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Abstract In (2 + 1)-dimensional AdS spacetime, we obtain new exact black hole
solutions, including two different models (power parameter k = 1 and k �= 1), in
the Einstein–Power–Maxwell (EPM) theory with nonminimally coupled scalar field.
For the charged hairy black hole with k �= 1, we find that the solution contains a
curvature singularity at the origin and is nonconformally flat. The horizon structures are
identified, which indicates the physically acceptable lower bound of mass in according
to the existence of black hole solutions. Later, the null geodesic equations for photon
around this charged hairy black hole are also discussed in detail.

Keywords Black hole with scalar hair · Einstein–Power–Maxwell (EPM) theory ·
(2 + 1)-Dimensions · Geodesics

1 Introduction

The no-hair theorems assert that the asymptotically flat spacetime can not admit any
hairy black hole solutions [1,2], since the scalar field was divergent on the hori-
zon and stability analysis showed that they were unstable [3]. Nevertheless, when a
negative cosmological constant is considered, the no-hair theorems can usually be
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circumvented, and then there exists a broad literature of black hole solutions with a
(non)minimal scalar field in the four or higher dimensional Einstein’s gravity, includ-
ing static [4–13], and rotating [14–16] extensions with a complex, massive scalar field
and in higher order derivative gravity [17–20].

Inspiring by the pioneering work of Banados, Teitelboim and Zanelli (BTZ) [21],
(2 + 1)-dimensional spacetimes admitting black hole solutions have attracted much
attention. Besides sourced by a mass and a negative cosmological constant, pure BTZ
black holes can be also to added new sources such as electric/magnetic fields from
Maxwell’s theory [22–24], Maxwell-dilaton [25], rotation [26], perfect fluid [27,28]
and others [29,30]. However, there exist the so-called electromagnetic singularities
due to point charges that occur in the linear Maxwell theory. It is interesting to note
that the nonlinear electrodynamics (NED) is useful to overcome this obstacle, and the
nonlinear electrodynamics are a good laboratories to construct black hole solutions
[31–33]. Black hole solutions with nonlinear electrodynamics sources have interesting
asymptotic behaviors and exhibit interesting thermodynamics properties [34–37]. For
example, they satisfy the zeroth and first laws of black-hole mechanics [38]. After
considering the cosmological constant as a dynamical pressure, the Smarr relation
works as well and there are rich phase structure which have the first order phase
transitions and the reentrant phase transitions [39,40].

With a negative cosmological constant in the action, the (2 + 1)-dimensional black
holes with the minimal [41–43] or nonminimal [44,45] scalar fields have been con-
structed in the Einstein’s gravity. Furthermore, the charged [46,47], rotating [48–50],
charged rotating [51] and Einstein–Born–Infeld [52] black holes with nonminimally
scalar hair, and rotating black hole [53,54] dressed with minimal scalar field hair in the
(2 + 1) dimensional Einstein’s gravity. Beyond the linear Maxwell electromagnetism
in theory with scalar fields, in this paper, we study the charged black hole solution in
the (2+1)-dimensional EPM theory with nonminimally coupled scalar field. Actually,
asymptotically AdS black holes with nonlinear electrodynamics sources endowed with
extra scalar field have been related to superconductors by means of the gravity/gauge
duality [55–59]. Especially, the larger power parameter k of the power Maxwell field
makes it harder for the scalar hair to be condensate [55]. This makes it more interesting
to study the black hole solutions in this paper. Considering the different values of k
in (2 + 1)-dimensional EPM theory, we will obtain two different branches of charged
hairy black hole solutions, which correspond to the cases of k = 1 and k �= 1 respec-
tively. The power parameter k is a rational number, which satisfies k > 1

2 because of
the weak energy conditions (WEC) and strong energy conditions (SEC). In addition,
we will present the null geodesics in detail, in order to have a further understanding
of the properties of this solution.

This paper is organized as follows. In Sect. 2, we present the charged black hole
solution in the EPM gravity with nonminimally coupled scalar field, and then discuss
the properties of the scalar potential. Moreover, the basic geometric properties and
horizon structures of the metric are also outlined. In Sect. 3 the geodesics motions are
given for the photon. The Sect. 4 is devoted to the closing remarks.
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2 Charged black hole in the EPM theory with nonminimally coupled
scalar field

2.1 Charged hairy black hole solution

The (2 + 1)-dimensional action in the EPM theory with nonminimally coupled scalar
field is written as

I =
∫

d3x
√−g

[
1

2π

(
R − ∇μφ∇μφ − 1

8
Rφ2 − 2V (φ)

)
+ L(F)

]
, (1)

in which R is Ricci scalar, φ is scalar field, V (φ) is self-coupling potential of scalar
field, and L(F) = |F |k is the power Maxwell Lagrangian with Maxwell invariant
F = FμνFμν . k is power parameter and should be a rational number, which satisfies
k > 1

2 because of the weak energy conditions (WEC) and strong energy conditions
(SEC).1

Considering the variation of the action, we can obtain the field equations

Gμ
ν − π Tμ

[A]ν − Tμ
[φ]ν + V (φ)δμ

ν = 0, (2)

1√−g
∂ν(

√−gFμν |F |k−1) = 0, (3)

∇μ∇μφ − 1

8
Rφ − ∂φV (φ) = 0, (4)

where the energy-momentum tensor of the power Maxwell field and scalar field are
given by

Tμ
[A]ν = −|F |k

(
4k(Fνσ Fμσ )

F − δμ
ν

)
, (5)

Tμ
[φ]ν = ∂μφ∂νφ − 1

2
δμ

ν∇ρφ∇ρφ + 1

8

(
δμ

ν� − ∇μ∇ν + Gμ
ν

)
φ2. (6)

The metric ansatz is chosen as

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2dθ2 (7)

with the coordinate range −∞ < t < +∞, r > 0 and 0 < θ < 2π . Substituting the
metric (7) into the nonlinear Maxwell equation (3), the nonvanishing component of
vector potential A is given by [24]

1 We thank the referee for pointing mathematical and physical inconsistencies about energy conditions for
three dimensional Einstein–Power–Maxwell (EPM) theory in [24]. Consider the nonlinear electrodynamics
term |F |k solely, the energy density is given by ρ|F |k = −T t

t = (2k−1)|F |k . In order to make the energy

conditions holding in gravity with usual Maxwell source (k = 1) or conformal invariant Maxwell source
(k = 3

4 ), i.e. k > 1
2 , we choose the Maxwell terms in the action as +|F |k . This also leads to vanishing

electric field at large r for the cases with k > 1
2 .
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A = A(r)dt, A(r) =
⎧⎨
⎩

(2k−1)
2(k−1)

Qr
2(k−1)
(2k−1) , k �= 1,

Q ln
(

r
r0

)
, k = 1.

Here Q and r0 are integration constants. Q corresponds to the electric charge, and
r0 > 0 corresponds to the radial position of the zero electric potential surface, which
can be set equal to +∞. Evidently, the vector potential A takes the different forms in
case of k = 1 and k �= 1. Viewed from this perspective, the respective discussions for
the charged hairy black holes in two branches (k = 1 and k �= 1) are very necessary.

From the other field equations (2) and (4), we can obtain the simplified form of
scalar field [46,48]

φ(r) = ±
√

8B

r + B
, (8)

black hole solution

f (r) =

⎧⎪⎪⎨
⎪⎪⎩

r2


2 + αB2(2B+3r)
48r +

2k (2k−1)2π

(
qB

1
(2k−1)

)2k

2(k−1)

(
r+ 2kB

(4k−1)

)

r
1

(2k−1)

, k �= 1,

r2


2 +
(

3μ + q2

4

)
B2 +

(
2μ + q2

9

)
B3

r + q2B2
( 1

2 + B
3r

)
ln

( r
B

)
, k = 1

(9)
and the scalar potential

V (φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

2 + 1

512

(
1

2 + α

48

)
φ6 + 2k (2k−1)π q2k

1024(k−1)(4k−1)

(
φ2

8−φ2

) 2k
(2k−1)

×
(

64kφ2 − 16k(2k − 1)φ4 + (2k − 1)2φ6
)

, k �= 1,

− 1

2 + 1

512

(
1

2 + μ

)
φ6 + 1

18432 q
2
(
192 φ2 + 48φ4 + 5 φ6

)

− 1
3q

2
[

2φ2

(8−φ2)
2 − 1

1024φ6 ln
(

8−φ2

φ2

)]
, k = 1.

(10)

Here q, α, μ are parameters in the action, and the parameter q is related with the
charge Q of black hole through

q =

⎧⎪⎨
⎪⎩

2(2π)
1
2 Q

B , k = 1,

2
1

2k Q

B
1

2k−1
, k �= 1.

(11)

In addition, V (0) = � = − 1

2 is the constant term emerging naturally in the potential

which plays the role of cosmological constant. The parameter l denotes the AdS radius.
Notice that the branch k = 1 of these charged hairy black hole solutions (10) has

been discussed in [46]. Consequently, we mainly focus on the case of k �= 1. Especially,
for the power parameter k = 3

4 , the potential (10) is not longer just proportional to φ6,
so that the full matter sector in the action is not conformal invariant. As a result, our
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solution reduces to the charged hairy black hole solution, which is different from the
one in [47].

For the scalar potential V (φ) with k �= 1, the negative cosmological constant
� = V (0) = − 1


2 is necessary for obtaining black hole solutions because of the
No-Go theorem in three dimensions [60]. The parameter α is related to the mass of
black hole as shown later. Moreover, the potential V (φ) always keeps regular when
φ2 < 8.

2.2 Physical properties

For this charged hairy black hole, the mass can be calculated simply by adopting the
Brown–York method [61]. The quasilocal mass m(r) at a r takes the following form
[61–63]

m(r) = 2
√

f (r)(
√

f0(r) − √
f (r)). (12)

Here f0(r) is a background metric function which determines the zero of the energy.
One natural choice for these solutions are the one for the massless BTZ black hole,
i.e. f0(r) = r2


2 .2 Note the mass of black hole in the regular Einstein–Maxwell theory
(i.e. the case with k = 1) is present in [46]; as we have corrected the scalar potential
(10) for k = 1 to get the invariant action, the mass is modified slightly as M =(
q2

2 ln B − q2

4 − 3μ
)
B2. With regard to k �= 1, the corresponding mass is obtained

as

M ≡ lim
r→∞m(r) = −αB2

16
. (13)

Consequently, Eq. (9) in the branch of k �= 1 can be rewritten as

f (r) = r2


2 − M

(
1 + 2B

3r

)
−

X (2k − 1)
(
r + 2Bk

(4k−1)

)

r
1

(2k−1)

(14)

with X = − (2k−1)Q2k

2k+1(k−1)
. Consider the leading term contributed to f (0) and f (+∞)

and the first order derivative, it is easy to find that f (r) increases monotonically from
−∞ to +∞ for solutions with k > 1

2 , M > 0, hence contains exactly one zero, which
corresponds to the event horizon of a charged AdS black hole with a scalar hair. In
order to avoid the appearance of a naked singularity, a horizon in the spacetime is
needed at least. In this sense, we see that the physically acceptable region for mass
M is M > 0 for any values of parameter k. In Fig. 1, we plot the horizon function
f (r) with Q = 0.5, B = 0.1, 
 = 1, M = 1.5 and different values of parameters k,
in order to have a more clear understanding of the above horizon structure.

2 In fact, the determination of the mass in presence of a scalar field is subtle problem, as has been discussed
in the literature (see [42] and [47]).
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Fig. 1 The horizon structure
with Q = 0.5, B = 0.1, 
 =
1, M = 1.5

In order to have a further understanding of the solutions, we calculate some geo-
metric quantities. Firstly, the Ricci scalar reads as

R = − 6


2 + 2(k − 1)X

(2k − 1)

(
(4k − 3) − 2Bk

(4k − 1)r

)
r

−2k
(2k−1) , (15)

which shows that the solution has an essential singularity at r = 0 whenever Q �= 0.
Higher order curvature invariants such as RμνRμν and Rμνρσ Rμνρσ both have much
complicated expressions. One can also find the further behavior as O(Mr ), hence the
solution is also singular at r = 0 whenever M �= 0. As we are interested in the black
holes, the solutions need to contain a event horizon to surround the singularity. On
the other hand, in order to indicate that the metric is nonconformally flat, we can find
some non-vanishing components of the Cotton tensor, e.g.

Cθθ r = MB

r2 +
k

(
(1 − k) + Bk

r

)
X

(2k − 1)2r
1

(2k−1)

, (16)

which does not vanishes whenever B �= 0, M �= 0 or Q �= 0.

3 Null geodesics

Let us consider the geodesic equations for uncharged test particles around the solution
with scalar hair in the EPM Theory. Since this spacetime has two Killing vectors ∂t
and ∂θ , there are two constants of motions, i.e.

123



(2 + 1)-Dimensional charged black holes with scalar hair... Page 7 of 12 73

E = f (r)
dt

dλ
, L = r2 dθ

dλ
, (17)

where λ is the affine parameter along the geodesics.
The geodesic equation can be derived from the Lagrangian for a test particle

f (r)

(
dt

dλ

)2

− 1

f (r)

(
dr

dλ

)2

− r2
(

dθ

dλ

)
= −m2, (18)

where m = 0 corresponding to null geodesics and m = 1 corresponding to time-like
geodesics (without loss of generality). Inserting Eq. (17) into the above equation, one
can obtain

1

2

(
dr

dλ

)2

+ Vef f (r) = 0, (19)

where Vef f (r) is the effective potential and takes the form as

Vef f (r) = 1

2

[
f (r)

(
L2

r2 + m2
)

− E2
]
. (20)

Then Eqs. (17) and (19) lead to the orbit equation

(
dr

dθ

)2

= −2r4

L2 Vef f (r). (21)

Now we consider the null geodesics, i.e. the geodesics for a photon. The effective
potential (20) reduces to

Vef f (r) = 1

2

[
f (r)

(
L2

r2

)
− E2

]
. (22)

In the following subsections, we focus on the orbit equation (21) and effective potential
(22) to classify all possible geodesic motions.

3.1 Radial geodesics where L = 0

Firstly we examine the radial geodesics where L = 0. The corresponding effective
potential (22) further reduces to

Vef f (r) = − E2

2
.

Obviously, the behavior of these geodesics do not depend on the electric charge Q and
mass M of the black hole. As E is a constant, this resembles the geodesic motion of
a free photon.
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Combining Eqs. (17) and (19), we can get

dt

dr
= ± 1

f (r)
. (23)

Here we are only interested in the geodesics of the black holes. The metric function
can be rewritten as

f (r) = (r − rE )(r − rC )F(r) (24)

with rE being the Event horizon and rC being the Cauchy horizon of the black holes,
respectively. However, it is difficult to find the form of F(r), but we still know that
F(r) can have either no real roots or negative roots. For non-extreme charged black
hole with two horizons, rE and rC are both positive. For extreme charged black hole,
rE = rC is positive. For our solutions, i.e. the charged black hole with single horizon,
only rE is real and positive.

Rewriting the right side of Eq. (23), it is equal to

1

f (r)
= 1

(rE − rC )

[
1

F(rE )

(
1

(r − rE )
− G(r, rE )

F(r)

)

− 1

F(rC )

(
1

(r − rC )
− G(r, rC )

F(r)

)]
, (25)

where G(r, ri ) = F(r)−F(ri )
(r−ri )

with i being (E,C). Note G(ri , ri ) = F ′(ri ) is finite.
After integrating Eq. (23), we find

t = ± 1

(rE − rC )

[
1

F(rE )

(
ln(r − rE ) −

∫
G(r, rE )

F(r)
dr

)

− 1

F(rC )

(
ln(r − rC ) −

∫
G(r, rC )

F(r)
dr

)]
, (26)

where the sign “+” denotes the out going null rays and the sign “−” denotes the
ingoing null ray. Consider the ingoing null rays, when r → rE , the coordinate time
t → +∞ for the black holes.

On the other hand, the geodesic equation (19) can be integrated to give

r(λ) = ± Eλ. (27)

When r → rE (in-going case), λ has a finite value rE
E . Hence one can see that a photon

without angular momentum arrives the horizons in its own finite proper time, while it
is an infinite coordinate time.

123
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Fig. 2 The effective potential
V (r) with k = 5, Q = 0.5, B =
0.1, 
 = 1. On the plot, the
constant of motions � decreases
from top to bottom

3.2 Radial geodesics where L �= 0

We consider the radial geodesics with L �= 0. From Eq. (22), the effective potential
can be obtained as

Vef f (r) = L2

2r2

[ (
1


2 − �2
)
r2 −

(
1 + 2B

3r

)
M −

X (2k − 1)
(
r + 2Bk

(4k−1)

)

r
1

(2k−1)

]
,

(28)

where � = E
L .

Consider the behavior of geodesics, one can turn to the behavior of the effective
potential. Similarly as the metric function f (r), Vef f (r) increases monotonically from
−∞ to (+∞) × ( 1


2 − �2), for solutions with k > 1
2 , M > 0, hence contains exactly

one or no vanishing point. One can find no photon stay at the circular motion. We
give an example presented in Fig. 2. When the constant of motions � changes, the
geodesic motions of a photon are all the unbounded spiral motions. For subcases with
0 ≤ � < 1



and � ≥ 1



, there is still one difference: the latter one has no perihelion,

thus the photon for the latter one will fall into the black holes. Follow the similar
discussion with the radial geodesics of un-rotating photon in the previous subsection,
one can find that the photon with � ≥ 1



also arrive the black hole horizon in an infinite

coordinate time.

4 Closing remarks

In this paper, we have presented black hole solutions to Einstein–Power–Maxwell
theory with nonminimally coupled scalar field in (2+1) dimensional AdS spacetimes.
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The rational number k satisfies k > 1
2 because of the weak energy conditions (WEC)

and strong energy conditions (SEC). There exist charged hairy black hole solutions
with two branch of k = 1 or k �= 1. For k �= 1, we found that the solution contains
a curvature singularity at the origin and is non-conformally flat. The solution with
positive mass M > 0 always corresponds to black holes with single horizon. In
addition, the geodesic motions for a photon in this spacetime have been discussed in
detail. It is also interesting to consider the geodesics of this spacetime further, including
the time-like one for a photon and the one for charged particle.
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