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Abstract We add a prescription to the Newman–Janis algorithm in order to use it as
a means of finding new extended rotating black hole spacetimes from static spheri-
cally symmetric ones. Then, we apply the procedure to a quantum improved black
hole spacetime coming from Quantum Einstein Gravity in order to get the maxi-
mally extended spacetime corresponding to a non-singular rotating black hole. We
rigourously check for the existence of scalar curvature singularities in the quantum
improved rotating spacetime and we show that it is devoid of them. We also analyze the
horizons and causal structure of the rotating black hole and provide Penrose diagrams
for the maximally extended spacetime.

Keywords Black holes · Newman–Janis algorithm · Singularities · Extensions ·
Asymptotic safety · Quantum Einstein Gravity

1 Introduction

It is well-known that most astrophysically significant bodies are rotating. The collapse
of a rotating body contributes to the increase of its angular speed while maintaining
constant angular momentum. In this way, if the body finally generates a black hole it
will be a rotating black hole (RBH). This is the main reason why it is crucial to study
RBHs and to analyze their properties.

From a classical point of view, an uncharged (charged) RBH spacetime will be
described by a Kerr (Kerr–Newman, resp.) solution. This implies the existence of cer-
tain horizons, a specific causal structure and a singular ring. However, several authors
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have suggested that the existence of singularities in the classical solutions has to be
considered as a weakness of the theory rather than as a real physical prediction. Conse-
quently, some have tried to avoid the singularities in the models for RBHs by proposing
heuristic regular spacetimes for them (see, for instance, [1–3]). Other authors, inspired
by the work of Bardeen, have taken the path of nonlinear electrodynamics [4–6], which
seems to provide the necessary modifications in the energy–momentum tensor in order
to avoid singularities in the RBH (see, for instance, [7–9]). Yet, another way of address-
ing the problem of singularities is to take into account that quantum gravity effects
should play an important role in the core of black holes, so that it would seem conve-
nient to directly derive the black hole behaviour from an approach to quantum gravity.

In this regard, some regular non-rotating Black Holes inspired in different
approaches to Quantum Gravity have appeared in the recent literature (see, for exam-
ple, [10–15] and references therein). For our purposes, let us remark the step in this
direction taken by Bonanno and Reuter in [16] by introducing an effective quantum
spacetime for spherically symmetric black holes based on the Quantum Einstein Grav-
ity (QEG) approach (see, for instance, [17–19]). The obtained quantum improved
Schwarzschild solution indicates that the horizons and causal structure could be
notably modified by quantum corrections and that the BH spacetime could be devoid
of singularities.

However, this solution lacks of the rotation that one would expect for realistic black
holes. If we want to test quantum improved metrics with astrophysical observations
it is necessary to have quantum corrected rotating solutions. In this line, Reuter and
Tuiran [20] have tried a direct attack on the problem by using the QEG approach
in order to obtain an improved Kerr solution. Nevertheless, some problems that had
already appeared in the non-rotating case [16] become now much more important.
Namely, in the QEG approach and through the use of the Functional Renormalization
Group Equation, first, one finds the running Newton constant G(k) depending on the
considered energy scale k [17]

G(k) = G0

1 + ωG0k2 , (1.1)

where ω is a constant and G0 is the standard gravitational constant. Then, one converts
the energy scale dependence into a position dependence, what can be written as

k(P) = ξ

d(P)
, (1.2)

where ξ is a constant (to be fixed) and d(P) is the distance scale that provides the
relevant cutoff when a test particle is located at a point P . If the distance scale must
be diffeomorphism invariant then one could write

d(P) =
∫
C

√
|ds2|,

where C is a curve from a reference point P0 to P . The problem is that there is a great
deal of freedom in choosing C for the RBH case and that there is not a unique natural
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choice for the distance scale. Nevertheless, If we write the RBH spacetime in Boyer–
Lindquist-like coordinates (t, r, θ, φ), one can restrict the dependence of d on the coor-
dinates simply by taking into account that for a stationary and axially symmetric space-
time d = d(r, θ) only (so that G = G(r, θ)). In [20] it is argued that the dependence
of d on θ should be asymptotically subdominant (i.e., negligible for r → ∞). It is also
argued that the dependence on θ should not be too important for r of the order of Planck
length. However, a specific expression for the angular dependence was not found.

Our aim in this article is to obtain a quantum improved rotating black hole by using
as alternative approach the Newman–Janis (NJ) algorithm [21], which allows to get a
rotating solution from a static spherically symmetric one. The use of the standard NJ
algorithm with the goal of obtaining non-singular black hole solutions was suggested
by Bambi and Modesto in [1]. Here, we will see that, in general, the strict standard
approach consisting of five steps [1,22] must be supplemented with an extra prescrip-
tion if we want to get a well-behaved extended RBH spacetime from the algorithm.

Equipped with this prescription we will apply it to the aforementioned quantum
improved Schwarzschild solution [16]. Once the correct maximally extended improved
RBH spacetime is found we will analyze its properties. In particular we will be inter-
ested in rigourously proving the absence of scalar curvature singularities by studying
the complete set of algebraically independent curvature scalars. We will also analyze
the horizons and causal structure of the improved spacetime which will be compared
with those of the classical Kerr solution.

The article has been divided as follows. Section 2 is devoted to the Newman–
Janis algorithm and the enhancements required to provide us with correct extended
spacetimes for rotating black holes. In Sect. 3 the quantum improved Schwarzschild
solution is introduced and the enhanced N–J algorithm is used to provide and extended
rotating black hole. The regularity of the obtained spacetime is shown in Sect. 4, while
Sect. 5 is devoted to the study of the fulfillment of the energy conditions. The possible
global structure of the BH spacetime depending on both its mass and its angular
momentum is studied in Sect. 6. Finally, the results are discussed in Sect. 7.

2 Newman–Janis algorithm and maximally extended spacetimes

The standard Newman–Janis algorithm is a five-step procedure for generating new
solutions of Einstein’s equations by using as a seed solution a static spherically sym-
metric one [21,22]. The seed solution can always be written as

ds2 = − f (r)dt2 + g(r)dr2 + r2d�2. (2.1)

The five steps are [22]:

1. Rewrite the seed line element in advanced null coordinates.
2. Express the contravariant form of the metric in terms of a null tetrad Zμ

a .
3. Extend the coordinates xρ to a new set of complex coordinates

xρ → x̃ρ = xρ + iyρ(xσ )
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and let the null tetrad vectors Zμ
a undergo a transformation

Zμ
a → Z̃μ

a (x̃ρ, ¯̃xρ).

Require that the transformation recovers the old tetrad and metric when x̃ρ = ¯̃xρ .
4. Obtain a new metric by making a complex coordinate transformation

x̃ρ = xρ + iγ ρ(xσ )

5. Apply a coordinate transformation u = t + F(r), φ = ϕ + H(r) to transform the
metric to Boyer–Lindquist-type coordinates.

As it is well-known this procedure has been successfully applied to the Schwarzschild
solution in order to get (in a straightforward way) Kerr’s solution. It is convenient to
remark here that, as Kerr’s solution reveals, even if the final rotating solution of this
general procedure can be singular this does not mean that r = 0 cannot be traversed.
On the contrary, consider Kerr’s case in which r = 0 represents a whole disk [23,24].
Only the boundary of the disk (r = 0, θ = π/2) is singular so that r = 0 can be
traversed through θ �= π/2. In this way, the disk can be considered as a two-sided
aperture to a second sheet on which r is negative, what provide us with an analytic
extension of the solution. In Kerr’s solution the standard NJ algorithm can be applied
directly obtaining a natural extension for r < 0 because the seed Schwarzschild solu-
tion has f (r) = 1−2m/r = g−1(r). In this way, when one considers negative values
for r this is clearly mathematically feasible and physically equivalent to deal with
the geometry generated by a negative mass. As a consequence, when the function f
undergoes the process of complexification becoming f̄ = f̄ (r, θ) this eventually pro-
vide us with a RBH spacetime that is well-behaved for all r ∈ �. In other words, we
directly get a natural extension through r < 0 because, previously, the seed spacetime
covered with positive values of r and the seed spacetime covered with negative values
of r , were both well-behaved.

Now, in general, when one uses the NJ-algorithm one would like to extend the
new found solution (even more, if the considered solution is regular) beyond r = 0.
However, for r < 0 both f (r) and g(r) could have problems from a mathematical
point of view (for example, do they exist and are real?) and from a physical point
of view (is the found solution meaningful for r < 0?). In this way, if one wants the
NJ-algorithm to provide a natural extended solution beyond r = 0 one needs to add a
preliminary prescription:

Deduce, if possible, the correct behaviour (both from a mathematical and a physical
point of view) of f (r) and g(r) in the spacetime covered with negative values of r .

In practice, this often requires rethinking the method1 used to reach the original
seed (2.1), but now considering that r < 0, what could be nontrivial in most cases. In
order to exemplify this, let us now find an extended non-singular quantum improved
solution for a rotating black hole spacetime.

1 Note that the method usually will not imply the use of GR.
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3 Improved rotating solution

The renormalization group improved Schwarzschild solution found by Bonanno and
Reuter [16] can be written as

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2. (3.1)

where
f (r) = 1 − 2G(r)m

r

and G(r) = G0r3

r3 + ω̃G0(r + γG0m)
, (3.2)

G0 is Newton’s universal gravitational constant,m is the mass measured by an observer
at infinity and ω̃ and γ are constants coming from the non-perturbative renormaliza-
tion group theory and from an appropriate “cutoff identification”, respectively. The
preferred theoretical value of γ is γ = 9/2 while it can be deduced that the precise
value of ω̃ is ω̃ = 167/30π . In fact, the properties of the solution do not rely on their
precise values as long as they are strictly positive. A relevant fact with regard to ω̃ is
that it carries the quantum modifications. In effect, if we make explicit Planck’s con-
stant in (3.2), one gets ω̃ = 167h̄/30π and, thus, ω̃ = 0 would turn off the quantum
corrections.

Now, in order to see the problems with the standard NJ-algorithm [1,22], we can
try to blindly apply it to the solution (3.1) in order to get a quantum improved RBH
spacetime. The five steps for this case would be:

1. The coordinate changedu = dt−dr/ f (r) allows us to write the metric in advanced
null coordinates as

ds2 = − f (r)du2 − 2dudr + h(r)d�2,

where h(r) = r2.
2. The null tetrad Zμ

a = (lμ, nμ,mμ, m̄μ) satisfying lμnμ = −mμm̄μ = −1 and
lμmμ = nμmμ = 0 can be chosen as

lμ = δμ
r , nμ = δμ

u − f (r)

2
δμ
r , mμ = 1√

2h(r)

(
δ
μ
θ + i

sin θ
δ
μ
φ

)

so that gμν = −lμnν − lνnμ + mμm̄ν + mνm̄μ.
3. We perform the standard coordinate change

r ′ = r + i a cos θ, u′ = u − i a cos θ.

and demand r ′ and u′ to be real. In this way the null tetrad transforms into (Z ′μ
a =

Zν
a∂x

μ′
/∂xν)

l ′μ = δ
μ
r , n′μ = δ

μ
u − f̄ (r ′)

2
δ
μ
r , m′μ = 1√

2h̄(r ′)

(
δ
μ
θ + i

sin θ
δ
μ
φ + i a sin θ(δ

μ
u − δ

μ
r )

)
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The functions f̄ and h̄ come from the complexification of f and h and, for the
moment, we only know that they must be real and that they must reproduce Kerr
solution if the quantum effects are turned off (ω̃ = 0). This is possible if the func-
tions are chosen in the usual manner [1,21,22], i.e., by using the complexification

1

r
→ 1

2

(
1

r ′ + 1

r̄ ′

)
, r2 → r ′r̄ ′

that provide us with

h̄ = r2 + a2 cos2 θ = �

f̄ = 1 − 2Ḡmr

�
, (3.3)

where there is still some freedom in choosing the function Ḡ.
4. The new non-zero metric coefficients can be computed to be

guu = − f̄ (r, θ), gur = −1, guφ = −a sin2 θ [1 − f̄ (r, θ)]
grφ = a sin2 θ, gθθ = �, gφφ = sin2 θ [� + a2 sin2 θ(2 − f̄ )] (3.4)

5. In order to get the metric in Boyer–Lindquist type coordinates we perform the
coordinate change u = t + F(r), φ = ϕ + H(r) where

F(r) = r2 + a2

f̄ (r, θ)� + a2 sin2 θ
, H(r) = a

f̄ (r, θ)� + a2 sin2 θ
(3.5)

and f̄ and h̄ are such that F and H must be functions of r alone. In principle, one
could conceive a general Ḡ (thus, f̄ ) with the form

Ḡ(r, θ;α, β, δ) = G0
r3+α�−α/2

r3+α�−α/2 + ω̃G0(r1+β�−β/2 + γG0mr δ�−δ/2)

where α, β and δ are parameters. However, note that (3.5) implies

� f̄ (r, θ) + a2 sin2 θ = D(r),

and substituting f̄ using (3.3) one immediately sees that Ḡ = Ḡ(r). In other
words, Ḡ cannot depend on θ . Thus, α = β = δ = 0 and one is left with the
straightforward case in which

Ḡ(r) = G(r) = G0r3

r3 + ω̃G0(r + γG0M)
. (3.6)
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In effect, in this case F and H are really functions of r alone since

F(r) = r2 + a2

r2 + a2 − 2mḠ(r)r
and H(r) = a

r2 + a2 − 2mḠ(r)r

and, therefore, it is possible to write the solution in Boyern–Lindquist type coor-
dinates.
Let us stop here the algorithm in order to consider what would happen to the metric
coefficients (3.4) if, following Kerr’s example, one tries to analytically extend the
solution through r = 0 by just considering negative values for r . Clearly, one gets
that this extension is not admissible from a physical point of view. It suffices to

consider (1.1) in which G(k) ≥ 0 (and G(k)
k→∞→ 0) and compare it with (3.6)

that takes negative values around r = 0 for negative values of r . This is due to the
fact that when one goes from (1.1) to (3.2) [16] one assumes that r is non-negative.
Therefore, as argued in the previous section, we should have first computed the
correct behaviour of the improved Schwarzschild solution for negative values of r
(what requires rethinking the derivation of the improved solution). We have done
this in the “Appendix” obtaining G(r) for all r ∈ � as

G(r) = G0|r |3
|r |3 + ω̃G0(|r | + γG0m)

. (3.7)

This running G is a non-negative, even and C2 function (see Fig. 1).
Only if one applies the N–J algorithm using this running G (and, thus, defining
sensible functions f (r) and g(r) in the seed spacetime covered with r < 0 in
(2.1)) one can obtain a physically meaningful naturally extended RBH spacetime.
From here, the JN-algorithm tell us that the new non-zero metric coefficients will
be

gtt = −
(

1 − 2G(r)mr

�

)
, gtϕ = −2G(r)mr

�
a sin2 θ, grr = �

�ω̃

gθθ = �, gϕϕ = sin2 θ

(
r2 + a2 + 2G(r)mr

�
a2 sin2 θ

)

where

�ω̃ ≡ r2 + a2 − 2G(r)mr.

and G(r) is defined in (3.7). Thus, the line element can be written in the familiar
Boyer–Lindquist form as

ds2 = −�ω̃

�

(
dt − a sin2 θdφ

)2 + �

�ω̃

dr2

+�dθ2 + sin2 θ

�

(
adt −

(
r2 + a2

)
dφ

)2
, (3.8)
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Fig. 1 A plot of G(r)/G0 for a BH mass m = 10 Planck masses

where the quantum corrections are all included in �ω̃ (which explains why we
have chosen the subindex ω̃).

4 Regularity

In order to this spacetime to be devoid of scalar curvature singularities one should proof
that all the algebraically independent second order curvature scalars in this spacetime
are finite. While the metric (3.8) is singular at �ω̃ = 0 and at � = 0 it is easy to
check (see [25] for the general case) that �ω̃ = 0 is just a coordinate singularity and
that it defines horizons in the spacetime (which will be analyzed later). With regard
to � = 0, the regularity checking is more involved. On the one hand, it is easy to see
[25] that this spacetime is Petrov type D and Segre type [(1, 1) (1 1)]. This implies
that the spacetime has only six real algebraically independent second order curvature
scalars [26] that are collected in {R, I, I6, K }, where R is the curvature scalar and the
rest of the invariants are defined as2

I6 ≡ 1

12
Sα

β Sβ
α,

I ≡ 1

24
C̄αβγ δC̄

αβγ δ,

K ≡ 1

4
C̄αγ δβ S

γ δSαβ,

where Sα
β ≡ Rα

β − δα
βR/4 and C̄αβγ δ ≡ (Cαβγ δ + i ∗ Cαβγ δ)/2 is the complex

conjugate of the selfdual Weyl tensor being ∗Cαβγ δ ≡ εαβμνC
μν
γ δ/2 the dual of the

Weyl tensor.3

2 Here the invariants are written in tensorial form. See [26] for their spinorial form.
3 Note that R and I6 are real, while I and K are complex. Therefore, there are, indeed, only 6 independent
real scalars.
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The fact that G(r) is not a C3 function indicates that we cannot directly apply the
general result of regularity in [25]. However, the proof of regularity can be carried out
in similar terms. By computing the curvature scalar R for our BH one finds

R = 2m(2G ′ + rG ′′)
�

.

In order to see that this is finite along any path approaching (r = 0, θ = π/2), let
us now define the dimensionless quantity ξ ≡ a cos θ/r and ξ∗, its value in the limit
along a chosen path approaching r = 0. Taking into account that G ′(0) = G ′′(0) = 0,
one finds

R → 4mG′′′(0+)

1 + ξ∗2 if ξ∗ finite and we approach r = 0 from positive values of r ,

R → 4mG′′′(0−)

1 + ξ∗2 if ξ∗ finite and we approach r = 0 from negative values of r ,

R → 0 if ξ∗ infinite.

Since G ′′′(0+) = −G ′′′(0−) = 6/(γ ω̃G0m), R would be finite along any path.
On the other hand,

I6 → {mG′′′(0+)}2ξ∗4

3(1 + ξ∗2)4 if ξ∗ finite and we approach r = 0 from positive values of r ,

I6 → {mG′′′(0−)}2ξ∗4

3(1 + ξ∗2)4 if ξ∗ finite and we approach r = 0 from negative values of r ,

I6 → 0 if ξ∗ infinite,

what again is finite along any path.
With regard to I ,

I → {mG′′′(0+)}2ξ∗4

9(1 − iξ∗)4(1 + ξ∗2)2 if ξ∗ finite and we approach r = 0 from positive values of r ,

I → {mG′′′(0−)}2ξ∗4

9(1 − iξ∗)4(1 + ξ∗2)2 if ξ∗ finite and we approach r = 0 from negative values of r ,

I → 0 if ξ∗ infinite,

so that I is finite along any path reaching r = 0.
Finally, we get

K → 2{mG′′′(0+)}3ξ∗6

3(1 − iξ∗)2(1 + ξ∗2)5
if ξ∗ finite and we approach r = 0 from positive values of r ,

K → 2{mG′′′(0−)}3ξ∗6

3(1 − iξ∗)2(1 + ξ∗2)5
if ξ∗ finite and we approach r = 0 from negative values of r ,

K → 0 if ξ∗ infinite,

what is finite along any path reaching r = 0.
Therefore, we conclude that there are not scalar curvature singularities in the space-

time.

123



74 Page 10 of 18 R. Torres

5 Effective energy–momentum and energy conditions

The spacetime metric (3.8) has not been obtain by using Einstein’s equations. However,
it is still possible to consider an effective energy–momentum tensor defined through

8πG0Tμν ≡ Rμν − 1

2
Rgμν.

For this spacetime it is easy to show that the effective energy–momentum tensor is
type I [24] with

μ = −p⊥ = mr2G ′

4πG0�2

p‖ = −2a2 cos2 θG ′ + r�G ′′

8πG0�2 m.

where μ, p⊥ and p‖ are the (effective) vacuum energy density, radial and tangential
pressures, respectively, in the orthonormal basis in which T diagonalizes.

The weak energy conditions require

μ ≥ 0, μ + p‖ ≥ 0, and μ + p⊥ ≥ 0.

This is violated for r < 0 since the effective vacuum density satisfies μ < 0 in this
asymptotically flat region (G ′ < 0 there -see Fig. 1). On the other hand, μ > 0 for
r > 0 and μ = 0 for r = 0 and θ �= π/2. In this way, an observer can cross r = 0 with
θ �= π/2 measuring an effective energy-density that varies continuously from positive
to negative values or viceversa. However, the value of μ reaches its absolute maximum
value when approaching r = 0, θ = π/2 which is |μ| = 3/(4πγ ω̃G2

0). This is of
the order of the Planck energy density, i.e., around 10113 J/m3 (in the International
System of Units). A plot of the the effective vacuum energy density around r = 0 is
shown in Fig. 2.

The spacetime also violates the weak energy conditions in the region with r > 0
around r = 0. Specifically, the inequality that is not satisfied is μ + p‖ ≥ 0. In order
to check this it suffices to consider its expression around r = 0:

μ + p‖ = − 3 sec2 θ

4a2G2
0γ ω̃

r2 + O(r3),

which satisfies μ + p‖ < 0 for r > 0.
This is not surprising since the absence of singularities implies that the spacetime

should violate at least one of the conditions appearing in the standard singularity the-
orems. We are just showing that the usual energy conditions appearing in the standard
singularity theorems are violated.
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Fig. 2 A plot of the effective vacuum energy-density μ for a black hole with m =10 Planck masses and
a = 7. Note that μ concentrates around θ = π/2 with a maximum at r = 0. As explained, Kerr’s singular
ring is replaced by a regular belt

6 Global structure

As stated in Sect. 4, there is a coordinate singularity at �ω̃ = 0. As usual [23], it
is possible to extend the coordinate system beyond �ω̃ = 0 using the coordinate
change in Sect. 3 (first step in the NJ algorithm) with straightforward predictable
consequences. The coordinate r changes its character from spacelike when �ω̃ > 0
to timelike when �ω̃ < 0. Therefore, the boundaries �ω̃ = 0 between these regions
are horizons of the spacetime. Classically (ω̃ = 0), there are two solutions to � ≡
�ω̃=0 = 0:

r± = Gom ±
√
G2

0m
2 − a2,

corresponding to an inner r− and an outer r+ (Cauchy and event, respectively) horizons.
Now, in order to get the quantum corrected horizons we should solve

�ω̃ = r2 + a2 − 2G(r)mr = 0,

which is equivalent to finding the roots of a fifth-degree polynomial. Even if there is
not a general formula for the roots in this case we can analyze the general behaviour
of the horizons by taking into account the following

• Since G(r) ≥ 0 there will not be roots for negative values of r . I.e., there are no
horizons in the r < 0 asymptotically flat regions.

• At large distances,G ∼ G0 so that one recovers the behaviour for the Kerr solution.
In particular, �ω̃ > 0 and r will be a spacelike coordinate.

• For r � 0 (a �= 0) we have �ω̃ > 0 thanks to the effect of the rotation and, again,
r will be a spacelike coordinate. Note that this is what happened in the classical
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Fig. 3 A plot of �ω̃ (quantum corrected case) versus � (classical case) for m = 10 Planck masses and
a = 7. Note that the differences between both cases are smaller as r grows

Kerr solution, however now the inner region is in full quantum regime (G ∼ 0).
We illustrate the differences between the classical and the quantum case in Fig. 3.

• As in the classical case, the number of horizons depend on the relationship between
m and a and there can be just none, one or two horizons (see Fig. 4).
As the figure suggests the value of r for the quantum corrected inner horizon
stabilizes for big enough masses satisfying m2 � a2. In effect, in this case one
can develop G in the form of a series and approximately solve �ω̃ = 0 to get

rω̃− � 1

2

√
G0γ ω̃ +

√
G0γ ω̃(8a2 + G0γ ω̃),

that in the a = 0 case provide us with rω̃− � √
γ ω̃G0/2, which is the result found

in [16] for the nonrotating case. Likewise, in this big mass case one finds that the
outer horizon satisfies

rω̃+ � Gom +
√
G2

0m
2 − a2 − (2 + γ )ω̃

4m
.

In this way, there is a small quantum correction with respect to the classical outer
horizon and, as in the non-rotating case [16], it affects the horizon by shrinking it.

• The extreme case (one horizon) was obtained in the classical case whenever a2 =
m2. However, this is now modified by the quantum effects. For instance, it is
now possible to reach the extreme case even if a = 0 (non-rotating case [16]).
Nevertheless, since both the quantum effects and the action of the rotation help to
generate an interior region with �ω̃ > 0, the inner horizon (when it exists) tends
to be bigger than the classical one and, in this way, the extreme case will be always
reached for a2 < m2. (See Fig. 5).

Let us denote by m∗ (=m∗(a)) the value of the RBH mass that is needed to make a
black hole of rotation parameter a extreme. Then, there are three possible qualitatively
different causal structures for the BH spacetime which are represented in the Penrose
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Fig. 4 A plot of �ω̃ (with a = 7) as a function of the BH mass and the coordinate r (with r ≥ 0). The
qualitative features are independent of the specific value chosen for a. The points with negative values for
�ω̃ have not been drawn in order to the boundary of the flat region (�ω̃ = 0) to indicate the position of the
inner (rω̃−) and outer (rω̃+) horizons. In this way, we observe that the number of horizons grows with the
mass, starting from none for small masses, reaching the extreme case for a certain mass m = m∗(a) (one
horizon -denoted simply by rω̃) and, from there, stabilizing to two: One inner and one outer horizon

diagrams of Fig. 6 (for the a2 < m∗2 case) and of Fig. 7 (for the a2 = m∗2 or extreme
case and the a2 > m∗2 or hyperextreme case).

7 Conclusions

The standard NJ algorithm can be used as a means of obtaining rotating spacetimes
from static spherically symmetric ones. However, we have seen that, in general, its
use does not provide us directly with a correct extended spacetime ‘beyond r = 0’,
neither from a mathematical point of view, nor from a physical point of view. Guided
by the fact that a direct natural extension can be found in Kerr’s solution, in Sect. 2 we
have put forward a prescription in order to obtain well-behaved natural extensions for
the RBH spacetimes obtained through the use of the NJ algorithm. We have seen that
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Fig. 5 A plot of �ω̃ (quantum corrected case) versus � (classical case) for m =10 Planck masses and
a � 9.151. As can be seen, the quantum corrected case is extremal for these values, while the classical case
predicts two horizons

we could choose to extend the solution with negative values of r , but in order to do
so, we first need to control the behaviour of the seed spacetime covered with negative
values of the coordinate r .

We have shown this with a particular example in which the blind application of the
standard algorithm provide us with an analytical extension of the obtained rotating
solution that turned out to be totally incorrect from a physical point of view. On the
other hand, if one carries out a previous analysis of the seed spacetime covered with
negative values of r and uses the information in the algorithm, it provide us with a
direct correct extension of the rotating solution for negative values of r , both from
a mathematical and from a physical point of view. The obtained extension, however,
is not an analytical extension since G is a C2 function. In fact, this is just another
example in which the analytical extension is not the correct option (see [27] for other
cases and further clarifications).

The application of the algorithm to a quantum improved solution has allowed us to
obtain the extended spacetime corresponding to a regular rotating black hole, what is
in itself a very interesting result. Moreover, we have seen that the algorithm provides
us with an unique running G from our chosen seed solution. We have rigourously
shown that the obtained spacetime does not have scalar curvature singularities and
that this fact is linked to its violation of the weak energy conditions (what allows the
spacetime to avoid the conditions for the existence of singularities appearing in the
standard singularity theorems). In this way, while in the (classical) Kerr solution � =
0 ⇔ (r = 0, θ = π/2) defines a singular ring, in the quantum improved spacetime
� = 0 is just a regular belt. The features of the obtained regular belt are similar to those
heuristically described in [1] and obtained for noncommutative inspired regular RBH
in [28,29]. However, they differ from the features found for the exact regular RBH
solutions in the framework of conformal quantum gravity [30], where the spacetime
is inextendible beyond “r = 0” and the curvature invariants are continuous.

We have seen that there are three qualitatively different cases for the obtained
regular rotating black hole according to the relationship between m and a what, in
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Fig. 6 Penrose diagram for a regular rotating black hole satisfying a2 < m∗2. The spacetime has been
extended through r = 0 to asymptotically flat regions with negative values for r (IV or IV’). The grey
regions are the regions where the coordinate r is timelike. Starting from the asymptotically flat region I, one
could enter region II by traversing the event horizon rω̃+. Region III could next be reached by traversing
the Cauchy horizon rω̃−. Then, the asymptotically flat region IV could be reached by passing through the
regular r = 0. (Note that, since there are not singularities, unlike in Kerr’s solution, the diagram is valid for
all θ )

fact, is similar to the situation found in Kerr’s case. In particular, we have seen that
the number of horizons and the corresponding causal structures in the classical and
quantum-improved cases are strongly related. However, the position of the horizons is
modified due to the repulsive character of the quantum improvements. In this way, the
inner horizon is bigger than the classical inner horizon, while the outer horizon shrinks
with respect to the classical one. Related to this effect, we get that the extreme case is
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Fig. 7 Penrose diagrams for an extreme (a2 = m∗2) regular rotating black hole (to the left) and for a
hyperextreme (a2 > m∗2) regular rotating black holes (to the right). In the extreme case there is only one
horizon denoted by rω̃ in which the coordinate r is lightlike. r is never timelike. rω̃ acts as both an event
and a Cauchy horizon. In the hyperextreme case there are no horizons and r is always spacelike. In both
cases, the spacetime has been extended through r = 0 to an asymptotically flat region with negative values
for r (Note that, again, since there are not singularities, the diagrams are valid for all θ )

obtained for smaller rotations than in the classical case when quantum improvements
in the RBH spacetime are considered (i.e., it is obtained for a2 < m2).

It must be taken into account that the reliability of the QEG approach used to obtain
the seed improved Schwarzschild solution [16] is questionable in the planckian regime,
so that the regular belt is just suggested by the approach, but can not be guaranteed.
Indeed, only a still nonexistent full Quantum Gravity Theory could provide us with
the exact description in the planckian regime.

Acknowledgements R. Torres acknowledges the financial support of the Ministerio de Economía y Com-
petitividad (Spain), Projects MTM2014-54855-P.

Appendix: Running G for r < 0

In the introduction we stated that the Functional Renormalization Group Equation
leads to a running G with the form [16,17]
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G(k) = G0

1 + ωG0k2 .

Then, one converts the energy scale dependence into a position dependence, what can
be written as

k(P) = ξ

d(P)
,

where ξ is a numerical constant to be fixed and d(P) is the distance scale that provides
the relevant cutoff when a test particle is located at a point P . Finally, if the distance
scale d(P) form the point P to the center of the black hole must be diffeomorphism
invariant then one could write

d(P) =
∫
C

√
|ds2|,

where C is a curve joining the points. In the case of a spherically symmetric BH the
symmetry imposes that d = d(r), however one still has to find an expression for the
function, what requires considering the different possibilities for C.

So far, we have been following the procedure described in [16]. We will still do it,
with the sole difference that now we want to consider r < 0. It is straightforward to see
that Schwarzschild’s solution has no horizons for r < 0 (or, equivalently, for negative
masses) and that the coordinates r and t remain spacelike and timelike, respectively,
for all r < 0, what in fact makes the computations easier than in the r > 0 case. First,
let us consider the radial curve C1: r = λ, t = t0, θ = θ0, φ = φ0. We have for all
r ≤ 0

d1(r) =
∫ 0

r

(
1 − 2G0m,

r

)−1/2

dr

= √
r(r − 2G0m) − 2G0m tanh−1

√
r

r − 2G0m
. (7.1)

(Note that d(r < 0) > 0). The behaviour of this function for |r | � G0m is

d1(r) � 2

3

1√
2G0m

|r |3/2 (7.2)

while for |r | � G0m
d1(r) � |r |. (7.3)

This is exactly the behaviour obtained for r > 0 in [16], with the only difference that
we have to add a modulus (||) to our negative r . Likewise, following [16], it is easy
to see that other curves provide the same behaviour (7.2) for |r | � G0m, while for
|r | � G0m the behaviour (7.3) provides the largest momentum scale and, therefore,
the actual cutoff. In this way, even if one cannot assert that (7.1) provide us with
the exact behaviour of the distance scale, one concludes that the correct qualitative
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behaviour should interpolate between |r |3/2 and |r |, what suggest to use in concrete
computations the interpolating distance scale

d(r ≤ 0) =
(

r3

r − γG0m

)1/2

with γ = 9/2. Now, using k(r) = ξ/d(r) and the expression for the running G

G(r ≤ 0) = G0r3

r3 + ω̃G0(r − γG0m)
,

where ω̃ ≡ ωξ2. Therefore, as stated in (3.7), the behaviour for r ≥ 0 (3.2) and the
just found behaviour for r ≤ 0 can be combined in a running G for all r as

G(r) = G0|r |3
|r |3 + ω̃G0(|r | + γG0m)

.
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