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Abstract In the paper (Khugaev et al. in Phys Rev D94:064065. arXiv: 1603.07118,
2016), we have shown that for perfect fluid spheres the pressure isotropy equation
for Buchdahl–Vaidya–Tikekar metric ansatz continues to have the same Gauss form
in higher dimensions, and hence higher dimensional solutions could be obtained by
redefining the space geometry characterizing Vaidya–Tikekar parameter K . In this
paper we extend this analysis to pure Lovelock gravity; i.e. a (2N + 2)-dimensional
solution with a given K2N+2 can be taken over to higher n-dimensional pure Lovelock
solution with Kn = (K2N+2 − n + 2N + 2)/(n − 2N − 1) where N is degree of
Lovelock action. This ansatz includes the uniform density Schwarzshild and the Finch–
Skea models, and it is interesting that the two define the two ends of compactness, the
former being the densest and while the latter rarest. All other models with this ansatz
lie in between these two limiting distributions.
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1 Introduction

A model for a star interior is an important astrophysical question and hence it is
pertinent to construct relativistic models as solutions of gravitational equation. For
constructing static perfect fluid interiors for compact objects, we have two metric
functions to determine while there is only one pressure isotropy equation for deter-
mining them. We need therefore to prescribe either a metric ansatz for one of the
functions or an equation of state relating pressure and density or a fall off behaviour
for density or pressure. In paper [1], we had considered Buchdahl–Vaidya–Tikekar
metric (BVT) [2–4] ansatz covering a class of physically tenable models and had
shown that the pressure isotropy equation bore the same Gauss form in all dimensions
≥ 4. By exploiting this property we established that a 4-dimensional Einstein solu-
tion for a given value of the Vaidya–Tikekar parameter K4, indicating deviation from
sphericity of 3-space geometry, could be lifted to a higher n-dimensional solution with
K being replaced by Kn = (K4 −n+4)/(n−3). That is, a static fluid interior solution
in the usual 4 dimension could be taken over to a higher dimensional solution.

This is an interesting property of fluid solutions in Einstein gravity and so the
natural question that arises is that, is this also carried over to Lovelock theory which is
quintessentially higher dimensional? Interestingly the answer is yes, but it singles out
pure Lovelock from general Lovelock theory. By pure Lovelock we mean the action
and consequently the equation of motion has only one N -th order term with no sum over
lower orders. That is, a (2N+2)-dimensional solution with a given K2N+2 can be taken
over to higher n-dimensional solution with Kn = (K2N+2−n+2N+2)/(n−2N−1).
It bears out the general feature of pure Lovelock gravity that gravitational dynamics is
universal in all critical odd 2N + 1 and even 2N + 2 dimensions [5,6]. In particular,
it turns out that there can occur no bound distribution in the critical odd dimensions
while in the critical even dimensions, the solutions have similar behaviour [7].

Lovelock action which is polynomial in Riemann tensor is distinguished from all
other modifications of general relativity (GR) by its remarkable property that the
equation of motion remains second order. Further pure Lovelock involving only one
N th order term without sum over lower orders is distinguished by two very important
properties: (a) gravity is kinematic in the critical odd n = 2N + 1 dimension; i.e.
there exists no non-trivial vacuum solution because Lovelock analogue of Riemann
[5,8,9] is entirely given in terms of corresponding Ricci [10] and (b) existence of
bound orbits around a static source [11]. These two properties respectively hold good
only in three and four dimensions, and none else. The latter of which is required for
existence of planetary orbits around a star and for structure formation in general. It is
therefore existence of bound orbits becomes the distinguishing feature for a classical
gravitational equation.

The real question is, what is the proper equation for gravity in higher dimensions
[6]? As mentioned above, the equation must be second order which singles out besides
Einstein’s equation, Lovelock polynomial equation in higher dimensions. Secondly
there should be only one coupling constant which could be empirically determined
by measuring the strength of gravitational force. In Lovelock equation, there are N
dimensionful couplings and there is no way to fix them. However one can prescribe
all others in terms of a unique vacuum � as is done for dimensionally continued
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black holes [12]. In there, one is not seeking a classical equation in higher dimension
but rather quantum corrections to Einstein equation are envisaged in a semi-classical
formulation. Einstein equation on the other hand is untenable because it cannot admit
bound orbits in higher dimensions. For equation to be second order and yet admitting
bound orbits, it is then pure Lovelock. This then uniquely singles out pure Lovelock
equation in higher dimensions. Besides all this, pure Lovelock gravity has several very
interesting and desirable features as alluded in Refs [23,24].

One may however still ask that any gravitational theory must include Einstein
and hence it should approximate to it in the weak field—asymptotic limit. How is
it possible as there is no Einstein term in pure Lovelock equation? It turns out that
the static vacuum solution with � does indeed goes over to Einstein-dS solution in
the higher dimensions [16]. It is indeed most remarkable that it includes without the
presence of Einstein term its features asymptotically. It perhaps underpins the fact that
pure Lovelock gravity indeed captures the elemental character of gravitational field.

Buchdahl ansatz [2,3] was particularized in Vaidya–Tikekar (VT) [4] ansatz with
parameter K characterizing geometry of 3-space, and in the limit it also included the
interesting Finch–Skea ansatz (FS) [13]. We also obtain pure Lovelock version of
FS solution. In this case the isotropy equation is not in the Gauss but instead in the
Bessel form which for a given N is the same in all dimensions. There is universality
in behaviour of star interiors corresponding to both BVT as well as FS models relative
to a properly defined variable and also the parameter K for the former. Further the
compactness hierarchy goes as constant density star defining the limiting upper limit
while FS holding the other end. All other BVT models lie between these two limiting
distributions. For a given radius of s star in critical n = 2N + 2 dimension, mass
is maximum for the Einstein N = 1 bearing out the fact that pure Lovelock gravity
becomes weaker as N increases. This is because potential goes as 1/r (n−2N−1)/N

[14–16].
In this paper, besides establishing the general result of paper [1] of carrying over

2N + 2-dimensional fluid sphere solution to higher dimensions in pure Lovelock
gravity, we shall in particular study pure Lovelock VT and FS models and their physical
properties. Let us once again reiterate that our main is to demonstrate that the procedure
of lifting a four dimensional solution to higher dimension with appropriate Vaidya–
Tikekar parameter K is indeed carried forward to pure Lovelock gravity despite its
highly non-linear polynomial character.

There is enormous literature on interior of static fluid stars in the usual four dimen-
sions, one can’t do any better than referring to the exact solutions book [17]. Of special
mention in this regard should be made of a comprehensive analysis the solution gen-
erating schemes and transformations in various coordinates [18–20] covering known
solutions as well as giving some new ones. It would be interesting in future to see
whether these schemes could be extended to pure Lovelock gravity as well. There
is also a fairly large body of work on higher dimensional star which was compre-
hensively reviewed in paper [1]. Instead of repeating that again here we would like
to direct the reader to paper [1] for detailed references (also see [7,21]). It should
however be admitted that higher dimensional fluid models are more for exploring and
probing the gravitational dynamics rather than their direct physical and astrophysical
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applications. Of course there always remains a little window open for emergence of a
unified field theory involving higher dimensions where it may find some relevance.

The paper is organized as follows: in the next section we recall the pure Lovelock
gravitational equation and set it for a perfect fluid distribution. In Sect. 3, we specialize
to static spherically symmetric with the Buchdahl ansatz and find solutions for VT
and FS ansatzs, which is followed by matching of interior and exterior solution. The
physically properties are discussed in Sect. 5 and we conclude with a discussion.

2 Lovelock gravity

There is a natural generalization of Einstein action to Lovelock action which is a homo-
geneous polynomial in Riemann curvature with Einstein being the linear order and
the quadratic is Gauss–Bonnet (GB). It has the remarkable property that on variation
it still gives the second order quasi-linear equation which is its distinguishing feature.
Note that for pure Lovelock with only one N th order term in the action without sum
over lower orders, it is pure divergence—topological in n = 2N , and in n = 2N + 1
it has the same behaviour of non-existence of non-trivial vacuum solution relative to
Lovelock analogue of Riemann tensor [5,9] as Einstein has in three dimension; i.e.
gravity is kinematic. As for Einstein, pure Lovelock gravity turns dynamic for dimen-
sions ≥ 2N + 2. Clearly Lovelock is therefore a quintessentially higher dimensional
gravitational theory for n ≥ 2N + 1.

If we introduce a set of (2N , 2N )-rank tensors [8] product of N Riemann tensors,
completely antisymmetric, both in its upper and lower indices,

(N )IRb1b2···b2N
a1a2···a2N

= R[b1b2[a1a2
· · · Rb2N−1b2N ]

a2N−1a2N ] . (1)

With all indices lowered, this tensor is also symmetric under the exchange of both
groups of indices, ai ↔ bi . In terms of these new objects we can now write

LN = (N )IR and (N )Gμ
ν = N (N )IRμ

ν − 1

2
(N )IR δμ

ν (2)

For pure Lovelock of order N we write

S =
∫

dnx
√−gLN + Smatter. (3)

Now the pure Lovelock gravitational equation for n ≥ 2N + 1 has the usual form

(N )Gμ
ν = Tμ

ν , μ, ν = 1 . . . n (4)

We are going to solve this equation for a static spherically symmetric fluid distri-
bution with Tμ

ν = diag(−ρ, p, p, . . . , p) as a model for star interior in hydrostatic
equilibrium.
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3 Buchdahl ansatz

Let us begin with the general static spherically symmetric metric in n–dimensional
space-time,

ds2 = − f2(r)
2dt2 + 1

1 − f1(r)
dr2 + r2d�2

n−2 . (5)

Substituting this metric in N th order pure Lovelock equation Eq. (4), we obtain

ρ = 1

2

(n − 2)!
(n − 2N − 1)!

(
f1(r)

r2

)N (
Nr

f ′
1(r)

f1(r)
+ n − 2N − 1

)
(6)

p = (n − 2)!
(n − 2N − 1)!

(
f1(r)

r2

)N (
Nr

1 − f1(r)

f1(r)

f ′
2(r)

f2(r)
− 1

2
(n − 2N − 1)

)
(7)

and the pressure isotropy equation is given by

pθ − pr = N (n − 3)!
(n − 2N − 1)!

(
f1(r)

r2

)N−1 1

f2(r)

[
(1 − f1(r)) f

′′
2 (r)

− f ′
2(r)

r

{
(n − 2)(1 − f1(r)) + 1

2
r f ′

1(r)

(
n − 2 − n − 3

f1(r)

)}

−n − 2N − 1

2

(
f ′
1(r)

f1(r)
− 2

r

) (
f ′
2(r)(1 − f1(r)) + f1(r) f2(r)

r

) ]
= 0

(8)

where a prime indicates derivative relative to r . It may be noted that these are general
expressions for density, pressure and pressure isotropy for any Lovelock order N which
have perhaps not been reported earlier anywhere. These would therefore be useful for
all future considerations.

Before we go any further let’s rule out the critical odd n = 2N + 1 dimension
case from further discussion. For a bound distribution describing interior of a compact
object, the boundary is defined by p = 0 which requires from Eq. (7), f ′

2(r) = 0 on
the boundary. This conflicts with the matching with exterior vacuum solution. There
cannot therefore exist bound distribution in the critical odd n = 2N + 1 dimensions
[7,21]. We shall henceforth only consider n ≥ 2N + 2.

Note that we have only one equation (8) to determine the two unknown metric
functions f1(r) and f2(r) while the other Eqs. (6–7) define the density and the pressure.
Hence it is imperative either to have an ansatz specifying one of the metric functions
or an equation of state relating density and pressure or a fall off behaviour for density.

We resort to a fairly general ansatz due to Buchdahl [2,3] prescribing the metric
function f1(r) as

f1(r) = Ar2

1 + Cr2 (9)
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with A > C > 0. Vaidya and Tikekar (VT) further particularized [4] it by writing
C = Kα, A = (1 + K )α, and wrote

f1(r) = (1 + K )αr2

1 + Kαr2 (10)

where α = R−2 (K here is −K in [4]). They had given this parameter an interesting
geometric meaning as deviation from sphericity of 3-space geometry. It may also be
noted that this parameter is required to be positive for density to be monotonically
decreasing outwards from the center of distribution [1]. It is interesting that this is
how 3-space geometry is related to density evolution of fluid.

Another interesting ansatz is due to Finch and Skea [13] which is the limiting case
of the Buchdahl ansatz when A = C , and then

f1(r) = Cr2

1 + Cr2 . (11)

It should be noted that the ansatz (5) is the most general while Buchdahl ansatz (9–
11) are special cases. It should be noted that though there are solutions which are
lying outside the Buchdahl ansatz but they all seem to suffer from one or the other
unphysical feature like density increasing outwards [17]. So Buchdahl ansatz covers
all the physically tenable star models satisfying the energy conditions. In the particular
cases of Vaidya–Tikekar and Finch–Skea models we have seen that ρ ≥ 0, p ≥ 0 and
dp/dρ ≤ 1 which indicate that the weak and strong energy conditions are satisfied,
and also velocity of sound is always less than that of light. Therefore these models are
physically tenable.

We would therefore like to employ the ansatz for studying star interiors in pure
Lovelock gravity. In particular we would like to obtain solutions for star interior for
the two ansatzs: Vaidya–Tikekar (VT) and Finch–Skea (FS).

For the Buchdahl ansatz (9), Eqs. (8–7) take the following form

ρ(r) = 1

2

(n − 2)!
(n − 2N − 1)!

(
A

1 + Cr2

)N (
n − 1 − 2N + 2N

1 + Cr2

)
(12)

p(r)= (n − 2)!
(n−2N − 1)!

(
N (1 − (A − C)r2)

Ar

f ′
2(r)

f2(r)
− 1

2
(n − 2N − 1)

) (
A

1 + Cr2

)N

(13)
that can also be written as:

p(r) = ρ

(
−1 + 2N

Cr2(n − 2N − 1) + n − 1

(
1 + (1 + Cr2)(1 − (A − C)r2)

Ar

f ′
2(r)

f2(r)

))

(14)
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and the pressure isotropy equation takes the form

(1−(A − C)r2)(1 + Cr2) f ′′
2 (r)+ f ′

2(r)

r
((2N − 1)C(A − C)r4 − 2NCr2 − 1)

+AC(n − 2N − 1)r2 f2(r) = 0. (15)

As in Ref. [2,3] we write r to x = r2 to cast the above equation in the form

(1−(A − C)x)(1+Cx) f ′′
2 (x)+ f ′

2(x)

(
(A − C)(N − 1)Cx − C(N − 1)− A

2

)

+1

4
AC(n − 2N − 1) f2(x) = 0 (16)

where a prime here as well as henceforth will indicate derivative relative to argument.
Now there arise two cases corresponding to A �= C (BVT) and A = C (FS).

3.1 Buchdahl–Vaidya–Tikekar model

When A > C > 0, we do the following change of variable

z = A − C

A
(1 + Cx) (17)

then the isotropy equation becomes

z(1− z)F ′′(z)+((N −1)z+1/2−N )F ′(z)+ 1

4

A

A − C
(n−2N −1)F(z) = 0. (18)

This is the Gauss equation [22]

(1 − z)zF ′′(z) + [c − (a + b + 1)z]F ′(z) − abF(z) = 0

with c = 1/2−N , a+b = −N , −ab = A(n−2N −1)/(4(A−C)). The equation in
question can be easily solved and the two independent solutions of Eq. (18) around z =
0 for n > 2N + 1 are the hypergeometric functions, 2F1(a, b; c, z) and z1−c

2F1(1 +
a − c, 1 + b − c; 2 − c, z).

As is the case for N=1 Einstein gravity [1], the Eq. (18) is the same for a given
Lovelock order N in all n > 2N + 1 dimensions with the constants A and C are
related as follows:

An

An − Cn
(n − 2N − 1) = A2N+2

A2N+2 − C2N+2

Here a subscript refers to space-time dimension. It means that a (2N +2)-dimensional
solution could be lifted to a higher n-dimensional solution with K2N+2 being replaced
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by Kn according to the above relation. This is because for a given N , the equation has
the same form and hence the same solution with appropriate K parameter.

For the VT case, this relation takes the form

Kn = K2N+2 + 2N + 2 − n

n − 2N − 1
(19)

This is the pure Lovelock generalization of the Einstein gravity relation for N = 1
obtained in the paper [1].

The general solution of Eq. (18) around z = 0 is given by

FB(z) = A1F
B

1 (z) + A2F
B

2 (z) (20)

where

FB
1 (z) ≡ 2F1(a, b; 1/2 − N , z),

FB
2 (z) ≡ zN+1/2

2F1(1/2 + N + a, 1/2 + N + b; 3/2 + N , z) (21)

Here A1 and A2 are arbitrary integration constants and 2F1(a, b; c, z) is the hyperge-
ometric function with

a = −N

2
+ 1

2

√
N 2 + A

A − C
(n − 2N − 1),

b = −N

2
− 1

2

√
N 2 + A

A − C
(n − 2N − 1).

Note that z = (A − C)(1 + Cr2)/A and when the expression under the radical is
whole square, the hypergeometric function becomes a polynomial. We thus have the
complete solution for the isotropy equation for the Buchdahl or Vaidya–Tikekar ansatz.

3.2 Finch–Skea model

When A = C we write for n > 2N + 1

z = (1 + Cx)(n − 2N − 1) (22)

and the isotropy Eq. (16) becomes

zF ′′(z) −
(
N − 1

2

)
F ′(z) + 1

4
F(z) = 0. (23)

where now z is given in (22) and

FFS
1 (z) ≡ z(N+1/2)/2 JN+1/2(

√
z), FFS

2 (z) ≡ z(N+1/2)/2 J−N−1/2(
√
z) (24)
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where J are the Bessel functions. The solution for a given Lovelock order N is the
same for any dimension n > 2N + 1.

This is the Bessel equation and it is important to note it remains the same for a given
N in all dimensions. That is, for a given Lovelock order N , the solution is universal
for the variable z in all dimensions ≥ 2N + 2. The general solution is given by

FFS(z) = A1F
FS

1 (z) + A2F
FS

2 (z) (25)

Though in the critical odd n = 2N + 1 dimensions there can be no bound fluid
distributions, yet the solution of the isotropy Eq. (15) for BVT and FS ansatz are
respectively given as follows:

FB
n=2N+1(z) = A1 + A2 2F1(1/2 + N , 1/2; 3/2 + N , z) (26)

where z is given in (17) and

FFS
2N+1(z) = A1 + A2z

N+1/2. (27)

where now z = 1 + Cr2.

4 Matching with the exterior solution

At the star boundary which is defined by p = 0, the solution must match with the
pure Lovelock vacuum solution in the exterior. This requires that the metric functions
gtt , grr and g′

t t must be continuous across the boundary.
In the interior for n ≥ 2N + 2, we have

ds2 = − f2(r)
2dt2 + 1 + Cr2

1 + (C − A)r2 dr
2 + r2d�2

n−2, (28)

where f2(r) is FB(zB) and FFS(zFS) respectively for Buchdahl and FS models and

zB = (A − C)(1 + Cr2)

A
, zFS = (1 + Cr2)(n − 2N − 1). (29)

Since It has to be matched to the pure Lovelock vacuum exterior metric [16]

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
n−2, (30)

where
f (r) = 1 − 2Mr− n−2N−1

N . (31)

The continuity of the metric components determines mass

M = 1

2

Ar (n−1)/N
0

1 + Cr2
0

, (32)
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where we have A = (K + 1)α, C = Kα for VT and A = C for FS, and in both cases
gtt can be written as gtt = −(A1g1(r) + A2g2(r))2. Taking continuity of gtt and g′

t t
and some further manipulations lead to

A1g1(r0) + A2g2(r0) =
√

1 − Ar2
0

1 + Cr2
0

(33)

A1g
′
1(r)|r=r0 + A2g

′
2(r)|r=r0 = r0A(n − 2N − 1)

2N
√

(1 + Cr2
0 )(1 + (C − A)r2

0 )

(34)

and then A1 and A2 are determined as

A1 = β g′
2(r) − δ g2(r)

g1(r)g′
2(r) − g2(r)g′

1(r)

∣∣∣∣
r=r0

, A2 = − β g′
1(r) − δ g1(r)

g1(r)g′
2(r) − g2(r)g′

1(r)

∣∣∣∣
r=r0

,

(35)
where

β =
√

1 − (A − C)r2
0

1 + Cr2
0

, δ = Ar0(n − 2N − 1)

2N
√

(1 + Cr2
0 )(1 + (C − A)r2

0 )

(36)

where r0 is the star radius. For 0 ≤ r ≤ r0, the pressure from Eq. (14) is determined
as

p(r)=ρ

(
−1 + 2N

Cr2(n − 2N − 1)+n − 1

(
1+ (1+Cr2)(1−(A−C)r2)

Ar

f ′
2(r)

f2(r)

))

(37)
where f2(r) is as given in Eqs. (20–21) and (24–25) for Buchdahl and Finch Skea
models respectively.

This completes the matching.

5 Physical properties

One of the most important properties for a star model is the compactness. For a given
radius how much mass could be packed in. In Ref. [2,3], Buchdahl has also obtained
the compactness limit given by

r0 > 9M/4 (38)

by requiring density to decrease monotonically from the center. This limit also follows
from the constant density distribution [23] for which sound speed becomes infinite.
This naturally defines the limiting compactness.

From Eq. (32), it is clear that M(C = 0) > M(A > C) > M(A = C) indicating
for a given star radius, mass is maximum for constant density distribution (C = 0
and minimum for FS (A = C and BVT (A > C) lies in between these two limiting
distributions. This equation also suggests that volume of star goes as r (n−1)/N )

0 for an
effective density, A/2(1+Cr2

0 ). Now for the critical even dimension n = 2N +2, we

have volume going as r2+1/N
0 collapsing to r2

0 for N → ∞. It seems to indicate that in
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the large N limit volume effectively becomes area! This clear shows that volume and
thereby mass is maximum for N = 1 and it goes on decreasing with N . This is because
unlike Einstein gravity,1 pure Lovelock gravity becomes weaker with increasing N .
This means stars are densest for Einstein gravity and they become rarer as N increases.

On the hand if we look at density as given in Eq. (12), at the center it goes as AN

for Buchdahl and CN for FS, and A > C always. For a given star radius r0, constant
density ρconst will be the maximum, and hence ρ(r = 0) ≤ ρconst . Note that constant
density cannot be reached for FS because it requires C = 0.2 Since A ≥ C , hence we
shall have ρFS(r = 0) ≤ ρB(r = 0) ≤ ρ(const.). This clearly indicates the degree
of compactness with constant density giving the upper limit while FS the lower limit,
and other physically acceptable models lying in between.

As an aside we also give pressure for constant density star with K = 0 in VT model,
which means C = 0 for Buchdahl, and it is given by

p = n − 2N − 1

n − 1

⎛
⎜⎜⎜⎜⎜⎝

−1 + 2N

n − 1

1√
1 − Ar2

0√
1 − Ar2

− n − 2N − 1

n − 1

⎞
⎟⎟⎟⎟⎟⎠

(39)

for any Lovelock order N .

5.1 Density and pressure

For K = 0 we have the constant density solution

grr = 1

1 − Ar2,

with C = 0 and if we have T t
t = −ρ where ρ = constant

A =
(

2ρ
(n − 2N − 1)!

(n − 1)!
)1/N

.

In the plots we have taken the above value for A and have set ρ = 1, and have set
n = 2N + 2, the critical dimension.

We are going to plot the normalized density and pressure ρ/ρ(r = 0), p/p(r = 0)

for VT and FS models for Einstein and GB gravity. We take K = 7, 14 and N = 1, 2
for n = 4, 6. It turns out that normalized density has the same behaviour for both VT
and FS (Fig. 1) while the pressure plots (Figs. 2, 3) differ.

1 Gravitational potential for Einstein goes as 1/rn−3 while for pure Lovelock as 1/r (n−2N−1)/N .
2 This is because the two define the extremity limits and hence they both have to be exclusive.
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Fig. 1 Normalized density plots for both VT and FS in the critical dimensions 2N + 2 for N = 1, n = 4
Einstein (black) and N = 2, n = 6 GB (red). On the left is K = 7 and K = 14 on the right (color figure
online)

Fig. 2 Normalized pressure plots for VT in the critical dimensions 2N + 2 for N = 1, n = 4 Einstein
(black) and N = 2, n = 6 GB (red). On the left is K = 7 and K = 14 on the right (color figure online)

Also note the constants A and C for n = 2N + 2 are given by

C = K

(
2

(2N + 1)! )
1/N

)
, A = (K + 1)

(
2

(2N + 1)! )
1/N

)
.

This may however be noted that though the normalized plots for pressure look quite
similar but the actual value differ quite significantly in various cases. In the Table 1
we give some representative values of pressure at r = 0.

For VT models, recall the relation Kn = (K2N+2 − n + 2N + 2)/(n − 2N − 1).
Let us consider N = 2 GB case with K6 = 4 giving Kn = 4, 3/2, 2/3, 1/4, 0 for
n = 6, 7, 8, 9, 10, and similarly for K6 = 11, Kn = 11, 5, . . . , 0 for n = 6, 7, . . . , 17.
The normalized density and pressure (normalization done relative to the central value)
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Fig. 3 Normalized pressure plots for FS in the critical dimensions 2N + 2 for N = 1, n = 4 Einstein
(black) and N = 2, n = 6 GB (red). On the left is K = 7 and K = 14 on the right (color figure online)

Table 1 The first row in the table indicates N , n, K while the second and the third give central pressure
values for FS and B

N , nK 1, 4, 7 1, 4, 14 2, 6, 7 2, 6, 14 2, 7, 3/2 2, 7, 5

p(r = 0) FS 0.9109 3.6264 1.1276 7.6555 0.0154 0.5413

p(r = 0) B 1.3109 4.6712 1.7299 9.6678 0.0725 0.9531

Fig. 4 The normalized density, ρ(r)/ρ(r = 0), plots show in ascending order for the cases: K6 = 4 and
n = 6, 7, 8 on the left and K6 = 11 and n = 6, 7, 8 on the right respectively

for these cases are plotted in Figs. 4 and 5. As dimension increases density goes on
increasing until it reaches constant density corresponding to K = 0 determining the
maximum dimension for a given initial K2N+2. The pressure however does not show
much marked difference between various cases.

123



96 Page 14 of 17 A. Molina et al.

Fig. 5 The normalized pressure, p(r)/p(r = 0), plots show in ascending order for the cases: K6 = 4 and
n = 6, 7, 8 on the left and K6 = 11 and n = 6, 7, 8 on the right respectively

5.2 Sound speed

The sound speed in a fluid is defined as

c2
s ≡ dp

dρ
= p′(z)

ρ′(z)

From the expression for pressure in Eq. (14), we have p = ρ(−1 + g(r)) and so we
write

p′

ρ′ = −1 + g(r) + ρ

ρ′ g
′(r)

and
ρ

ρ′ = − (1 + Cr2)((1 + Cr2)(n − 2N − 1) + 2N )

2CNr((1 + Cr2)(n − 2N − 1) + 2N + 2)
(40)

After some algebra and using the isotropy equation for f ′′
2 (r) we obtain

S ≡c2
s = 1+Cr2

Cr(Cr2(n−2N−1)+n+1)

f ′
2(r)

f2(r)

(
1+ (1+Cr2)(1+(C−A)r2)

Ar

f ′
2(r)

f2(r)

)

(41)

In this expression we must use for f2(r) and its derivative the corresponding results
obtained after the matching with the exterior solution. The plots for the sound speed,
v = c2

s using the same values of the parameters as for the density and pressure plots
and the constants C and A as given in in Eqs. (6) and (7). For FS we have A = C .

In Figs. 6 and 7 we plot square of sound speed, v = c2
s for VT and FS (For FS, we

use the same constant C) for N = 1 in black and N = 2 in red for K = 7 on the left
and for K = 14 on the right. Clearly sound speed is much lower for GB as compared to
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Fig. 6 Square of sound speed plots for BVT corresponding to N = 1 in black and N = 2 in red for K = 7
on the left and for K = 14 on the right (color figure online)

Fig. 7 Square of sound speed plots for FS corresponding to N = 1 in black and N = 2 in red for K = 7
on the left and for K = 14 on the right (color figure online)

Einstein case. This would be the trend for pure Lovelock as N increases sound speed
will go on decreasing. This is because gravitational potential going as 1/r (n−2N−1)/N

becomes weaker and weaker as N increases. In other words, distribution becomes less
compact with increasing N .

6 Discussion

In the paper [1] we had considered the general Buchdahl ansatz [2,3] covering a
class of physically interesting star models for Einstein gravity and had shown that
how a 4-dimensional solution could be taken over to higher dimensions by properly
redefining the Vaidya–Tikekar parameter K marking deviation from sphericity of 3-
space geometry. It is remarkable that this geometrical property has the physical imprint
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in the requirement that K has to be non-negative for density to monotonically decrease
outwards. This happens because the only equation to be solved is that of the pressure
isotropy which remains in the Gauss form in all dimensions.

In this paper we extend this framework from Einstein to pure Lovelock gravity and
show that the same features persist. It turns out that for a given N , the equation has the
same Gauss form for BVT while for FS it is the Bessel equation in all dimensions ≥4.
Thus fluid solutions for a star interior have universal character relative to a suitably
defined variable and the K parameter for VT models. This universal behavior is true
only for pure Lovelock gravity and hence this is yet another of its distinguishing
features [6,24].

One of the most pertinent questions for a star model is its compactness. The constant
density distribution is obviously the most compact with star radius, r0 > 9M/4, the
Buchdahl limit [2,3].3 It turns out that the other end of lower bound is defined by the FS
model, and all other models of this ansatz lie between these two limiting distributions.
This is reflected clearly in mass and density spectrum as MFS(A = C) < MB(A >

C) < Mρconst.(C = 0) and ρFS(r = 0) ≤ ρB(r = 0) ≤ ρ(const.). Also note that
FS model does not admit constant density distribution, this is because the two limiting
cases must be exclusive. This is indeed a very important and interesting property
which, so far as we know, has not been earlier reported in the literature.

As N increases gravitational potential for pure Lovelock gravity becomes weaker
and hence consequently star interior becomes rarer;i.e. for a given radius the most
compact distribution would be for N = 1 Einstein and it goes on becoming less
compact with increasing N . What happens is that volume in the critical dimension
n = 2N + 2 goes as r2+1/N

0 which collapses to two dimensional volume—area in the
limit N → ∞. It indicates that in large N limit space dimension seems to collapse to
two! It clearly shows volume and thereby mass for a given star radius is maximum for
N = 1 Einstein gravity, and hence it is most compact.

We have shown that 4-dimensional solution could be taken over to higher dimen-
sions in both Einstein (paper [1]) as well as in pure Lovelock theory. It turns out that
higher dimensional solution is always stable for Einstein gravity while for pure Love-
lock it requires n ≥ 3N + 1 [23]. The dimension n = 3N + 1 is distinguished for
Lovelock potential going 1/r [24].

As indicated in Introduction, it would be interesting in future to study solution
generating schemes [18–20] for pure Lovelock gravity.
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