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Abstract It is well known that in general theories of gravity with the diffeomorphism
symmetry, the black hole entropy is a Noether charge. But what will happen if the
symmetry is explicitly broken? By investigating the covariant first law of black hole
mechanics with background fields, we show that the would-be Noether charge still
can be identified as the black hole entropy, provided that it is a local quantity on the
horizon. Moreover, motivated by the proposal that the cosmological constant behaves
as a thermodynamic variable, we allow the non-dynamical background fields to be
varied. To illustrate this general formalism, we study a generic static black brane in
the massive gravity. Using the first law and the scaling argument, we obtain two Smarr
formulas. We show that both of them can be retrieved without relying on the first law,
hence providing a self-consistent check of the theory.
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1 Introduction

When a closed system has a differentiable dynamical symmetry, Noether’s theorem
indicates the existence of a corresponding conserved current. Usually, Noether’s the-
orem is not applicable to the system coupling to the environment and the extension
would be significant as shown in open quantum systems [1]. In field theories, if the
environment is inert or the spontaneous breaking physics appears at a large energy
scale, the system can be mimicked by coupling a background field associated with
certain explicit symmetry breaking.

The gravitational models with explicit diffeomorphism (and Lorentz) breaking have
a long research history. Examples include the massive gravity with a reference met-
ric [2–6] and the Chern–Simons gravity coupling to the axions [7,8]. Of particular
interest is the recent application of the massive gravity in the gauge/gravity dual-
ity [9–14], where the reference metric can imitate the mean-field disorder in realistic
materials.

One of the well-known Noether charges in gravitational physics is the covariant
expression of black hole entropy proposed by Wald, with respect to the diffeomorphism
symmetry of the general theories of gravity [15,16]. The Wald entropy is a “local,
geometrical” quantity on the Killing horizon.1 It is identified from the covariant first
law of black hole mechanics, which is a variational identity built upon the Hamiltonian
that generates the evolution in the phase space of black hole solutions. Besides its
elegant construction and universality, the success of the Wald entropy is that its higher
curvature contribution precisely agrees with the microscopic entropy computed by
state counting in string or M-theory [17].

However, as pointed out by Iyer and Wald in the appendix to Ref. [16], the
diffeomorphism invariance implies the absence of “non-dynamical fields” in their
Lagrangian. Nevertheless, they have applied the theories with a non-dynamical metric
(such as the theories of fields in flat spacetimes) to discuss the canonical energy. But
until now, little attention has been paid on the covariant first law and the Noether
entropy with the background fields. In this paper, we aim to fill this gap. The essen-
tial observation is the following: the presence of background fields only appends the
nonlocal volume terms to the key variational identity that leads to the first law,2 while
the black hole entropy is expected to be defined by local quantities on the horizon.3

1 By “local, geometrical”, the entropy is characterized by a covariant surface term made of the fields
appearing in Lagrangian and their derivatives.
2 In the path integral approach to quantum gravity, two configurations related by a diffeomorphism are
physically indistinguishable and should not be double counted. If any field converts to a background, the
two configurations are different. By contrast, there is no such qualitative difference which would hinder the
construction of the variational identity with background fields.
3 The seeking for local geometrical feature of black hole entropy has motivated Wald’s formalism and was
used to present a candidate entropy definition of dynamical black holes [15,16,18]. This feature is inherited
from the Bekenstein–Hawking entropy, originally inspired by the famous teacup gedanken experiment
[19,20] which suggests that any black hole horizon should be associated with the entropy to compensate
the hidden information. The black hole entropy including its thermodynamic and statistical significance can
be extended to more local notion of the causal horizon [21]. Moreover, the Bekenstein–Hawking entropy
enlightened the holographic principle which states that the information inside a space can be encoded on its
boundary. The celebrated realization of holographic principle by gauge/gravity duality reassures the local
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The background fields involved in this work are specified as the fields in the
Lagrangian which do not react under the diffeomorphism and whose equations of
motion (EOM) are not imposed. Furthermore, we will allow them to be varied. In
other words, the background fields are able to respond to the variation of the dynam-
ical fields which are coupled to them. In this respect, our background fields are more
general than the usual “ prior geometry” [23] or “absolute object” [24,25], which can-
not be changed by changing other fields. The motivation to study the varied background
fields arises from the proposal that the cosmological constant � behaves as a thermo-
dynamic variable, the pressure [26–31]. One important evidence for this proposal is
that the Smarr formula integrated from the first law with variation δ� can be retrieved
by the geometric method [30], hence indicating the existence of the Killing potential.
Recently, in terms of the holographic duality, the origin of the Smarr formula with the
pressure for AdS black holes has been understood as the fact that the free energy of a
large N gauge theory only depends on the color number N via an overall factor N 2 [32].
Moreover, many interests have been attracted to study the implication of the extended
phase space in black hole phase transitions from the viewpoint of chemistry [33–36].
In our formalism, one can find that the variable cosmological constant can be described
by the simplest scalar background, which is constant (∂� = 0) but not fixed (δ� �= 0).

As an illustration, we will study a generic static black brane in the Einstein–
Maxwell–Dilaton (EMD) gravity with a reference metric and the cosmological
constant. Both of them will be regarded as varied background fields. We have interests
on the EMD gravity rather than the simple Einstein gravity since the former is more
general: it involves three types of fields (scalar, vector and tensor) which contribute
to the covariant first law with different forms. Moreover, the massive EMD gravity
is very interesting in recent holographic models since it provides abundant physics
in field theories. For instance, the dilaton is appealing as it features robust linear in
temperature resistivity [14].

2 Covariant first law

Iyer and Wald [15,16] have derived the covariant first law of black hole mechanics by
constructing a variational identity. The black hole entropy is identified with the Noether
charge with respect to the diffeomorphism symmetry. They also pointed out that a
number of formulas and results continue to hold for theories with a non-dynamical
metric. However, they focused on the canonical energy but did not mention what
is the black hole entropy in that case. This can be partially understood since the
only non-dynamical field in their work is the spacetime metric (not the reference
metric) and in the typical non-dynamical spacetime, i.e. the flat spacetime, the black
hole entropy loses physical meaning. In this section, we will not restrict on a single
fixed non-dynamical metric but will extend the variational identity to involve more
general background fields, which can be scalars, vectors or tensors and all of them are

Footnote 3 continued
feature of black hole entropy, which is dual to the dependence of thermal entropy on IR physics alone [22]
(We thank Hong Liu for discussion on this point.). With these in mind, we will use the local feature to
identify the black hole entropy.
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allowed to be varied. At last, we will identify the black hole entropy from the extended
variational identity in terms of its local nature.

For this purpose, we consider a Lagrangian L as a functional of some con-
crete field tensors and their derivatives. These fields are collectively denoted by
ψ , including the metric gμν and various matter fields (scalar, vector, two-tensor)
ψ = (

gμν, φ, aμ, bμν

)
. Each type of the matter fields can involve multiple fields,

for instance, φ = (φ1, φ2, . . .), and our formalism below can be generalized directly.
The derivatives of these fields are defined as

(
Rμνλρ,∇μφ,∇νaμ,∇λbμν

)
. We assume

that all the fields ψ are the backgrounds at the beginning. Thus, their EOM cannot be
imposed. However, any of them can be set as the dynamical fields by imposing the cor-
responding EOM in the end.4 Moreover, we emphersize that there are two ingredients
composed in the “diffeomorphism symmetry”: the general coordinate invariance and
free of “prior geometry”.5 Any background field denotes certain “ prior geometry”. To
see what will be different when the diffeomorphism symmetry is broken completely,
we also assume at the beginning that the Lagrangian L is not a scalar and restore the
coordinate invariance in the end.

We start from the variation of the Lagrangian 4-form

δ (∗L) = ∗Eδψ + d (∗θ), (2.1)

where ∗ refers to the Hodge dual and θ = θ (ψ, δψ) is an one-form. A sum over
all variables in Eδψ is understood and the quantity E denotes collectively the EOM
E = (E (g)

μν , E (φ), E (a)μ, E (b)μν) with respect to ψ . We note again that E �= 0 for any
background fields. In the “Appendix”, we will list the explicit expressions of the EOM.

Let’s stop and review a little work by Iyer and Wald. In Ref. [15,16], the Lagrangian
is assumed to be diffeomorphism invariant, that is

L( f ∗ψ) = f ∗L (ψ) (2.2)

where L = ∗L and f denotes any diffeomorphism map. Since the pullback f ∗ does
not act on the background fields, there is no dependence of background fields in the
Lagrangian. As stated in Ref. [15], the diffeomorphism invariance implies

δξ (∗L) = £ξ (∗L), (2.3)

where ξ is a vector generating the infinitesimal diffeomorphism and £ξ the Lie deriva-
tive. Equation (2.3) means that the variation of ∗L induced by the field variation δξψ =
£ξψ is equal to the Lie derivative of ∗L itself. Using Cartan’s formula, Eq. (2.3) leads to

δξ (∗L) = diξ (∗L), (2.4)

4 Put differently, one can suppose ψ as the dynamical variables at the beginning, convert one or more
variables in ψ to the background fields in the end, but not impose any EOM in the intermediate steps.
5 In Appendix B of the textbook [37], one can find a wonderful discussion on the difference between the
diffeomorphism invariance and the general coordinate invariance.
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where iξ denotes the contraction. Furthermore, one can define a current

jξ = ∗θ
(
ψ, £ξψ

) − iξ (∗L) (2.5)

which satisfies

d jξ = − ∗ E£ξψ (2.6)

in terms of Eqs. (2.1) and (2.4). This current is the key object to construct the variational
identity and has been called as the Noether current associated with the diffeomorphism
symmetry in the sense of [38].

Now we break the diffeomorphism symmetry. Since L is not a scalar, Eq. (2.3) does
not hold. Equivalently, we have

δξ L − ξμ∇μL = Pμν∇νξμ �= 0, (2.7)

where δξ L denotes the variation of L induced by the field variation δξψ .6 The two-
tensor Pμν is complicated, see Eq. (5.6). Although the general coordinate invariance is
lost and the background fields are present, the current jξ still exists and we can prove

θβ
(
ψ, £ξψ

) − ξβL = ∇αQ
βα
ξ + ξμ

(
Ẽ β

μ + P β
μ

)
, (2.8)

where the called Noether potential is given by

Qβα
ξ = 2

(
Xαβμν∇μξν − 2ξν∇μX

αβμν + ξν Q̃ βα
ν

)
. (2.9)

Here we have defined a four-tensor by the derivative Xαβμν = ∂L/∂Rαβμν , a

three-tensor Q̃ βα
ν composed of the fields

(
aμ, bμν

)
and the derivatives (∂L/∂∇νaμ,

∂L/∂∇λbμν), and a two-tensor made by:

Ẽμβ = 2E (g)
μβ − E (a)

β aμ − E (b)
αβ b

α
μ − E (b)

βαb
α
μ . (2.10)

The lengthy expression of Q̃ βα
ν can be found in the “Appendix”. The one-form

θ (ψ, δψ) can induce a general symplectic form

�(ψ, δ1ψ, δ2ψ) = δ1 [∗θ (ψ, δ2ψ)] − δ2 [∗θ (ψ, δ1ψ)] , (2.11)

where the two variations are not specified. Consider a special symplectic form where
δ1ψ is arbitrary and δ2ψ = £ξψ . It can be recast as

�
(
ψ, δψ, £ξψ

) = d
[
δ
(∗Qξ

) − iξ (∗θ)
]

+ δ
( ∗ iξ Ẽ

) + iξ
( ∗ Eδψ

) + δ
( ∗ iξ P

)
. (2.12)

6 Schematically, we express δξ L = L
(
ψ, δξ ψ

) = L
(
ψ, £ξ ψ

)
.
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Define the integral

δHξ =
∫

�

�
(
ψ, δψ, £ξψ

)
, (2.13)

where � is a Cauchy surface that connects the horizon cross section with the spatial
infinity. Suppose that ξ is the Killing vector which generates a symmetry inducing
£ξψ = 0. Then one immediately has δHξ = 0, which yields a variational identity

∫

∂�

δ
(∗Qξ

) − iξ (∗θ) +
∫

�

δ
(
∗iξ Ẽ

)
+ iξ (∗Eδψ) + δ

(∗iξ P
) = 0. (2.14)

Equation (2.14) is the essential result of this section. Some remarks are in order.

(1) One can recover the covariant first law of diffeomorphism-invariant theories based
on Eq. (2.14), as it should be. In this case, we turn off all the background fields by
imposing E = 0 and restore the general coordinate invariance by setting Pμν = 0.
Then, Eq. (2.14) is reduced to

∫

∂�

δ
(∗Qξ

) − iξ (∗θ) = 0. (2.15)

Consider a stationary black hole with the Killing vector ξ = t+�Hϕ, where t denotes
the time translation, �H the angular velocity and ϕ the angular rotation. Equation
(2.15) can be written as the first law [15,16]

T δS = δE + �H δJ . (2.16)

Here T is the Hawking temperature. The black hole entropy is nothing but the Noether
charge, defined by local geometrical quantities,

S = 2π

∫

B
∗Qξ

∣∣
ξ→0, ∇μξν→nμν

, (2.17)

where B denotes the bifurcation horizon, nμν is its binormal, and any reference to the
Killing vector (that is nonlocal) was eliminated. δE and δJ denote the variations of
energy and angular momentum, respectively.7

(2) In the appendix to Ref. [16], Iyer and Wald studied the theories in a non-dynamical
spacetime. The spacetime metric gμν is the only background field, and it is fixed.
From Eqs. (2.14) and (2.17), one can see that the variation of the would-be entropy
of black holes is vanishing in that case. Thus the first law cannot be well defined.
In the rest of our work, we will regard the spacetime metric as a dynamical vari-
able. Our theory still breaks the diffeomorphism symmetry if some matter fields
are the background fields.

7 δE and δJ are not integrable in general unless specific boundary conditions of field variables are imposed.
Various black hole hairs are possibly involved in δE .
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(3) One may notice that a great simplification from Eqs. (2.14) to (2.15) is the van-
ishing of the complicated tensor Pμν . In Refs. [15,16], it has been ascribed to
the diffeomorphism symmetry of the Lagrangian. However, Pμν = 0 when the
Lagrangian is a scalar under the general coordinate transformation. On the con-
trary, the diffeomorphism symmetry, which not only conveys the information of
general coordinate invariance but also implies that the theory is free of “ prior
geometry”, is sufficient but not necessary for that. We stress that this is a simple
but important concept which has been rarely noted, if existed. In the rest of our
work, we will consider L as a scalar. As a result, we still have Pμν = 0 regard-
less the presence of background fields.8 Moreover, all the stuff below that will
be derived based on Pμν = 0 can be dubbed as the one with respect to general
coordinate invariance, instead of the diffeomorphism symmetry.

(4) Equation (2.14) exhibits that the background fields and their variations would add
two volume integrals on the Cauchy surface � in the variational identity. In par-
ticular, the first volume integral may be nonvanishing even when all background
fields are fixed. And the second one will be different for various tensor types. If
one turns off all the background fields except a special scalar (i.e. the cosmological
constant) that is allowed to be varied, Eq. (2.14) will be reduced to the variational
identity constructed in [29].

Using Eq. (2.14), one can rewrite the first law (2.16) with the different δE and δJ :

δE =
∫

∞
δ
( ∗ Qt

) − it
( ∗ θ

) +
∫

�

δ
( ∗ it Ẽ

) + it
( ∗ Eδψ

)
,

δJ =
∫

∞
δ
( ∗ Qϕ

) − iϕ
( ∗ θ

) +
∫

�

δ
( ∗ iϕ Ẽ

) + iϕ
( ∗ Eδψ

)
.

The presence of the background fields does not change the Wald entropy simply
because the black hole entropy is expected to be localized on the horizon but the
corrections in Eq. (2.14) are volume terms. The volume terms are naturally attributed
to δE and δJ , which is reminiscent of the known “ physical process” version of the
first law [39]. Actually, the “ key ingredient” in that analysis, i.e. a general formula
(eqs. (4) and (5) in [39]) for the variation of the mass and the angular momentum, can
be deduced from Eq. (2.14) by some operations: (1) turn off all background fields, (2)
turn on the energy-momentum source δT β

μ and charge-current source δ jβ , (3) suppose
the variation δ in Eq. (2.14) as the linear perturbation caused by the sources, and (4)
consider � as the unperturbed spacetime. Then one can obtain

Eδψ = Eunperturbed
(
ψperturbed − ψunperturbed

) = 0, (2.18)

δ Ẽμβ =
[
2E (g)

μβ − E (a)
β aμ

]

perturbed
= δTμβ + aμδ jβ, (2.19)

8 Given a concrete Lagrangian that is a scalar and involves some background fields, one can check Pμν = 0

using the EOM. The difference between Pμν = 0 and E(g)
μν = 0 might be interesting for some readers.
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where we have used the EOM with the sources

2E (g)
μβ = δTμβ, E (a)

β = −δ jβ.

Equation (2.14) with Eqs. (2.18) and (2.19) can recover eq. (33) in [39], which further
leads to the mentioned general formula.

3 Massive gravity

In this section, we will illustrate the covariant first law in massive EMD gravity. There
are five fields, including the spacetime metric gμν , the reference metric bμν , the gauge
potential aμ, the dilaton field φ, and the cosmological constant �. We will take bμν

and � as two background fields in which one is a two-tensor and the other is a special
scalar. We will assume that both of them can be varied.

Consider the gravity theory described by the EMD Lagrangian

L0 = R − 2� − 1

2
(∂φ)2 − 1

4
Z(φ)F2 − V (φ) (3.1)

plus a graviton mass term L1 = U (bμνgμν) [13]. Here R is the Ricci scalar and F
is the Maxwell field. The function form of the scalar potential V , the effective elec-
tromagnetic coupling Z , and the potential U for the reference metric will be specified
latter. Assumed to be projected only on the spatial coordinates xi , the reference metric
is given by bμν = c2δiμδ

j
ν δi j , where c is a parameter. Note we have set 16πG = 1 for

brevity. We will study a generic static black brane with the metric

ds2 = −h(r)dt2 + 1

f (r)
dr2 + r2

(
dx2 + dy2

)
, (3.2)

and the gauge potential A = at (r)dt. The independent EOM can be written as

c2h

r2 − f h

r2 + 1

2
hV − 3

4

Q2
eh

r4Z
+ f h′

r
+ 1

2
f ′h′ − f h′2

2h
+ 1

4
f hφ′2 + f h′′ = 0,

− c2 + f + 1

2
r2V + Q2

e

4r2Z
+ r f ′ + 1

4
r2 f φ′2 = 0,

− V ′ + Q2
e Z

′

2r4Z2 + 2 f φ′2

r
+ 1

2
f ′φ′2 + f h′φ′2

2h
+ f φ′φ′′ = 0,

− c2 + f + 1

2
r2V + Q2

e

4r2Z
+ 1

2
r f ′ + r f h′

2h
= 0, (3.3)

where the prime denotes the derivative with respect to r and the electric charge Qe =
Zr2√ f/ha′

t . The extended variational identity (2.14) includes the usual surface terms

δ
( ∗ Qξ

) − iξ
( ∗ θ

) = −2r

√
h

f
δ f − r2

√
h f φ′δφ − atδQe (3.4)
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and the new volume terms

[
iξ Ẽ

]
β

= −E (b)
αβ b

α
t − E (b)

βαb
α
t = 0,

[
iξ (∗Eδψ)

]
νλρ

= εtνλρ

[
2U ′r−2δc2 −

(
2 + ∂V

∂�

)
δ�

]
. (3.5)

As a result, we have a conserved quantity independent with r :

δH = −2r

√
h

f
δ f − r2

√
h f φ′δφ − atδQe

+
∫ [

2U ′δc2 − r2
(

2 + ∂V

∂�

)
δ�

] √
h

f
dr. (3.6)

Although not necessarily, the potential of the reference metric in holographic models
is usually assumed to be L1 = (TrK )2 − TrK 2 [9], where the matrix K is defined
by a matrix square root Kμ

ν = √
gμλbλν , following the same form as in the standard

dRGT massive gravity [5,6]. In the following, we will use this special potential, which
is equivalent to set U ′ = 1 in the current situation. The more general potential will
not change our results qualitatively. To go ahead, we need to specify the behavior of
the dynamical fields near horizon and boundary. This is enough to derive the first law
by applying the variational identity, even though the explicit solutions are not known.
Similar process can be found, for instance, in [40]. The solutions near the horizon can
be given by

f (r) = f1(r − r0) + · · · , h(r) = h1(r − r0) + · · · ,

φ(r) = φ0 + · · · , (3.7)

where r0 denotes the horizon location. From the EOM, the solutions at the boundary
can be solved with the form9:

f (r) = r2

l2
+ c2 + f1

r1−σ
− f2

r
+ f3

r1+σ
+ Q2

e

4r2 + · · · ,

h(r) = r2

l2
+ c2 − μ

r
+ Q2

e

4r2 + · · · ,

φ(r) = φ1

r (3−σ)/2
+ φ2

r (3+σ)/2
+ · · · , (3.8)

where μ and φ1,2 are some free parameters and

σ =
√

4m2l2 + 9, f1 = (3 − σ) φ2
1/(8l2),

9 Here we focus on the “ standard” case with 0 < σ < 1, and assume Z(φ) = 1 + Z1φ2 + · · · , V (φ) =
1
2m

2φ2 + γ4φ4 + · · · for simplicity. Note that the negative m2 is allowed provided that it does not violate
the Breitenlohner–Freedman bound [41].
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f2 = μ −
(
9 − σ 2

)
φ1φ2

12l2
, f3 = (3 + σ) φ2

1/(8l2). (3.9)

Close to the horizon and the boundary, the variational identity can be expanded. At
leading order, they are

δH |horizon = T δS + δ���,

δH |boundary = δM − �eδQe + �φδ� − σ

96πl2
[
(3 − σ)φ1δφ2 − (3 + σ)φ2δφ1

]
,

(3.10)

where we have defined the gravitational mass (density), entropy, temperature

M = 2μ, S = 4πr2
0 , T = 1

4π

√
f ′(r0)h′(r0), (3.11)

and two local potentials as well as two nonlocal potentials

�e = at (∞), �φ = 9 − σ 2

576π
φ1φ2,

�c =
∫

r0

2

√
h

f
dr, �� =

∫

r0

(
2 + ∂V

∂�

)√
h

f
r2dr. (3.12)

Here “
∫
r0

” means to drop any terms relevant to the integral upper limit ∞. These
terms are absent in the first law because they are divergent and exactly cancel other
divergent terms from Eq. (3.4). Note ∂V/∂� = V/� �= 0 since we have fixed the
expansion coefficients in V (φ) multiplying l2 (like m2l2) as dimensionless constants.
Then the first law can be obtained by matching the variational identity near the horizon
and at boundary

T δS = δM − �eδQe + (
�φ − ��

)
δ� + �cδc

2

− σ

96πl2
[
(3 − σ)φ1δφ2 − (3 + σ)φ2δφ1

]
. (3.13)

The first law (3.13) implies some interesting relations among the variables. In
terms of the dimensional analysis, it is easy to see that the black brane solution is scale
invariant, i.e. the field configurations are homogeneous functions (with order zero), if
the radial coordinate and the parameters transform as10

r → λr, μ → λμ, Qe → λQe,

l → λl, φ1 → λ
3−σ

2 φ1, φ2 → λ
3+σ

2 φ2. (3.14)

10 Note that we are studying the static and isotropic solution so the scaling of coordinates t, x , and y are
not relevant.
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In terms of the scale invariance and Eq. (3.13), one can take the gravitational mass as
a homogeneous function

M
(
λ2S, λQe, λ

−2�,λ0c2, λ
3−σ

2 φ1, λ
3+σ

2 φ2

)

= λM
(
S, Qe,�, c2, φ1, φ2

)
. (3.15)

Acting the derivative ∂λ and setting λ = 1 at last gives

2S
∂M

∂S
+ Qe

∂M

∂Qe
− 2�

∂M

∂�
+ 3 − σ

2
φ1

∂M

∂φ1
+ 3 + σ

2
φ2

∂M

∂φ2
= M. (3.16)

Using Eq. (3.13) again, we obtain a Smarr formula

M = 2T S + Qe�e + 2�
(
�φ − ��

)
. (3.17)

Note that since c2 does not transform under the rescaling, Eq. (3.17) remains the same
if one sets δc2 = 0 at the beginning. Interestingly, there is another scale invariance for
which � is not rescaled:

r → λr, μ → λ3μ, Qe → λ2Qe,

c → λc, φ1 → λ
3−σ

2 φ1, φ2 → λ
3+σ

2 φ2. (3.18)

Under this scaling transformation, the field configurations are homogeneous functions
and the EOM are not changed. Compared with Eq. (3.15), now the gravitational mass
behaves as a different homogeneous function

M
(
λ2S, λ2Qe, λ

0�,λ2c2, λ
3−σ

2 φ1, λ
3+σ

2 φ2

)

= λ3M
(
S, Qe,�, c2, φ1, φ2

)
, (3.19)

which yields a different Smarr formula

3M = 2
(
TS + Qe�e − c2�c

)
. (3.20)

Similarly, one can set δ� = 0 at the beginning which will not change Eq. (3.20).
In the previous derivation of Eqs. (3.17) and (3.20), either δ� or δc2 has to be

nonvanishing in the first law. As a self-consistent check, we will prove both of the
Smarr formulas without using the first law. Before doing this, we note that one can
use the explicit solution found in a special case [42] to check Eqs. (3.17) and (3.20).

Now consider the Einstein equation and the Killing equation which can lead to

∇μ

[(
Tμν − 1

2
gμνT

)
ξν

]
= ∇μ

(
2Rμνξν

) = 0. (3.21)
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Following the geometric method to derive the Smarr formula [30], where the key
ingredient is the construction of the Killing potential, one can build up a new conserved
tensor, at least locally:

Qμν
1 = ∇μξν − �

μν
1 . (3.22)

Here we have defined the generalized Killing potential which is determined by

2∇ν�
μν
1 =

(
Tμν − 1

2
gμνT

)
ξν. (3.23)

For the massive gravity, Q1 has the nonvanishing components

Qtr
1 = −Qrt

1 = − f h′

2h
+ 1

4r2

√
f

h

(
Qeat − 2��̃�

)
, (3.24)

where �̃� = ∫
(2 + V/�)

√
h/ f r2dr . Since ∂r

(√−gQtr
1

) = 0, one can match√−gQtr
1 at horizon and boundary. By calculating

√−gQtr
1

∣
∣
horizon = −1

2
ST + 1

2
���,

√−gQtr
1

∣∣
boundary = −1

4
M + 1

4
Qe�e + 1

2
��φ, (3.25)

we retrieve Eq. (3.17).
On the other hand, there is a global scaling symmetry for static gravity theories

[43,44] which can be uncovered easily with a different metric ansatz

ds2 = −u (ρ) dt2 + dρ2 + v (ρ)
(
dx2 + dy2

)
. (3.26)

One can show that L = √−g (L0 + L1) with this metric is invariant up to a total
derivative Q′

0, under the global rescaling

u → λ−2u, v → λv, at → λ−1at . (3.27)

Hence there is a Noether charge satisfied with Q′
2 = 0:

Q2 = Q0 −
(
−2u∂u′L + v∂v′L − at∂a′

t
L
)

− 2
(
−2u′∂u′′L + v′∂v′′L − a′

t∂a′′
t
L
)

+
(
−2u∂u′′L + v∂v′′L − a′

t∂a′′
t
L
)′

. (3.28)
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Note that the later two brackets are necessary since the Lagrangian depends on higher
derivative u′′ and v′′. Substituting the concrete L of massive gravity, we have

Q2 = 2

[
−r2

√
f h

(
2

r
− h′

h

)
− Qeat + c2�̃c

]
, (3.29)

where �̃c = ∫
2
√
h/ f dr . Equating Q2 at horizon and boundary, which are

Q2|horizon = 2T S − 2c2�c,

Q2|boundary = 3M − 2Qe�e, (3.30)

leads to Eq. (3.20) again.

4 Conclusion and discussion

We derived the covariant form of the first law of black hole mechanics in the presence
of variable background fields. Due to its local nature, the general expression of black
hole entropy previously identified with a Noether charge is still applicable, although the
relevant diffeomorphism symmetry is broken. The current situation is distinct from two
important works concerning the symmetry for the Noether entropy [45,46]. The former
focused on the Chern–Simons term, where the bare affine connection breaks not only
the diffeomorphism symmetry but also the general coordinate invariance, up to a total
derivative. The latter pointed out that in the frame formalism, both diffeomorphism
and Lorentz symmetries should be invoked. Combining these results, one might argue
that the diffeomorphism symmetry is not necessary nor sufficient to identify what is
the black hole entropy.11

We illustrated the general formalism by a static black brane in the massive EMD
gravity. We derived the first law using the variational identity with two variable back-
ground fields—the cosmological constant and the reference metric. One can find that
the conjugate variable of the cosmological constant, the called black hole volume
[30,31,33–36], involves the local and nonlocal potentials. Such a separation suggests
that these potentials may have different physical origins by the gauge/gravity duality.
We identified two kinds of the scale invariance of the black brane solutions. Using
these together with the first law, we obtained two Smarr formulas. We also proved
both of them without invoking the first law.

Two implications from the present work deserve to be stressed. One is that we
provided a rare case for which the general coordinate invariance, needless of the
complete diffeomorphism symmetry, would induce nontrivial physics: the general
coordinate invariance has been used to greatly simplify the covariant first law with
background fields. We argue this is rare, since the diffeomorphism symmetry that
fathered the general relativity is always taken seriously [23], but not the coordinate

11 What is the essential feature of black hole entropy is a long-standing mystery. Various studies are in
progress. For instance, in a recent work [47], it was argued that the black hole entropy is a Hamiltonian
generator but not necessarily a property associated with the horizon.
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invariance alone which any semi-respectable theory of physics can be required to
respect [37]. In this regard, one may notice that the nonrelativistic version of the
general coordinate invariance developed in [48,49] has been applied to construct the
low-energy effective field theories of condensed matter, such as the unitary Fermi gas
and fractional quantum Hall systems. Another example that is more alike to ours is the
existence of the possible conflicts between the dynamical and geometrical constraints
for a theory with explicit diffeomorphism breaking, which stems exactly from the
fact that the general coordinate invariance still holds [50,51]. Our work also suggests
to regard the reference metric and the cosmological constant in massive gravity as
thermodynamic variables, since the variation of each one corresponds to a Smarr
formula that has an explicit physical interpretation: one indicates the existence of the
generalized Killing potential and the other comes from a scaling symmetry of the
reduced action. We expect that the extension of the phase space in massive gravity
and the associated Smarr formulas would imply interesting results in the black hole
chemistry and holographic duals.

Acknowledgements We are grateful to Hong Liu, Hong Lu and Sang-Jin Sin for valuable discussions.
This work was supported by NSFC (Nos. 11675097, 11275120, 11375110, 11522541).

5 Appendix: Some tensors

Here we list the explicit expressions of some tensors. They are obtained following the
derivation given in the appendix to Ref. [52].

The equations of motion are

E (g)
μν = ∂L

∂gμν
− 1

2
gμνL − Xαβρ

(μRν)ρβα

− 2∇ρ∇λXλ(μν)ρ + ∇β A(μν)β + ∇βB(μν)β,

E (φ) = ∂L

∂φ
− ∇μY

μ,

E (a)μ = ∂L

∂aμ

− ∇ν Z
μν,

E (b)μν = ∂L

∂bμν

− ∇λW
μνλ, (5.1)

where the derivative of L is involved, including

Wμνλ = ∂L

∂∇λbμν

, Xμνλρ = ∂L

∂Rμνλρ

,

Yμ = ∂L

∂∇μφ
, Zμν = ∂L

∂∇νaμ

. (5.2)
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Two three-tensors are given by

Aμνβ = 1

2

(
aβ Zμν − aμZβν − aν Zμβ

)
, (5.3)

Bμνβ = 1

2

(
Wαμνb

α
β − Wαβνb

α
μ − Wαμβb

α
ν

+Wμανb
α
β − Wβανb

α
μ − Wμαβb

α
ν

)
. (5.4)

Note that we have arranged Eq. (5.4) so that the first line and second line in the
parentheses are equal when bμν and Wμνλ are symmetric or antisymmetric on the μν

index.
The one-form θ = θ (ψ, δψ) is given by

θβ = 2X αβ

(μ ν)∇αδgμν − 2∇αX
αβ

(μ ν)δg
μν

+Y βδφ + Zμβδaμ + Wμνβδbμν

− A β
μν δgμν − B β

μν δgμν. (5.5)

The two-tensor Pμν resulted from the general coordinate invariance is

Pμν = −2
∂L

∂gμν
+ 4RαβρμX

αβρ
ν + Yν∇μφ

+
(
Zλ

ν∇μaλ + Z λ
ν ∇λaμ + ∂L

∂aλ

aμgλν

)

+ (
Wαβ

ν∇μbαβ + W αβ
ν ∇βbμα + Wα β

ν ∇βbαμ

)

+ ∂L

∂bλρ

(
bμρgνλ + bλμgνρ

)
. (5.6)

The three-tensor Q̃ βα
ν in the Noether potential Qβα

ξ is

Q̃ βα
ν = 1

2

(
aν Z

[αβ] + a[β Zα]
ν + a[β Z α]

ν

+W [α
νμ bβ]μ + W [α β]

μ b μ
ν + W [α

μνb
β]μ

+Wμ [α
ν b β]

μ + Wμ[αβ]bμν + Wμ[α
ν b β]

μ

)
, (5.7)

where the last two lines are arranged similar to Eq. (5.4).
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