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Abstract We consider d-dimensional solutions to the electrovacuum Einstein–
Maxwell equations with the Weyl tensor of type N and a null Maxwell (p + 1)-form
field. We prove that such spacetimes are necessarily aligned, i.e. the Weyl tensor
of the corresponding spacetime and the electromagnetic field share the same aligned
null direction (AND). Moreover, this AND is geodetic, shear-free, non-expanding and
non-twisting and hence Einstein–Maxwell equations imply that Weyl type N space-
times with a null Maxwell (p + 1)-form field belong to the Kundt class. Moreover,
these Kundt spacetimes are necessarily CSI and the (p + 1)-form is VSI . Finally,
a general coordinate form of solutions and a reduction of the field equations are
discussed.

Keywords Einstein–Maxwell equations · Null (p + 1) forms · Weyl type N
spacetimes · Kundt spacetimes · CSI spacetimes · VSI spacetimes · Higher
dimensions

1 Introduction and summary

We study d-dimensional Weyl type N spacetimes with null electromagnetic fields in
the context of the generalized Einstein–Maxwell p-form theory. The theory describes
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an interaction between a gravitational field g and an electromagnetic field F and in
the electrovacuum case (no sources of the electromagnetic field are present), its action
takes the form

S = 1

16π

∫
dd x

√−g
(
R − 2� − κ0

p+1 Fa0...ap F
a0...ap

)
, (1.1)

where R is the Ricci scalar, � is the cosmological constant, κ0 is a coupling constant
and F is a closed (p + 1)-form, i.e.

∇[a Fb0...bp] = 0. (1.2)

Varying the action (1.1) with respect to the metric g and to the local potential p-
form A of F, the least action principle yields a coupled system of the generalized
Einstein–Maxwell equations for the pair (g, F)

Rab − 1
2 Rgab + �gab = 8πT EM

ab , (1.3)

∇a Fab1...bp = 0, (1.4)

respectively. Here, T EM
ab is the electromagnetic stress–energy tensor associated with

the Maxwell field F,

8π

κ0
T EM
ab ≡ Fab1...bp F

b1...bp
b − 1

2(p + 1)
gabFa0...ap F

a0...ap . (1.5)

In the special case of d = 4 and p = 1, (1.1) reduces to the action of the standard
electrovacuum Einstein–Maxwell theory, which has been extensively studied in the
literature. We refer to the system (1.2)–(1.4) as the Einstein–Maxwell equations.

Throughout the paper, we restrict ourselves to values 0 < p < d − 2 and d ≥ 4.
Further, we assume that the Weyl tensor is of algebraic type N in the sense of the
null alignment classification (see [1,2] or [3] for a review). This condition can be
reformulated in terms of the existence of a null vector � such that [4]

Cab[cd�e] = 0. (1.6)

The vector � is then referred to as the Weyl aligned null direction (Weyl AND or
WAND) of the spacetime. As in four dimensions, such a spacetime represents a
transverse gravitational wave propagating along the null direction � (see the physical
interpretation of distinct null frame components of the Weyl tensor carried out in [5]).

Regarding the electromagnetic field F, we assume that F is a (non-vanishing) null
(i.e. type N) form [1], i.e. there exists a null vector k such that [6]

ka Fab1...bp = 0, k[a Fb0...bp] = 0, (1.7)

where k is an AND of the Maxwell field F. In four-dimensional spacetimes, distin-
guished geometrical role of null electromagnetic two-forms satisfying the source-free
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Maxwell equations is well known due to the Mariot–Robinson theorem (see Theo-
rem 7.4 in [7]). It states that a four-dimensional spacetime admits a shear-free geodetic
null congruence if and only if it admits a null Maxwell 2-form (a test field) satisfying
the Maxwell equations. In higher dimensions, there is a partial generalization of the
theorem for Maxwell (p + 1)-form fields (see Lemmas 3 and 4 in [8]).

In four dimensions, it is known that Petrov type N Einstein–Maxwell fields are either
non-aligned and non-null or aligned (null or non-null) and Kundt (see Tables 38.9
and 38.10 in [7] and Theorems 7.4, 28.4 and 30.3 therein) and any type III/N
pure-radiational metric is necessarily aligned (see Theorem 3 of [9]). Thus, in four
dimensions, it follows that anyPetrov typeNnull Einstein–Maxwell field is aligned and
Kundt. Here, we extend this result to any dimension d ≥ 4 and any electromagnetic
(p + 1)-form field such that 0 < p < d − 2.

As a consequence of our previous result [10] it follows that a spacetime correspond-
ing to a Weyl type N solution of the Einstein–Maxwell equations with a null Maxwell
(p + 1)-form F is necessarily aligned with F. In other words, the null vectors k and
� defined above are parallel. Proposition 1.1 then states that the common AND � of the
Weyl tensor and of the Maxwell field F is tangent to a shear-free, expansion-free and
non-twisting geodetic null congruence, i.e. the spacetime belongs to the Kundt class.

Proposition 1.1 All Weyl type N solutions of the Einstein–Maxwell equations with a
non-vanishing null (p + 1)-form field are aligned and Kundt.

Further, applying results of Appendix A, where it is shown that all Weyl type N
Kundt spacetimes with type N traceless Ricci tensor are CSI and an arbitrary covariant
derivative of their Riemann tensor is even VSI, it follows that:

Proposition 1.2 Any Weyl type N solution of the Einstein–Maxwell equations with
a non-vanishing null electromagnetic field consists of a CSI spacetime and a VSI
(p + 1)-form.1 For � = 0, the corresponding spacetime is V SI .

As a consequence, such solutions possess a certain universality property [6,17].
The paper is organized as follows. In the next section, we review some basic notions

and notation employed throughout the paper and briefly discuss the structure of the
field equations following from (1.1) in the case of the null Maxwell field (Sect. 2).
Section 3 contains proofs of Propositions 1.1 and 1.2, in which more general results
of Appendix A are employed. In Sect. 4, a general coordinate form of both the metric
and the Maxwell field in adapted coordinates is obtained. Subsequently, a reduction
of the Einstein–Maxwell equations to a set of equations for quantities emerging in the
local description of g and F follows. A class of solutions with a covariantly constant
WAND, pp –waves, is briefly discussed. At the end of the paper, Appendix A devoted
to the study of scalar curvature invariants in general Weyl type N Kundt spacetimes
of traceless Ricci type N is included.

1 T is a CSI (constant scalar invariant) tensor if all scalar polynomial invariants constructed from T and its
covariant derivatives of arbitrary order are constant. If, moreover, all these scalar invariants vanish, we say
that T is a VSI (vanishing scalar invariant) tensor. CSI/VSI spacetime is then a spacetime whose Riemann
tensor is CSI/VSI , see [11–13] and [14–16], respectively (see also [3] and reference therein).
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2 Preliminaries

For purposes of this paper, let us recall the notation, algebraic classification and NP
and GHP formalisms as were introduced in [1,2,8,18] and summarized in [3]. In a
d-dimensional spacetime, we shall consider a local null frame {e(a)} ≡ {�, n,m(i)}
with two null vector fields �, n and d − 2 spacelike vector fields {m(i)} such that they
satisfy the following orthogonality relations

�an
a = 1, �a�

a = nan
a = �am

a
(i) = nam

a
(i) = 0, m(i)

a ma
( j) = δij . (2.1)

Let us note that relations (2.1) are invariant under Lorentz transformations of {e(a)}.

2.1 Ricci rotation coefficients and directional derivatives

Now, let us introduce a few basic objects of the higher-dimensional Newman–Penrose
formalism. Given a null frame {�, n, m(i)}, consider covariant derivatives of the
individual frame vectors

Lab ≡ ∇b�a, Nab ≡ ∇bna,
i
Mab ≡ ∇bm

(i)
a . (2.2)

Projecting these derivatives onto the null frame, one obtains a set of scalars L(a)(b),

N(a)(b) and
i
M (a)(b), the so-called Ricci rotation coefficients. We omit the parenthesis,

whenever it is clear that the corresponding quantities are projections of a tensor onto
the null frame. Due to the orthogonality relations (2.1) satisfied by the null frame
vectors, the corresponding rotation coefficients fulfill the following equalities

N0a + L1a = 0,
i
M0a + Lia = 0,

i
M1a + Nia = 0,

i
M ja +

j
Mia = 0, (2.3)

L0a = N1a = i
Mia = 0. (2.4)

For transformation properties of the Ricci rotation coefficients under the Lorentz trans-
formations, see [18]. Lastly, let us denote the null frame directional derivatives as

D ≡ �a∇a, � ≡ na∇a, δi ≡ ma
(i)∇a . (2.5)

Using these, the action of the covariant derivative ∇ can be decomposed in the fol-
lowing way

∇a = naD + m(i)
a δi + �a�. (2.6)

2.2 Optical matrix and optical scalars

When studying geometrical properties of null congruences, it is usually convenient
to employ an adapted null frame with e(0) being the null vector tangent to the con-
gruence. Then, some information on geometry of the congruence is encoded in Lab.
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For example, the congruence is geodetic if and only if κi ≡ Li0 vanishes. In such a
case, the scalar L10 corresponds to an affine parametrization of the congruence—it is
affinely parametrized if and only if L10 = 0.

For a geodetic congruence, some other geometrical properties are encoded in the
optical matrix ρi j ≡ Li j . Consider the following decomposition of ρi j

ρi j = σi j + θδi j + Ai j , (2.7)

where σi j denotes the shear part, θδi j is the expansion part and Ai j is the antisym-
metric part of ρi j . Using these particular matrices, the following optical scalars can
be defined: the expansion θ , shear σ 2 ≡ σi jσi j and twist ω2 ≡ Ai j Ai j of the corre-
sponding congruence.

2.3 Weyl type N spacetimes and null electromagnetic fields

Recall the conditions (1.7) for F to be a null form. Employing an adapted frame
{k, n,m(i)} with k being the null vector emerging in (1.7), the only non-vanishing
independent null frame components of F are the boost weight (−1) quantities

ϕ′
k1...kp ≡ Fab...cn

amb
(k1)

. . .mc
(kp)

, (2.8)

i.e. F is of type N with the aligned null direction (AND) k (see e.g. Sect. 3 of [8]).
For a Weyl type N spacetime, the only non-trivial independent frame components of

the Weyl tensor C in an adapted frame with e(0) ≡ � being the corresponding WAND
are

′
i j ≡ Cabcdn

amb
(i)n

cmd
( j). (2.9)

If also the components ′
i j vanish, the Weyl tensor is said to be of algebraic type O

and the spacetime is conformally flat.

2.4 Einstein equations for null electromagnetic fields

For a null form F (1.7), the scalar invariant Fa0...ap F
a0...ap in (1.5) vanishes and

T EM
ab is of type N (with the same AND k). In an adapted frame {k, n,m(i)}, its only

non-vanishing null frame component reads

T EM
11 = κ0

8π
F1a1...ap F

0a1...ap . (2.10)

Thus, denoting �̃ ≡ 2�/(d − 2), the field Eq. (1.3) takes the form

Rab = �̃gab + 8πT EM
11 kakb, (2.11)

or, equivalently, in the GHP formalism (see Table 3 of [8])

ω = 0, ψi = 0, φ = �̃, φi j = �̃δi j , ψ ′
i = 0, ω′ = 8πT EM

11 . (2.12)
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Thus, the corresponding solution is of traceless Ricci type N and the multiple Ricci
AND is precisely the multiple AND k of the Maxwell field F. Moreover, due to the
alignment result for spacetimes of Weyl and traceless Ricci type N (see Proposition 2.1
of [10]), we obtain that the Maxwell field F is aligned with the Weyl tensor, i.e. k is
also a quadruple WAND in the spacetime, i.e. k ∝ � and without loss of generality,
one can set k = �. Furthermore, � is geodetic—this follows independently either from
the contracted Bianchi identity or from the source-free Maxwell equations for a null
Maxwell (test) field (see [19] for the 2-form case and [8] for an arbitrary p).

2.5 Maxwell equations for null electromagnetic fields

Employing an adapted null frame {�, n,m(i)}, the source-free GHP Maxwell
Eqs. (1.2), (1.4) for a null Maxwell field F with a geodetic AND � reduce to (see
Sect. 3 of [8]):

(
pρ[k1|i + pρi[k1| − ρδ[k1|i

)
ϕ′
i |k2...kp] = 0, (2.13)

ϕ′[k1...kpρkp+1kp+2] = 0, (2.14)

ρ[i j]ϕ′
i jk1...kp−2

= 0, (2.15)

ðiϕ
′
ik1...kp−1

= τiϕ
′
ik1...kp−1

, (2.16)

ð[k1ϕ
′
k2...kp+1] = τ[k1ϕ

′
k2...kp+1], (2.17)

2þϕ′
k1...kp = (

pρ[k1|i − pρi[k1| − ρδ[k1|i
)
ϕ′
i |k2...kp]. (2.18)

For p = 1, Eq. (2.15) does not appear. Also note that for p > d − 4, Eq. (2.14) is
identically satisfied.

3 Proofs of the main results

Proof of Proposition 1.1 We have already argued that � is the common geodetic AND
of the Weyl tensor and the corresponding Maxwell field. Now, we shall prove that its
optical matrix ρ vanishes. In order to do that, we start from the canonical form of the
optical matrix corresponding to the WAND in spacetimes of Weyl and traceless Ricci
type N (given by Eq. (1.3) of [10]) and argue that it is compatible with restrictions
following from the Maxwell equations (see Lemmas 3 and 4 in [8]) only if ρ = 0. For
simplicity, let us assume that p > 1. The p = 1 case can be easily proved in a similar
way using the stronger result of Lemma 4 of [8].

LetF be a frame in which ρ takes the canonical form and let Si j ≡ ρ(i j), Ai j ≡ ρ[i j],
ρ ≡ Tr ρ. The canonical form of ρ in spacetimes of Weyl and traceless Ricci type N
reads ρ = diag(L, 0, . . . , 0) with the only possibly non-vanishing 2 × 2 block

L = s

[
1 a

−a b

]
, (3.1)

where b �= 1, otherwise the spacetime is Einstein, i.e. ω′ = 0.
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First, we show that ρ is traceless, i.e. ρ = 0. According to Lemma 3 of [8], the
eigenvalues {Si } of S can be rearranged such that

p+1∑
i=2

Si = ρ

2
=

d−1∑
j=p+2

S j . (3.2)

Assume that ρ is non-vanishing. Then each of these two sums has to contain at least
one non-vanishing element of Si . In our case, the only non-vanishing eigenvalues of S
are s and sb. Hence, each sum in (3.2) has to contain exactly one of these two elements.
Since the rest of the eigenvalues of S vanishes, these sums reduce to s = ρ/2 and
sb = ρ/2. In particular, one has that b = 1. This contradicts our assumption of the
presence of a non-trivial Maxwell field F in the spacetime. Hence ρ = 0.

Now, we prove that this already implies ρ = 0. From ρ = 0, we have that s = 0
or b = −1. Of course, if s = 0, we are done. Hence, let us suppose that s �= 0
and b = −1 instead. Note that, at the moment, ρ can be non-trivial only if both the
shear and the twist of the corresponding geodetic null congruences are non-vanishing,
otherwise the Sachs equation implies ρ = 0 (see (15b) in [18]). Hence both s and a
in (3.1) are non-vanishing. Let us define auxiliary GHP scalars T , U and V as

Tk1...kp ≡ S[k1|iϕ′
i |k2...kp] = S[k1|2ϕ′

2|k2...kp] + S[k1|3ϕ′
3|k2...kp], (3.3)

Uk1...kp+2 ≡ ϕ′[k1...kp Akp+1kp+2], (3.4)

Vk1...kp−2 ≡ Ai jϕ
′
i jk1...kp−2

= 2saϕ′
23k1...kp−2

(3.5)

(V is defined only for p > 1). The Maxwell Eqs. (2.13), (2.14) and (2.15) then read

T = 0, U = 0, V = 0. (3.6)

In view of (3.5), the last equation of (3.6) immediately implies ϕ′
23k1...kp−2

= 0 for
every k1, . . . , kp−2 > 3. Let us further examine T and U for a particular choice of
indices. For every k1, . . . , kp > 3, we have the following

sϕ′
2k2...kp ∝ T2k2...kp , (3.7)

sϕ′
3k2...kp ∝ T3k2...kp , (3.8)

saϕ′
k1...kp ∝ U23k1...kp . (3.9)

Thus, according to the first and the second equation of (3.6), also ϕ′
2k2...kp

, ϕ′
3k2...kp

and ϕ′
k1...kp

vanish. Hence ϕ′ vanishes completely. Since the Maxwell form F is non-
vanishing, we arrive at a contradiction. Thus, ρ has to be zero and the spacetime is
Kundt. 	

Moreover, since the corresponding spacetime is of the Weyl type N with the Kundt
AND � and its Ricci tensor takes the form (2.11), we conclude that it is a degenerate
Kundt spacetime (see Sect. 7.1.2 in [3] and references therein).
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Proof of of Proposition 1.2 Suppose that (g, F) is a solution of the Einstein–Maxwell
equations satisfying our assumptions. TheCSI property of g follows immediately from
Theorem 1.1 and Corollary A.5. In the case of � = 0, the spacetime is of Weyl and
Ricci type N. Hence its Riemann tensor is also of type N and hence the spacetime is
V SI (see Theorem 1 of [15]).

To prove that F is V SI , recall that the spacetime is a degenerate Kundt space-
time and F is a closed form of type N. Then, employing the characterization of
VSI electromagnetic (p + 1)-forms (Theorem 1.5 of [6]), we arrive at the desired
result. 	


Theorems 1.1 and 1.2 suggest that such solutions may be of interest also in various
generalized theories. In particular, F corresponding to any solution (g, F) under
consideration is a universal [17] test solution to generalized electrodynamics on the
fixed background metric g, i.e. it is a solution to any electrodynamics with the field
equations of the form

dF = 0, ∗d ∗ F̃ = 0, (3.10)

where ∗ denotes the Hodge dual in g and F̃ is any (p + 1)-form constructed as
a polynomial of F and its covariant derivatives of an arbitrary order (see Sect. 2.4
of [6]).2 Thus, (g, F) is also a solution to the Einstein Eq. (1.3) coupled with the
electrodynamics (3.10).

4 General form of the solution

In this section, we discuss the general form of a Weyl type N metric g and a null
Maxwell (p + 1)-form field F satisfying the Einstein–Maxwell Eqs. (1.2)–(1.4).

Since (g, F) is a degenerate Kundt spacetime with a VSI form, the discussion on
the local form of a solution in Sects. 2 and 3 of the paper [6] applies. In particular,
g and F take the local coordinate form (9) and (13) of [6], respectively. These are
then subject to the field Eqs. (15), (21), (22), (24) and (25) of the corresponding paper.
In particular, negative boost weight field equations ω = 0, ψi = 0 are automatically
satisfied.

However, such a spacetime is, in general, of the Weyl type II. Thus, in order to
obtain a solution of the Weyl type N, conditions on an algebraic type of the Weyl
tensor need to be imposed. This can be achieved by employing conditions II(a)–III(b)
of [20], where an explicit algebraic classification of the general Kundt line element
was carried out. Doing so, the local form of both g and the field equations further
reduces.

It is convenient to discuss the coordinate form of the metric first. Then, we briefly
discuss the general coordinate form of the electromagnetic field.

As has already been said, the local form of the metric in adapted Kundt coordinates
{r, u, xα} with r being an affine parameter of the multiple WAND � ≡ ∂r is given by
(9) of [6]. Employing Weyl type N conditions II(a)–III(b) of [20], the local form of g
further reduces to

2 For F̃ = F, equations (3.10) reduce to the Maxwell equations.
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ds2 = 2H(r, u, x)du2 + 2dudr + 2Wα(r, u, x)dxαdu + gαβ(u, x)dxαdxβ, (4.1)

where g⊥ ≡ gαβdxαdxβ is a Riemannian metric on a (d − 2)-dimensional transverse
space spanned by {xα}, which is of constant sectional curvature K depending on the
cosmological constant and the dimension of the spacetime as

K = �̃

d − 1
= 2�

(d − 1)(d − 2)
(4.2)

and the metric functions H and Wα take the form

Wα(r, u, x) = rW (1)
α (u, x) + W (0)

α (u, x), (4.3)

H(r, u, x) = r2H (2)(u, x) + r H (1)(u, x) + H (0)(u, x). (4.4)

As a consequence of the fact that g⊥ is a constant curvature metric with K given by
(4.2), the field Eqs. (22), (21) of [6] corresponding to the boost weight zero equations
φ = �̃, φi j = �̃δi j reduce to

2H (2) = 1

4
W (1)

α W (1)α + K , (4.5)

W (1)
(α||β) − 1

2
W (1)

α W (1)
β = 2Kgαβ, (4.6)

respectively. Here, || denotes the covariant derivative in the transverse space with the
metric g⊥. The contracted Bianchi identity (see (23) of [6]) for the transverse metric
g⊥ is automatically satisfied provided Weyl type condition (IId) of [20] holds

W (1)
[α||β] = 0. (4.7)

Further, employing condition III(a) of [20], Eq. (24) of [6] corresponding to the boost
weight (−1) field equation ψ ′

i = 0 reads

2H (1)
,α = W (1)

α,u − W (0)
[α||β]W

(1)β + 1

2
gαβ,uW

(1)β + 1

2
W (1)

β W (0)βW (1)
α + 2KW (0)

α .

(4.8)
Conditions III(a), III(b) of [20] reduce to

H (2)
,α − H (2)W (1)

α = 0, (4.9)

W (0)
[α||β]||γ = 1

2

(
W (0)

γβ W (1)
α − W (0)

γ α W
(1)
β

)
− K

(
gγβW

(0)
α − gγαW

(0)
β

)
− gγ [β,u||α],

(4.10)

respectively, where the auxiliary geometrical quantity W (0)
αβ is defined as

W (0)
αβ ≡ W (0)

(α||β) − 1

2
gαβ,u . (4.11)
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Finally, Eq. (25) of [6] corresponding to the boost weight (−2) field equation ω′ =
κ0 fα...β f α...β simplifies to a slightly simpler form

LBH
(0) + W (1)αH (0)

,α +
(

4H (2) + 2(d − 3)K
)
H (0) = 2W (0)

α W (0)αH (2)

+ gαβW (0)
αβ H (1) + W 0[α||β]W (0)[α||β] + W (0)

α,u
||α − W (0)

[α||β]W
(1)αW (0)β

+ 1

2
gαβ,u

(
W (1)αW (0)β − 1

2
gαβ

,u

)
− 1

2
gαβgαβ,uu − κ0 fα...β f α...β ,

(4.12)

where LB denotes the Laplace–Beltrami operator in the transverse space, i.e. in
coordinates, it acts on a scalar as LB f ≡ gαβ f,α||β .

The coordinate form (4.1) of the metric is preserved under the coordinate transfor-
mations (81) of [21]. In particular, since the spacetime is a CSI spacetime, without
loss of generality one can assume that components gαβ are independent of u (see The-
orem 4.1 of [11]). Hence, in the case of a V SI spacetime (� = 0), the coordinates
can be chosen such that gαβ = δαβ and (4.1) reduces to the standard form of the VSI
line element (8) of [16] for which most of the above equations simplify.

Since the metric g is a degenerate Kundt metric and the Maxwell field F is a closed
form of type N, F takes the coordinate form (see (13) of [6])

F = 1

p! fα1...αp (u, xα)du ∧ dxα1 ∧ · · · ∧ dxαp (4.13)

in coordinates (r, u, xα) adopted in the previous section. Here, fα1...αp ≡ Fuα1...αp .
For F in the form (4.13), the Maxwell Eqs. (1.2) and (1.4) reduce to the effective
Maxwell equations

(√
g⊥ f βα2...αp

)
,β

= 0, f[α1...αp,β] = 0, (4.14)

for a p-form f in the (d −2)-dimensional transverse Riemannian space (see Sect. 2.2
of [6]).

In [6], it was pointed out that, under suitable conditions, solutions (g, F) of the
Einstein–Maxwell equations with a V SI metric g and a VSI Maxwell field F are
universal (in the sense of Sect. 3.2 in [6]) and thus also simultaneously solve various
Einstein-generalized Maxwell theories. Weyl type N universal solutions considered
in [6] are necessarily V SI pp-waves, i.e. spacetimes admitting a covariantly con-
stant null vector field (see [3,6] and references therein), for which the field equations
simplify considerably.

Let us conclude with a brief summary of Sect. 4. Any Weyl type N spacetime
with a metric g corresponding to a solution of the electrovacuum Einstein–Maxwell
equations with a null Maxwell field F can be expressed in the coordinate form (4.1)
while the null Maxwell form F takes the coordinate form (4.13). The transverse metric
g⊥ in the line element (4.1) is a metric on a Riemannian space of constant curvature
K given by (4.2) and both g and F have to satisfy (4.5)–(4.10), (4.12), and (4.14).
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Appendix A: Curvature invariants in Kundt spacetimes of Weyl and
traceless Ricci type N

Let us study scalar curvature invariants in the Kundt subclass of Weyl type N space-
times with the Ricci tensor of the form

Rab = �̃gab + ηkakb, (A.1)

where �̃ is a constant, η is a scalar and k is a null vector. In general, a Kundt vector in
a Ricci type II spacetime is necessarily a multiple WAND (see e.g. Proposition 2 of
[18]). Thus, in our case, it must coincide with the common AND � of the Weyl and the
Ricci tensor. Hence, the spacetime is of Riemann type II (i.e. the Riemann tensor is
of type II) with the Kundt AND �. In addition to this, all boost weight zero null frame
components of the Riemann tensor are constant (depending on �̃).

If �̃ = 0, the Riemann tensor is of type N and it is aligned with the Kundt vector
�. Thus, according to Theorem 1 of [15] on characterization of V SI spacetimes, the
corresponding spacetime is V SI .

If �̃ is non-vanishing, then the spacetime is at least CSI0, i.e. all curvature invari-
ants constructed solely from the Riemann tensor (without incorporating its covariant
derivatives) are constant. Indeed, any full contraction of a tensor T is completely deter-
mined by its boost weight zero part T (0). Since in our case, the boost weight zero part
R(0) of the Riemann tensor R possesses only constant null frame components, also
any full contraction of a tensor given by a series of tensor products of the Riemann
tensor with itself or with the metric (which consists only of its boost weight zero part)
is necessarily constant. See also Sect. 2.3 of [11].

In order to study higher-order invariants constructed using also covariant derivatives
of R, we make use of the balanced scalar approach introduced in [14], see also [22].
First, let us define k-balancedness of a tensor.

Definition A.1 We say that a tensor T is k-balanced if there exists a null vector �

such that bo�(T ) < −k and for any of its null frame components η with boost weight
b < −k, the derivative D−b−kη is zero.

Now, let us prove the following result on k-balancedness of covariant derivatives ∇(n)R
of the Riemann tensor.

Proposition A.2 In a Weyl type N Kundt spacetime with the Ricci tensor of the form
(A.1), an arbitrary covariant derivative of the Riemann tensor is 1-balanced and thus
it is V SI .

Proof Let us stress out again that such a spacetime is necessarily aligned [10], and
hence without loss of generality one can assume that k = �. Also, using the notation
of the GHP formalism [8], the boost weight (−2) component of the Ricci tensor reads
ω′ = η.
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Consider the Ricci decomposition of the Riemann tensor [7],

R = G + E + C, (A.2)

where G is the so-called scalar part (Gabcd ∝ Rga[cgd]b ), E is the semi-traceless part
(Eabcd ∝ ga[cSd]b − gb[cSd]a , Sab being the traceless part of the Ricci tensor) and the
Weyl tensor C is the fully traceless part of the Riemann tensor.

Since the Ricci scalar R is constant (R ∝ �̃), we have ∇G = 0 and hence

∇R = ∇C + ∇E. (A.3)

For Weyl type N Kundt spacetimes with the Ricci tensor of the form (A.1), Eqs. (28)–
(30) in [23] are still valid together with Dω′ = 0 and thus the following generalizations
of Lemmas 4.2 and 4.3 in [23] are also valid.3

Lemma A.3 In a Weyl type N Kundt spacetime with the Ricci tensor of the form

(A.1), for a 1-balanced scalar η, scalars L11η, τiη, L1iη, κ ′
iη, ρ

′
i jη,

i
Mj1 η,

i
Mkl η and

Dη, δiη, η are also 1-balanced scalars.

Lemma A.4 In aWeyl type N Kundt spacetime with the Ricci tensor of the form (A.1),
a covariant derivative of a 1-balanced tensor is again a 1-balanced tensor.

Since the Weyl tensor and the traceless part of the Ricci tensor, η�a�b, as well as E
are 1-balanced, their arbitrary derivative is also 1-balanced and so is any covariant
derivative of the Riemann tensor, i.e. ∇(k)R is 1-balanced for any k ∈ N. 	


Thus, although the Riemann tensor is not V SI , its first covariant derivative is. In
particular, this means that the only non-trivial scalar curvature invariants are precisely
those constructed from the Riemann tensor itself. However, we already know that
all these invariants are necessarily constant. Therefore, we immediately obtain the
following result.

Corollary A.5 AWeyl type N Kundt spacetime with the Ricci tensor of the form (A.1)
is CSI.
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