the assumptions
of GR [16]. Even though this is mathematically clear, the physical consequences are
debatable, see e.g. [49] and references therein for a discussion.

For the case of f (R) gravity, there is the extra scalar degree of freedom, like with the
cosmological constant. A massive graviton always implies extra degrees of freedom;
this leads to gravitational waves with Λ or f (R) different to those caused by plain
GR. However, this does not affect the relation to observations.

The LIGO observations provide a lower limit for the Compton wavelength of the
graviton [1]. A finite Compton wavelength in general translates to a massive theory
and therefore, extra degrees of freedom. The measurements detect perturbations of
the metric hμν , which can be written as a linear combination of the modes associated
with masses (13) and (14). The ratio of these two modes caused by the black holes is
unknown but the total contribution is constrained.

In the following, we shall take a closer look at specific models and use the Hu–
Sawicki model as a case study to demonstrate the procedure.
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3 Viable f (R) models and graviton mass constraints

Rigorous contraints on the parameters of the f(R) function are achieved with the most
stringent bound on R̃ which [10,33,50] finds is

| f ′(R̃) − 1| < 4 × 10−7. (17)

Here, and for the rest of the paper, we assume natural units. With the graviton mass
we can find another bound for these parameters. In what follows we will demonstrate
this for a particular model.

The popular Hu–Sawicki model is constructed to pass the solar system tests and
produce the observed late-time cosmology [10]. A truly viable model needs to fulfil
the high curvature regime constraints as well as provide the accelerated expansion of
the Universe, which appears at low curvature regimes. The Hu-Sawicki model is of
the form

f (R) = R − μRc

(
R
Rc

)2n

b
(

R
Rc

)2n + 1
, (18)

with μ, Rc, b positive constants and n ∈ N. Inserting this into the de Sitter criterion,
R̃ f ′(R̃) − 2 f (R̃) = 0, we can solve for b

b± = −1 + μ ± √
μ(μ − 2n). (19)

As the action must be real, b must have a real value as well. This leads to the constraint
μ > 2n. The constant Rc is a free-scaling parameter and for simplicity we have chosen
Rc = R̃. The bound (17) translates to

| f ′(R̃) − 1| = 2nμ

(1 + b±)2 < 4 × 10−7. (20)

For b− we have

| f ′(R̃) − 1| = 2nμ

(μ − √
μ(μ − 2n))2

= 2n

μ
(

1 −
√

1 − 2n
μ

)2 < 4 × 10−7. (21)

With the condition μ > 2n the square root can be expanded as a series. This results
in | f ′(R̃) − 1| ∼ μ < 10−7 which is in clear contradiction with μ > 2n. Therefore
we must choose b = b+, for which we find

2nμ

(μ + √
μ(μ − 2n))2

∼ 2nμ

4μ2 = n

2μ
< 4 × 10−7 (22)

when μ >> 1. This further translates to a lower bound μ > 106, where we have
assumed n ∼ 1. As higher n have been found to mimic ΛCDM behaviour more
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closely [10], our assumption of n is reasonable for viable f (R) models [8]. Therefore
n ∼ 1 translates to the most conservative bound. With μ >> 1, we can write the
square of the graviton mass as a series of x = 1/μ

m2
g = R̃

(
2

3n(1 + 2n)x
− 2n(5 + 2n)

3(1 + 2n)2 x

)
+ O(x2). (23)

Therefore, we have nm2
g/R̃ ∼ μ. As the gravitational wave observations set an upper

limit for the graviton mass, we find a upper bound for μ as well. We can write the
relation of the background curvature to the cosmological constant as R̃ = 4Λ. Using
the density parameter ΩΛ we can also write

Λ = 3H2
0 ΩΛ, (24)

where H0 is the Hubble parameter. Using the Planck collaboration results [51] and
the LIGO results [1], we can now provide an upper bound for the parameter μ in
Hu–Sawicki models (again assuming n ∼ 1), while (17) provides the lower bound:

1020 > μ > 106. (25)

While we have constrained the viable parameter space to a certain range, this range
is too wide to make claims on the viability of the theory. However, with more accurate
measurements it will be possible to make the range narrower. As the gravitational
wave constraints are independent of e.g. solar constraints, they offer valuable proofs
for the limits of f (R) and scalar tensor gravity as well.

It is also interesting to note that the galaxy cluster limit for the graviton mass is
7 orders of magnitude tighter than the LIGO limit. If we could apply this limit, the
upper limit would be of the same order as the lower limit, causing severe fine-tuning
issues. This is due to many model parameters being arbitrary and not directly linked
to physical quantities. One should consider whether it is a desirable feature in a theory
to include several unphysical strictly constrained parameters. However, we stress that
the model-dependent galaxy cluster result cannot be used directly with f (R) theories,
as mentioned in the introduction.

Similar procedures can be subjected to other f (R) models as, such as the Starobin-
sky model [11], which is described by

f (R) = R + λR0

((
1 + R2

R2
0

)−n − 1
)

(26)

with λ and R0 positive constants and n ∈ N. For the Starobinsky model, we can follow
similar procedures to find 10−20 < λ < 10−8 with the same assumption n ∼ 1. In a
similar manner constraints can be made on any other viable model as well.
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4 Discussion

We have studied f (R) theories and the naturally emerging massive graviton. With
bounds on the graviton mass produced by the gravitational wave observations it is
possible to constrain f (R) theories. As a case study, we concentrated on the Hu–
Sawicki model. For this model we find an upper limit for the free parameter in addition
to the lower limit previously presented in the literature. While the allowed range is
still wide, further observations are likely narrow the range. As the massive graviton
is characteristic of f (R) theories and massive Brans–Dicke theories, the viability of
these models is under increasing scrutiny.

Other f (R) theories can be subjected to the same procedure as well. As there is a
known connection between f (R) gravity and scalar-tensor gravity (e.g. [52]), these
theories are also a possible target for application.2

The LIGO measurement accuracy is expected to rise in the future with the con-
struction of additional detectors [1,53]. As these are likely to lower the upper limit
for the graviton mass, the range found for the free parameter for the Hu–Sawicki
model is bound to narrow down even further. The effect of further gravitational wave
observations on the graviton mass is discussed in [54].

Space-based detection of gravitational waves in the future with eLISA or simi-
lar programs are expected to give constraints on the graviton mass [55–57]. Single
observations with the space-based devices are expected to reach measurements two
magnitudes more precise than LIGO. However, multiple events during the mission
are expected to increase the total accuracy of by three orders of magnitudes. This will
lead to a considerably tighter range for viable f (R) models.

Detection of a non-zero graviton mass would have far-reaching consequences for
f (R) theories and naturally GR itself. As the f (R) models predict a massive graviton,
the detected mass would further constrain the possible parameter space. This could
not be explained by standard GR and would therefore emphasize the need for modified
gravity.

Another possibility is the so-far model-dependent graviton mass constraints from
galaxy clusters. In order to achieve this, the effects of modified gravity on dynamics and
dark matter assumptions have to be carefully considered. As these model-dependent
limits are far tighter than the LIGO limits, they could provide far more stringent
constraints and even rule out theories currently considered viable.

Acknowledgements This paper was part of research funded by the University of Turku.
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