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Abstract Every evolution of a fluid is uniquely described by an energy tensor. But the
converse is not true: an energy tensor may describe the evolution of different fluids.
The problem of determining them is called here the inverse problem. This problem
may admit unphysical or non-deterministic solutions. This paper is devoted to solve
the inverse problem for perfect energy tensors in the class of perfect fluids evolving
in local thermal equilibrium (l.t.e.). The starting point is a previous result (Coll and
Ferrando in J Math Phys 30:2918–2922, 1989) showing that thermodynamic fluids
evolving in l.t.e. admit a purely hydrodynamic characterization. This characterization
allows solving this inverse problem in a very compact form. The paradigmatic case
of perfect energy tensors representing the evolution of ideal gases is studied in detail
and some applications and examples are outlined.
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1 Introduction: the inverse problem for perfect energy tensors

A perfect fluid f means here a Pascalian1 fluid of zero heat conductivity. In a domain
Ω of the space–time,2 to every one of its possible evolutions corresponds an energy
tensor3 T f of the form

T f = (ρ f + p f )u f ⊗ u f + p f g, (1)

where g is the space–time metric and ρ f , p f and u f are respectively the energy
density, pressure and unit velocity of the fluid. In the absence of exterior constraints,
this energy tensor is divergence-free:

∇ · T f = 0. (2)

Tensor fields of the form (1) and satisfying (2) will be called perfect energy tensors
herein.

Thus, a set T f ≡ {T f } is associated to every perfect fluid f , namely those perfect
energy tensors corresponding to every one of its possible evolutions in the space–time
domain Ω . The energetic description of every evolution of the perfect fluid f consists
of the specification of the perfect energy tensor T f that corresponds to this evolution,
i.e. to the specification of the distribution in Ω of its hydrodynamic variables ρ f , p f

and u f . The left-hand diagram in Fig. 1 outlines this situation.
It becomes obvious that the sole energetic description of a perfect fluid is insufficient

to characterize it physically. In other words, the sets T f and T f̄ of perfect energy
tensors corresponding to all possible evolutions of two different perfect fluids f and
f̄ are not necessarily disjoint,T f ∩T f̄ �= ∅, so that the equation T f = T f̄ for different

perfect fluids f and f̄ may admit non vanishing solutions T . The right-hand diagram
in Fig. 1 illustrates this situation.

On the other hand, perfect energy tensors may be generated without any relation to
perfect fluids.4 This means that, if T denotes the set of all perfect energy tensors T ,
T = {T | T =(ρ+p)u ⊗ u + p g, ∇ · T =0}, if F denotes the set of all perfect fluids
f, F = { f }, and if TF denotes the set of all perfect energy tensors T f corresponding
to all possible evolutions of all perfect fluids, TF = {T f ,∀ f ∈ F}, then TF is strictly
contained in T : TF ⊂ T. In other words, there exist perfect energy tensors T in T
that do not correspond to (any particular evolutions of) perfect fluids. The left-hand
diagram in Fig. 2 illustrates this situation.

1 A fluid is said Pascalian if it has zero viscosity and, for an observer at rest, its stress tensor is isotropic.
2 In the present context, it does not matter whether the fluid contributes to the gravitational field or is a test
fluid in any given space–time.
3 We follow here the extended use of calling energy tensor the field of energy tensors at every point of the
space–time domain.
4 Perfect energy tensors unrelated to perfect fluids may be generated both theoretically and experimen-
tally. Theoretically, it is sufficient to consider arbitrary solutions ρ, p, u to the divergence free condition.
Experimentally it is sufficient to take into account particular perfect evolutions (e.g. static, isothermal,
homogeneously strained) of otherwise generically non perfect, anisotropic fluids.
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Fig. 1 On the left, the set T f of perfect energy tensors corresponding to all the possible evolutions of a
fluid f . On the right, two non disjoint sets T f and T f̄ corresponding to two different fluids f and f̄

Fig. 2 The left-hand diagram shows the set TF of all perfect energy tensors T f , corresponding to all
possible evolutions of all perfect fluids, as a strict subset of the set T of all perfect energy tensors. On the
right, a perfect energy tensor T corresponds to the evolution of a whole class FT of fluids

But when the perfect energy tensor T may correspond to a perfect fluid, it will
generically correspond, not to a sole perfect fluid f , but to a whole class FT in F, as
shown in the right-hand diagram in Fig. 2.

Generically, the fluids considered in physics are local (i.e. their configuration at
every event depends only on its variation in the neighborhood of the event) and deter-
ministic (i.e. their evolutions are univocally determined by their past). Consequently,
their evolutions have to be described by a closed system of differential equations (i.e.
a system admitting unicity of the Cauchy problem). Following this usage, from now
on all the perfect fluids considered herein will be local and deterministic although,
for the sake of brevity, we shall not mention it. A fortiori, all the above relations
among perfect fluid evolutions and perfect fluid energy tensors remain true for local
and deterministic perfect fluids.

Usually, in many physical situations one starts from a known perfect fluid f of
F and looks for energetic descriptions T f in T f corresponding to some particular
evolutions of f ; here we are interested in the other way round:
Inverse problem The inverse problem for a perfect energy tensor T , is that of the
existence and determination of the non empty set FT of all perfect fluids f for which
T is the energetic description of a particular evolution.

The main aim of the present paper is to give a precise meaning to this inverse
problem and to solve it.

As described above, the set T f of perfect energy tensors associated to an arbitrary
perfect fluid f describes the energetic characterization of all the evolutions of f . And
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as f is a local and deterministic perfect fluid, the set of its evolutions amounts the set
of the different initial configurations that it may adopt.

There are also perfect energy tensors in T that do not correspond to the evolution
of any initial conditions of any perfect fluid. Consequently, it becomes meaning-
less to try to find the physical interpretation of an energy tensor T submitted to the
sole divergence-free condition. Indeed, there are essential ambiguities inherent to the
macroscopic thermodynamic models concerning the lack of sufficient conditions to
be imposed on a model of fluid in order to represent a realistic “physical fluid”.

Commonly accepted necessary conditions of physical reality for arbitrary macro-
scopic media are the energy conditions,5 but, if they may be considered as (algebraic)
necessary conditions, they are manifestly insufficient to select realistic physical fluids.

Indeed, the divergence-free condition is incomplete from a deterministic point of
view, so that to every initial configuration corresponds, not a sole perfect energy tensor,
but a partially arbitrary family of them. In order to select a physical (deterministic)
evolution, one has to complete the above divergence-free condition suitably, i.e. to find
a deterministic closure for it.6 All the deterministic closures proposed in the literature
for arbitrary (non barotropic7) perfect fluids are thermodynamic closures,8 as they
involve new thermodynamic quantities. Thus, besides the hydrodynamic quantities
(u, ρ, p) the hypothesis of local thermal equilibrium9 (l.t.e.) implies introducing at
least the matter density r , the specific internal energy ε, the temperature Θ , and the
specific entropy s.

Some years ago [3] we showed that by adding to the divergence-free system one
suitable equation on the hydrodynamic variables (u, ρ, p) one obtains an equivalent
formulation of the l.t.e. scheme. This result allowed to solve the generic direct problem
for any perfect fluid f , namely the determination of the set T f of perfect energy
tensors T f corresponding to all its possible evolutions in l.t.e. Indeed, we determined
the necessary and sufficient conditions for the set TF to be that of all the perfect energy
tensors corresponding to all the possible evolutions in l.t.e. of all perfect fluids F.

In Sect. 2 we introduce the basic variables and relations that usually define a l.t.e.
scheme and summarize its above-mentioned hydrodynamic characterization.

Section 3 is devoted to solving the generic inverse problem: to determine, for a
perfect energy tensor T , the set FT of all perfect fluids for which T is the energetic

5 First stated by Plebański [1], and also considered by Hawking and Ellis in [2], who seemed unaware of
Plebański work.
6 To choose a deterministic closure for the energy conservation equations means to complete these equations
with some other physically meaningful ones so as to obtain a closed system in the sense considered above,
i.e. a system admitting a unique evolution for every initial configuration.
7 For the notions of barotropic evolution, barotropic energy tensor and barotropic perfect fluid, see below.
8 These thermodynamic closures have been obtained in relativity from many different approaches, and with
very different results. They essentially started with Eckart’s third paper on thermodynamics of irreversible
processes, its later contrast with Landau and Lifchitz’s point of view gave rise to a great number of new
propositions, until the works by Israel, Steward and Marle, or the more recent relativistic version of extended
thermodynamics.
9 See Sect. 2.
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description of a particular evolution. We also analyze the degenerate cases of barotropic
or/and isobaroenergetic10 evolutions separately.

The direct and inverse problems stated above may be restricted to a specific family of
fluids G ⊂ F. We can look for the set TG of perfect energy tensors T corresponding to
particular evolutions of the fluids of G (specific direct problem). And given a T ∈ TG,
we can look for each associated thermodynamic scheme that defines a fluid f of
G (specific inverse problem). In Sect. 4 we study these direct and inverse restricted
problems when G is the set of generic ideal gases.

Section 5 is devoted to pointing out the intrinsic, deductive, explicit and algorithmic
character of our results, and to remark their interest in building a Rainich-like theory
for the family of solutions of Einstein equations corresponding to a specific physical
fluid. We also comment the interest of our results in studying the physical reality of
known solutions of Einstein equations, and we offer an algorithm in four steps for
detecting the solutions that can be interpreted as an ideal gas.

2 Local thermal equilibrium: a hydrodynamic characterization

The energetic description of the evolution of a perfect fluid is given by its perfect
energy tensor T in the hydrodynamic variables ρ, p and u:

T = (ρ + p)u ⊗ u + p g. (3)

The divergence-free condition for T , ∇ · T = 0, leads to the conservation equations:

dp + ṗu + (ρ + p)a = 0, (4)

ρ̇ + (ρ + p)θ = 0, (5)

where a and θ are, respectively, the acceleration and the expansion of u, and where a
dot denotes the directional derivative, with respect to u, of a quantity q, q̇ = u(q) =
uα∂αq.

Abarotropic evolution is an evolution along which thebarotropic relationdρ∧dp =
0 is fulfilled. A perfect energy tensor describing energetically a barotropic evolution
is called a barotropic perfect energy tensor.

An evolution is said isoenergetic11 if ρ̇ = 0, and isobaric if ṗ = 0. For short, an
evolution isoenergetic and isobaric is here called isobaroenergetic.

The energy density ρ may be decomposed in terms of the matter density r and the
specific internal energy ε in the form:

ρ = r(1 + ε), (6)

10 See below for the definition of this notion.
11 Because l.t.e. concerns only thermal equilibrium of every volume element, the isoenergetic condition is
defined here as an evolution property, ρ̇ = 0, not as a spatial one.
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requiring the conservation of matter:

∇ · (ru) = ṙ + rθ = 0. (7)

Then, according to a classical argument, it is always possible to identify an integral
divisor of the one-form Λ ≡ dε + pd(1/r) with the (absolute) temperature Θ of
the fluid, allowing to define the specific entropy s by the local thermal equilibrium
equation:

Θds = dε + pd(1/r). (8)

The relations (6), (7) and (8) characterize the thermodynamic equilibrium of every
volume element of the fluid,12 and so, corresponding to a classical notion, define the
local thermal equilibrium evolution (l.t.e.) of a perfect fluid. We will also say that a
perfect energy tensor evolves in l.t.e. if it verifies these equations.

If using (6) we eliminate ε in (8), it is evident that the integrability of Λ is equivalent
to the functional dependence of the variables ρ, p and r . Thus we have:

Lemma 1 A perfect energy tensor evolves in l.t.e. if, and only if, (7) admits solutions
r(x) > 0 such that

dr ∧ dρ ∧ dp = 0. (9)

Then, every pair {r,Θ}, whereΘ > 0 is an integrant divisor of the one-form (1/r)dρ+
(ρ+p)d(1/r), determines a thermodynamic scheme. The specific entropy is thengiven,
up to an additive constant, by

Θds = (1/r)dρ + (ρ + p)d(1/r). (10)

From (9) and (10) we have that ρ, p and s are dependent variables, and (5) implies:

ṡ = −ρ + p

Θr2 ∇ · (ru), (11)

equation that shows the intimate relation existing between the local adiabatic evolution
and matter conservation. With this, we have shown the necessary condition of the
following.

Lemma 2 A perfect energy tensor evolves in l.t.e. if, and only if, the equation

ṡ = 0 (12)

admits solutions s(x) such that

ds ∧ dρ ∧ dp = 0. (13)

12 This thermodynamic scheme for a relativistic perfect fluid is obtained as the adiabatic and Pascalian
restriction of the Eckart’s general local thermodynamic equilibrium scheme [4] (see also [5] for the present
status of l.t.e.). Its causal character was first proved by Lichnerowicz [6].
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A way to show the sufficient condition is to consider a function s(x) verifying (12)
and (13), and looking for a function r(x) solution of (7) and (9).

In the case of barotropic evolution, dρ ∧ dp = 0, we can take r as an arbitrary
solution of (7). In the case of non barotropic evolution, dρ ∧dp �= 0, (13) implies that
s is a function of ρ and p, s = s(ρ, p), and then (12) can be written as:

s′
ρ ρ̇ + s′

p ṗ = 0, (14)

where s′
ρ = (s′

ρ)p = (
∂s
∂ρ

)
p and s′

p = (s′
p)ρ .

When the evolution is isoenergetic, ρ̇ = 0, the second conservation relation (5)
implies θ = 0 and, then, every function r(ρ) verifies (7) and (9). When ρ̇ �= 0, from
(14) we have:

χ ≡ ṗ

ρ̇
= − s′

ρ

s′
p

= χ(ρ, p). (15)

Then, based on (5), we can write (7) in the form:

r ′
ρ + χ(ρ, p)r ′

p = r

ρ + p
, (16)

which is an equation admitting solutions r = r(ρ, p) that fulfill (9). The sufficient
condition of Lemma 2 is thus proven.

Making use of the above results, it is easy to give a characterization of l.t.e. in terms
of the sole hydrodynamic variables (u, ρ, p). Indeed, conditions dρ ∧ dp = 0 and
ρ̇ = 0 utilize exclusively hydrodynamic variables and they assure the existence of
associated thermodynamic schemes without further restrictions. In the generic case,
when dρ ∧ dp �= 0 and ρ̇ �= 0, the function χ ≡ ṗ/ρ̇ defined in (15) depends on ρ

and p. Then (12) can be written as:

s′
ρ + χ(ρ, p)s′

p = 0, (17)

which obviously admits solutions verifying (13). All these cases may be linked in the
following [3].

Theorem 1 ([3]) A perfect energy tensor evolves in l.t.e. if, and only if,

(ρ̇d ṗ − ṗdρ̇) ∧ dρ ∧ dp = 0 (18)

Condition (18) identically holds in the isoenergetic case. Otherwise, when ρ̇ �= 0, the
Theorem admits the following formulation:

Theorem 2 A non isoenergetic, ρ̇ �= 0, perfect energy tensor evolves in l.t.e. if,
and only if, the space–time function χ ≡ ṗ/ρ̇, called indicatrix of local thermal
equilibrium, depends only on the variables p and ρ:

dχ ∧ dρ ∧ dp = 0. (19)
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As pointed out in [7], this result has interesting physical consequences:

– This theorem says, in other words, that a relation of the form

ṗ = χ(p, ρ)ρ̇ (20)

is a minimal deterministic closure13 to the equations ∇ · T = 0 for any non
barotropic perfect fluid.

– The “iff” character of Theorem 2 implies that this condition constitutes an alterna-
tive definition of l.t.e.. And surprisingly enough, this alternative definition involves
only hydrodynamic, energetic and evolutive concepts, but not thermodynamic ones.
This means the important idea that the evolution in l.t.e. of a fluid generates the
emergence of temperature and entropy: in spite of the usefulness of these functions,
they are not necessary to verify the l.t.e. of the fluid.

– If the conditions of Theorem 2 are verified, that is, if the perfect fluid evolves in
l.t.e., then, and only then, the indicatrix χ becomes a function of state, χ(ρ, p),
representing physically the square of the speed of sound cs in the fluid,14

χ(ρ, p) ≡ c2
s . (21)

From the above interpretation, one has the following necessary condition of phys-
ical reality:15

0 ≤ χ ≤ 1 (22)

3 Solving the inverse problem: admissible thermodynamic schemes

After the above comments, the inverse problem is tantamount to the analysis of how the
speed of sound, given as a function of the hydrodynamic variables (ρ, p), constraints
the thermodynamic properties of the fluid. In other words: what perfect fluids evolve
with a previously given indicatrix function χ(ρ, p)?

We shall start with a perfect energy tensor T ≡ (u, ρ, p) verifying (18) and look for
the associated l.t.e. schemes. The richness and nature of these schemes will depend on
the regularity of the given hydrodynamic data (u, ρ, p). Consequently, several cases
like barotropic or isobaroenergetic evolutions must be analyzed separately.

13 In the sense that the differential equations of the deterministic closure are of the lowest order.
14 Let us note that, because (20) is a minimal deterministic closure, the relation (21) may be directly
obtained by studying the propagation of infinitesimal perturbations by the system {(4),(5),(20)}. From this

point of view, the well known relation c2
s = (

∂p
∂ρ

)s appears only as a constraint for the definition of the
entropy s.
15 This constraint can also be deduced from the relativistic compressibility conditions [8,9]. Elsewhere
[10] we show that these conditions can be written in terms of the sole hydrodynamic variables by means of
the indicatrix function χ(ρ, p).
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3.1 Non barotropic perfect energy tensor: dρ ∧ dp �= 0

Under the non barotropic evolution assumption, we can consider the hydrodynamic
variables (ρ, p) as coordinates in the thermodynamic plane.

When (ρ, r) are independent variables, the form (10) of the l.t.e. equation shows
that a thermodynamic scheme is defined by a characteristic equation s = s(ρ, r) that
determines all the other thermodynamic variables, so

p = −ρ − r(s′
r )ρ

(s′
ρ)r

≡ p(ρ, r) , Θ = 1

r(s′
ρ)r

≡ Θ(ρ, r). (23)

In order to express the thermodynamic scheme in terms of the hydrodynamic vari-
ables (ρ, p), we can obtain r(ρ, p) from the first equation in (23), and putting it in the
characteristic equation, we obtain s(ρ, p). Conversely, these functions r(ρ, p) and
s(ρ, p) determine a thermodynamic scheme if we impose on them the form (10) of
the l.t.e. equation. Using coordinates (ρ, p), this last form is equivalent to:

r2Θs′
p = −r ′

p(ρ + p), r2Θs′
ρ = r − r ′

ρ(ρ + p), (24)

which, under Θ �= 0, imply:

s′
ρr

′
p = s′

p

[
r ′
ρ − r

ρ + p

]
. (25)

Every pair {r(ρ, p), s(ρ, p)} solution of (25) gives us a thermodynamic scheme, with
a temperature given by:

Θ = Θ p(ρ, p) ≡ − r ′
p

r2s′
p
(ρ + p), or Θ = Θρ(ρ, p) ≡ 1

s′
ρ

[
1

r
− r ′

ρ

r2 (ρ + p)

]

,

(26)

where only the first (resp. second) expression is valid in the case s′
ρ = 0 (resp. s′

p = 0).
When r = r(ρ), (10) gives s = s(ρ) and, although expressions (23) have no sense,

(25) holds and the second one in (26) remains valid.
Finally, from (6), in both cases the specific internal energy is also known in terms

of (ρ, p) variables:

ε(ρ, p) = ρ

r(ρ, p)
− 1. (27)

Thus, we have:

Lemma 3 For a non barotropic perfect energy tensor, the thermodynamic schemes
are determined by a matter density r = r(ρ, p), solution of (7), and a specific entropy
s = s(ρ, p), solution of (12), restricted by equation (25). Then, the temperature is
given by (26) and the specific internal energy by (27).
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3.1.1 Non barotropic, non isoenergetic evolution: dρ ∧ dp �= 0, ρ̇2 + ṗ2 �= 0

Let us consider a non barotropic perfect fluid energy tensor that evolves in l.t.e. In
order to obtain the admissible thermodynamic schemes we must look for a solution
r(ρ, p) of the matter conservation (7) and a solution s(ρ, p) of the entropy invariant
evolution (12) constrained by (25).

If the evolution is isonergetic, ρ̇ = 0, the second energy tensor conservation (5)
implies θ = 0, and then equations (7) and (12) write ṗr ′

p = ṗs′
p = 0. Thus, if in

addition it is non isobaric, ṗ �= 0, we have r = r(ρ) and s = s(ρ), and (25) is
obviously fulfilled.

If the evolution is non isoenergetic, ρ̇ �= 0, the condition (19) of the characterization
Theorem expresses that the indicatrix, χ ≡ ṗ/ρ̇, is a function of ρ and p: χ =
χ(ρ, p). Then the associated matter density r(ρ, p) and the specific entropy s(ρ, p)
are submitted, respectively, to the first order partial differential equations (16) and (17).
Every pair {r, s} solution to these equations verifies (25). Thus, taking into account
that (17) is the homogeneous equation associated to (16), we can state:

Proposition 1 Let T be a non barotropic and non isobaroenergetic perfect energy
tensor that evolves in l.t.e.. The admissible thermodynamic schemes are defined by a
matter density r(ρ, p) and a specific entropy s(ρ, p) such that:

(i) If T is isoenergetic, ρ̇ = 0, they become arbitrary functions of ρ, r = r(ρ) and
s = s(ρ).

(ii) If T is non isoenergetic, ρ̇ �= 0, they are of the form r = r̄ R(s̄) and s = s(s̄),
where r̄(ρ, p) is any particular solution of (16), and R(s̄) and s(s̄) are arbitrary
functions of any particular solution s̄(ρ, p) of (17), χ(ρ, p) being the indicatrix
function, χ ≡ ṗ/ρ̇.

For each thermodynamic scheme {r, s} the temperature is given by (26) and the
specific internal energy by (27).

Proposition 1 fixes, in terms of arbitrary functions, the dimension of the set FT of
all perfect fluids f in l.t.e. admitting a given non barotropic and non isobaroener-
getic energy tensor T as energetic evolution. Note that in both, isoenergetic and non
isoenergetic cases, this dimension is controlled by two arbitrary functions of one real
variable.

It is worth remarking that, in the isoenergetic case, ρ̇ = 0 and ṗ �= 0, the condition of
physical reality (22) does not hold because the speed of sound is infinite. Nevertheless,
for the sake of formal completeness, we also take into account this degenerate case.

3.1.2 Non barotropic and isobaroenergetic evolution: dρ ∧ dp �= 0, ρ̇ = ṗ = 0

According to (5), along a non barotropic and isobaroenergetic evolution the expansion
vanishes: θ = 0. This means that arbitrary functions r = r(ρ, p) and s = s(ρ, p)
verify (7) and (12). Consequently, only (25) must be imposed on them. One can take
an arbitrary r = r(ρ, p) and look upon this equation as a first order partial differential
equation on s = s(ρ, p):
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s′
ρ + χr (ρ, p)s′

p = 0, χr (ρ, p) ≡ 1

r ′
p

[
r

ρ + p
− r ′

ρ

]
. (28)

Therefore, we can state:

Proposition 2 Let T be a non barotropic and isobaroenergetic perfect energy ten-
sor that evolves in l.t.e.. The admissible thermodynamic schemes are defined by an
arbitrary matter density r = r(ρ, p) and a specific entropy s = s(ρ, p) such that
s = s(s̄), s̄ = s̄(ρ, p) being any particular solution of (28).
For each thermodynamic scheme {r, s} the temperature is given by (26) and the specific
internal energy by (27).

In this case the richness of admissible l.t.e. schemes, i.e. the corresponding set FT , is
tantamount to an arbitrary function of two variables and an arbitrary function of a sole
variable.

Note that we can, alternatively, take an arbitrary specific entropy s = s(ρ, p) and
look for the matter density r = r(ρ, p) solution of (25):

r ′
ρ + χ s(ρ, p)r ′

p = r

ρ + p
, χ s(ρ, p) ≡ − s′

ρ

s′
p
. (29)

Now we have an indeterminate indicatrix function χ = ṗ/ρ̇, but the state functions
χr (ρ, p) and χ s(ρ, p) give the square of the speed of sound.

From the characteristic equation of an arbitrary perfect fluid one can calculate the
function of state r(ρ, p) by using the l.t.e. condition (10), and (28) simply restricts
the compatible specific entropies. Thus, we have:

Corollary 1 Every non barotropic and isobaroenergetic perfect energy tensor T rep-
resents the evolution in l.t.e. of any non barotropic perfect fluid.16

This Corollary shows that the setFT of all perfect fluids f admitting a non barotropic
and isobaroenergetic T as energetic evolution differs from the whole setF of all perfect
fluids f only by the set Fb of all barotropic fluids, F = FT ∪ Fb.

3.2 Barotropic perfect energy tensor: dρ ∧ dp = 0

When a barotropic perfect energy tensor T has no constant energy density, dρ �= 0,
the barotropic condition can be stated as a barotropic relation of the form:

p = φ(ρ). (30)

This barotropic relation can be interpreted as an equation of state of the medium
represented by T , which holds independently of the considered particular evolution

16 Remember that the particularities of a perfect energy tensor are particularities of the evolution of the
fluid described by the energy tensor but they are not necessarily particularities of its material constitution
(see Sect. 1 and Fig. 1).
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T . Then we say that this medium is an (intrinsic) barotropic perfect fluid. But it can
also be interpreted as a particular evolution of non (intrinsic) barotropic media. For
example, if a fluid with an equation of state p = p(ρ, s) evolves at constant entropy, we
have, for this particular evolution, p = p(ρ, s0) = φs(ρ); or similarly, for a constant
temperature evolution, we obtain p = p(ρ,Θ0) = φΘ(ρ), where the superscripts s
and Θ recall the particular type of evolution.

Solving the inverse problem for a barotropic perfect energy tensor means deter-
mining both, the associated barotropic thermodynamic schemes, as well as the non
barotropic schemes with the adequate barotropic evolution.

The barotropic perfect energy tensors are paradigmatic in the relativistic framework.
They are obligatory in the conventional cosmology with the Friedmann–Lemaître–
Robertson–Walker universes, and they offer the simplest and essential models for
stellar interiors with static spherically symmetric perfect fluid solutions. Studying
the inverse problem for these space–times from the above two barotropic points of
view, will provide new physical interpretations of these solutions that could differ
interestingly from those considered up to now.

3.2.1 Barotropic perfect fluids: p = φ(ρ) as an equation of state

If we consider ρ = ρ0 as an equation of state of the medium, the l.t.e. condition (10)
leads to the following thermodynamic scheme:

s = s(r), Θ(r, p) = −ρ0 + p

r2s′(r)
, ε(r) = ρ0

r
− 1, (31)

r being any solution of ṙ = 0. This scheme has a doubtful physical meaning because
it never satisfies the compressibility conditions (see [10]).

Otherwise, if dρ �= 0, we have a barotropic relation (30), and then (10) leads to:

Θds = ρ + φ(ρ)

r
dln

(
G(ρ)

r

)
, G(ρ) ≡ exp

[∫
dρ

ρ + φ(ρ)

]
. (32)

Then, taking (ρ, s) as coordinates in the thermodynamic plane, we obtain:

r(ρ, s) = G(ρ)

R(s)
, Θ(ρ, s) = [ρ + φ(ρ)]R′(s)

G(ρ)
, ε(ρ, s) = ρR(s)

G(ρ)
− 1, (33)

where R(s) is an arbitrary function. Thus, we have the answer to the inverse problem
in T restricted to the barotropic perfect fluids:

Proposition 3 Let T (u, ρ, p) be a barotropic perfect energy tensor with non constant
energy, p = φ(ρ). The admissible barotropic thermodynamic schemes are defined by
the characteristic equation r(ρ, s) = G(ρ)/R(s), with G(ρ) given in (32), s being
an arbitrary solution of ṡ = 0, and R(s) an arbitrary real function. For each scheme
{s, R(s)}, the matter density, the temperature and the specific internal energy are given
in (33).
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In this intrinsic barotropic case, the set FT of all barotropic perfect fluids admitting T
as an energetic evolution is controlled by an arbitrary solution of ṡ = 0 (an arbitrary
function of three variables), and an arbitrary function of a sole variable.

Note that the results in Proposition 3 exclusively depend on the barotropic relation
(30). This means that a generic barotropic medium may or may not be in isobaroener-
getic evolution. Nevertheless, if s = s(ρ) is a state condition, we have one-dimensional
thermodynamics, and necessarily isobaroenergetic evolution.

Several physically relevant barotropic media have been considered in the literature
due to their applicability to relativistic astrophysics (see for example [11,12]). We
study them briefly as particular cases of the generic barotropic media considered in
Proposition 3.

We have, for example, cold matter fluids, which include the completely degenerate
ideal Fermi gas. We can recover this case taking Θ = 0 in expressions (32) and (33).
Note that then R(s) becomes a constant function and, consequently, we have:

Corollary 2 Any barotropic perfect energy tensor T (u, ρ, p) with non constant
energy, p = φ(ρ), represents the evolution in l.t.e. of a cold matter fluid (Θ = 0),
with matter density given by:

r(ρ) = r0 exp

[∫
dρ

ρ + φ(ρ)

]
. (34)

Now the set FT of all cold matter fluids f admitting T as an energetic evolution is
controlled by a sole constant r0.

Another interesting example of barotopic perfect fluid is a gas of particles in thermal
equilibrium with radiation when the particle energy density is negligible compared to
the radiation energy density. In this case the energy density and the pressure depend
on the temperature alone:

ρ = ρ(Θ), p = p(Θ). (35)

It is assumed that the energy density is an effective function of temperature. Then (35)
leads to a barotropic relation of type (30). Now (Θ ′

s)ρ = 0, and then (33) implies
R′(s) = constant. Thus, we can state:

Corollary 3 Any barotropic perfect energy tensor T (u, ρ, p) with non constant
energy, p = φ(ρ), represents the evolution of a gas in l.t.e with dominant radia-
tion. Moreover, G(ρ) being given by (32) and r being an arbitrary solution of (7), the
temperature, the specific entropy and the matter density are given, respectively, by:

Θ(ρ) = [ρ + φ(ρ)]
G(ρ)

, s(ρ, r) = ρ + p

Θr
= G(ρ)

r
, ε(ρ, r) = ρ

r
− 1. (36)

In this case the set FT of all gases of particles f in thermal equilibrium with radiation
admitting T as an energetic evolution is controlled by an arbitrary function of three
variables.
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A particular case of this last Corollary is when the particles are highly relativistic.
Then, we have the so-called radiation fluid, which satisfies a barotropic relation in the
form:

ρ = 3p. (37)

Now G(ρ) = Cρ3/4 and, from expressions (36), we recover the following known
result:

Corollary 4 A perfect energy tensor T (u, ρ, p) with barotropic relation ρ = 3p,
represents the evolution of a radiation fluid. The energy density, the pressure and the
entropy density depend on the temperature as:

ρ = aΘ4, p = 1

3
aΘ4, S = rs = 4

3
aΘ3. (38)

Now the set FT of all radiation fluids f admitting T as an energetic evolution is
controlled by a sole constant a.17

3.2.2 The barotropic relation p = φ(ρ) as an evolution condition

Given a generic perfect fluid with characteristic equation r = r(ρ, s), we can consider
any barotropic relation p = φ(ρ) as an evolution condition. The l.t.e. condition (10)
implies s = c(ρ), this evolution constraint being defined by the relation:

p(ρ, c(ρ)) = φ(ρ), p(ρ, s) ≡ r(ρ, s)

(r ′
ρ)s

− ρ. (39)

Moreover, if dρ = 0, we can see ρ = ρ0 as an evolution constraint. Consequently, a
barotropic evolution does not restraint the thermodynamic scheme.

Nevertheless, when c′(ρ) �= 0 we have ρ̇ = 0, and then ṗ = 0, and the evolution
is necessarily isobaroenergetic. Thus:

Proposition 4 Every barotropic and isobaroenergetic perfect energy tensor T repre-
sents the evolution in l.t.e. of any perfect fluid.18

This Proposition states that the set FT of all perfect fluids f admitting a barotropic and
isobaroenergetic T as energetic evolution is the full set of the perfect fluids, FT = F.

We can consider three restricted problems which are more interesting, from a prac-
tical point of view, than the generic result above:

(i) A specific direct problem: to determine the barotropic and isobaroenergetic per-
fect energy tensors (namely, the barotropic relation p = φ(ρ)) corresponding

17 If the radiation fluid is a gas in l.t.e. with radiation, the constant a is the Stefan-Boltzmann constant aR .
If it is a fluid of massless neutrinos a = (7/16)aR and, for a fluid of ultrarelativistic electron-positron pairs,
a = (7/8)aR .
18 See footnote 16.
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to the evolution of a given specific family of perfect fluids r = r(ρ, s) evolving
with a given constraint s = c(ρ):

φ(ρ) = r(ρ, c(ρ))

(r ′
ρ)s(ρ, c(ρ))

− ρ. (40)

(ii) A specific inverse problem: to determine the perfect fluids (namely, their charac-
teristic equation r = r(ρ, s)) for which a given barotropic and isobaroenergetic
perfect energy tensor (namely, with a given barotropic relation p = φ(ρ))
describes a prescribed constrained evolution s = c(ρ). The characteristic equa-
tion r = r(ρ, s) is subjected to the restriction:

(R′
ρ)s(ρ, c(ρ)) = 1

ρ + φ(ρ)
, R(ρ, s) = ln r(ρ, s). (41)

(iii) A problem of evolution: given a specific family of perfect fluids r = r(ρ, s)
and a particular barotropic relation p = φ(ρ), to obtain the condition s = c(ρ)

which constrains the evolution. This amounts to obtain a solution to (39).

In the direct and inverse specific problems (i) and (ii) it will be worth considering
evolution constraints with a remarkable physical meaning, like evolutions at constant
temperature or at constant entropy.

On the other hand, when c′(ρ) = 0, that is, in an evolution at constant entropy
s = s0, the evolution is not, necessarily, isoenergetic and, for a specific family of
perfect fluids with characteristic equation r = r(ρ, s), we have a barotropic evolucion
with barotropic relation:

φ(ρ) = r(ρ, s0)

(r ′
ρ)s(ρ, s0)

− ρ. (42)

Moreover, this condition constraints the thermodynanic schemes r = r(ρ, s) if we
impose a barotropic relation p = φ(ρ). Then, we have:

Proposition 5 A barotropic (p = φ(ρ)) and non isoenergetic (ρ̇ �= 0) perfect energy
tensor T represents the evolution in l.t.e. of the perfect fluids with characteristic
equation r = r(ρ, s) restricted by:

(R′
ρ)s(ρ, s0) = 1

ρ + φ(ρ)
, R(ρ, s) = ln r(ρ, s). (43)

3.3 A summary of the inverse problem

In the table below we summarize the results on the inverse problem presented in this
section. Note that our study provides a classification of the perfect energy tensors TF
in four classes, which have different solutions to the inverse problem.

The first rows at the top of the table present the conditions on the hydrodynamic
variables {u, ρ, p} defining these four classes, that is, four disjoint subsets of T . The
following row contains the equations that we must necessarily solve in order to obtain
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the associated thermodynamic schemes. The row below shows the richness of these
thermodynamics, that is the dimension of the setFT , and gives the expression for matter
density and specific entropy. The last row presents the expression of temperature and
specific internal energy.

4 When is a perfect energy tensor the evolution of an ideal gas?

Theorems 1 and 2 allow us to know if a perfect energy tensor models the evolution
of some perfect fluids, but they do not offer information about the specific physical
properties of such fluids. If we are interested in a particular family of fluidsG, we must
solve the corresponding specific direct and inverse problems: (i) to obtain a deductive
criterion to detect if a given perfect energy tensor T performs the evolution of a perfect
fluid of this family, namely, to determine TG, and (ii) to obtain all the perfect fluids of
this family for which T , fulfilling this criterion, follows a particular evolution, namely,
to determine GT , for T ∈ TG.

Here, to show how one can solve these problems, we consider the paradigmatic
family G of ideal gases. A (generic) ideal gas is characterized by the equation of state:

p = krΘ, k ≡ kB
m

. (44)

If we take (ρ, r) as coordinates in the thermodynamic plane, the form (10) of the l.t.e.
equation leads to the following ideal gas characteristic equation:19

19 The independence of the variables (ρ, r) is a necessary requisite to avoid degenerate one-dimensional
thermodynamics.
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s = s(ρ, r) = ξ(e) − k ln r, e ≡ ρ

r
= 1 + ε, (45)

where ξ(e) is an effective function of the specific energy e. Moreover, the temperature
depends on e as:20

Θ ≡ Θ(e) = 1

ξ ′(e)
. (46)

Then, from (44), (45) and (46), we obtain that the hydrodynamic variable π = p/ρ
is also a function of the specific energy e:

π = π(e) ≡ kΘ(e)

e
, π ≡ p

ρ
. (47)

4.1 Barotropic ideal gases

From (47) we have that the function π(e) is constant for an ideal gas if, and only if,
e(Θ) = cvΘ , where cv is a constant. Then (47) becomes:

p

ρ
≡ π ≡ π(e) = k

cv

≡ γ − 1, (48)

and we obtain that the ideal gas is a barotropic media with a relativistic γ -law, p =
(γ − 1)ρ, as a barotropic equation of state.

Are there other barotropic ideal gases? If p = φ(ρ) is an equation of state for
an ideal gas, the barotropic scheme (32), (33), and the ideal gas relations (44), (45)
must be compatibles. Then, necessarily, we obtain that e = cvΘ and p = (γ − 1)ρ.
Consequently, we extend a known result [13]:

Proposition 6 The unique barotropic ideal gases are those that verify ε(Θ) = cvΘ −
1. Then the barotropic equation of state is a γ -law p = (γ − 1)ρ.

4.2 Non barotropic evolution of an ideal gas

Now (ρ, p) are coordinates in the thermodynamic plane. In addition, after the study
above on barotropic ideal gases, in the non barotropic case we have π ′(e) �= 0, and
thus we can determine the inverse function e = e(π). Then, taking into account the
l.t.e. condition (10), we can use this function in order to write all the thermodynamic
variables in terms of the hydrodynamic ones (ρ, p). In particular, the speed of the

sound can be determined by using v2
s (ρ, p) = − s′ρ

s′p
. We summarize these expressions

in the following.

20 When Θ ′(e) �= 0 we have e = e(Θ), and then the internal energy density is a function of the temperature:
ε = ε(Θ) = e(Θ) − 1. Usually, this property is supposedly satisfied by an ideal gas. Nevertheless, our
formal study also includes the case Θ = Θ0 as a permissible equation of state.
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Lemma 4 Consider a non barotropic ideal gas characterized by the characteristic
equation (45), and the temperature Θ = Θ(e) (46), with e �= cvΘ . Let e = e(π) be
the inverse function of the π(e) given in (47). In terms of the hydrodynamic variables
(ρ, p), the specific internal energy ε, the temperature Θ , the matter density r , the
specific entropy s and the speed of the sound cs are given, respectively, by:

ε(ρ, p) = ε(π) ≡ e(π) − 1, Θ(ρ, p) = Θ(π) ≡ π

k
e(π), (49)

r(ρ, p) = ρ

e(π)
, s(ρ, p) = k ln

f (π)

ρ
, (50)

c2
s (ρ, p) = π + 1

φ(π)
≡ χ̄ (π) �= π, (51)

where

f (π) ≡ f0 exp

{∫
φ(π)dπ

}
, φ(π) ≡ (π + 1)e′(π)

πe(π)
. (52)

The general study of the non barotropic case presented in Sect. 3.1, and Lemma 4
above for the ideal gas, imply that an isoenergetic (ρ̇ = 0) evolution is, necessarily,
a isobaroenergetic one, ( ṗ = 0). Then, the only restrictions on the thermodynamic
scheme are given by the expressions in Lemma above, e(π) being an arbitrary function.
Thus:

Proposition 7 The necessary and sufficient condition for a non barotropic and isoen-
ergetic (ρ̇ = 0) perfect energy tensor T = (u, ρ, p) to represent the l.t.e. evolution of
an ideal gas is to be isobaroenergetic: ρ̇ = 0, ṗ = 0. Then T represents the evolution
in l.t.e. of any non barotropic ideal gas, and the admissible thermodynamic schemes
are defined by the specific internal energy ε, the temperature Θ , the matter density r ,
the specific entropy s and the speed of the sound cs given in (49), (50), (51) and (52),
e(π) being an arbitrary effective function of π = p/ρ.

Note that to each specific ideal gas, determined by the function ξ(e) in (45) corresponds
a particular function e(π), related through relations (46) and (47). And conversely,
each e(π) generates a specific ideal gas scheme. Thus, accordingly with Corollary 1,
this Proposition shows that the set GT of all ideal gases f admitting a non barotropic
and isobaroenergetic T as energetic evolution differs from the whole set G of all ideal
gases f only by the set Gb of all barotropic ideal gases, G = GT ∪ Gb.

When ρ̇ �= 0, (51) means that the indicatrix function χ = ṗ/ρ̇, which coincides
with the square of the speed of sound, must be a function ofπ . Conversely, ifχ = χ(π),
the function e(π) is constrained by (51), (52). Taking into account these considerations
we can state:

Theorem 3 Thenecessary and sufficient condition for a nonbarotropic andnon isoen-
ergetic (ρ̇ �= 0) perfect energy tensor T = (u, ρ, p) to represent the l.t.e. evolution
of an ideal gas is that the indicatrix function χ ≡ ṗ/ρ̇ be a function of the variable
π ≡ p/ρ, χ = χ(π) �= π :

dχ ∧ dπ = 0, χ �= π. (53)
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This Theorem solves the specific direct problem for the non barotropic ideal gases Ḡ,
that is, it characterizes the set TḠ.

Proposition 8 A non barotropic and non isoenergetic perfect energy tensor T =
(u, ρ, p) verifying (53) (χ = χ(π)) represents the l.t.e. evolution of the ideal gas with
specific internal energy ε, temperature Θ , matter density r , and specific entropy (49)
and (50), the generating functions e(π) and f (π) being, respectively,

e(π) = e0 exp

{∫
ψ(π)dπ

}
, ψ(π) ≡ π

(χ(π) − π)(π + 1)
, (54)

where

f (π) = f0 exp

{∫
φ(π)dπ

}
, φ(π) ≡ 1

χ(π) − π
. (55)

This Proposition solves the specific inverse problem by determining ḠT for a non
barotropic and non isoenergetic energy tensor T . Note that a three parameter family
( f0, e0, k) of ideal gases can be associated with a perfect energy tensor with an indi-
catrix function χ (square of the speed of sound) subjected to the constraint (53). The
first one, f0, fixes the origin of entropy, and we can consider that the different values
correspond to a sole ideal gas. The second parameter, e0, modifies the specific energy
in a constant factor and, consequently, the temperature and the specific volume 1/r
change in the same factor. Be aware that e0 settles the origin of internal energy, which
change as ε → e0ε + e0 − 1. Finally, the third one, k = kB/m determines, for fixed
e0, the mass of gas particles. Note that the hydrodynamic variable π fixes the product
kΘ; thus, changing the temperature in a factor, and the entropy in the inverse factor,
we can adjust any value of the mass particles.

4.3 The extended inverse problem for an ideal gas indicatrix χ(π)

Theorem 3 solves a specific direct problem: it characterizes the perfect energy tensors
T that are particular evolutions of a (non barotropic and non isoenergetic) ideal gas.
And Proposition 8 solves the associated specific inverse problem: it provides the ideal
gas schemes associated with one of these T . This last result is useful when we are
interested in ideal gases. Nevertheless, it does not solve the general inverse problem for
T satisfying constraint (53): what perfect fluids FT , in addition to ideal gases, evolve
with an ideal gas indicatrix χ(π)? The answer to this extended inverse problem is
given by Proposition 1: we must find particular solutions r̄ and s̄ to (16) and (17),
respectively, with χ = χ(π). But these particular solutions are provided by the results
on ideal gases above. Thus, from Propositions 8 and 1 we get:

Corollary 5 Let T = (u, ρ, p) be a non barotropic and non isoenergetic perfect
energy tensor that satisfies (53), χ = χ(π). The admissible thermodynamic schemes
are defined by a matter density r = r̄ R(s̄) and a specific entropy s = s(s̄), where
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r̄(ρ, p) and s̄(ρ, p) are given in (49) and (50), e(π) and f (π) depending on π as
(54) and (55), and R(s̄) and s(s̄) being arbitrary functions.

For each thermodynamic scheme {r, s} the temperature is given by (26) and the
specific internal energy by (27).

4.4 Barotropic evolution of a non barotropic ideal gas

In Sect. 3.2.2 we have stated that every barotropic and isobaroenergetic perfect energy
tensor represents a possible evolution of any perfect fluid, and consequently, of any
ideal gas. This barotropic evolution, p = φ(ρ), results from a constraint that, generi-
cally, may have an unclear interpretation. It is more interesting to impose a physically
relevant constraint and to analyze the restricted direct and inverse problems stated in
the points (i) and (ii) that follow Proposition 4.

As an example, let us consider the evolution of an ideal gas at the constant temper-
ature Θ0. Then, from the second relation in (49) we obtain:

πe(π) = kΘ0, (56)

Then, necessarily, p = π0ρ, where π0 is any solution to equation (56). And con-
versely, the barotropic evolution p = π0ρ represents the isobaroenergetic evolution
at a constant temperature of any ideal gas. If we add a specific energy density e(π),
the ideal gas scheme is determined by relations (49) and (50). Thus we have:

Proposition 9 A perfect energy tensor T = (u, ρ, p) represents the evolution at
constant temperature of an ideal gas if, and only if, it is isobaroenergetic, ρ̇ = ṗ = 0,
and the following barotropic relation holds:

p = π0ρ. (57)

Conversely, the barotropic evolution p = π0ρ represents the isobaroenergetic evo-
lution at constant temperature of any ideal gas. For a given specific energy density
e(π), the product kΘ0 is constrained by the conditionπ0e(π0) = kΘ0, and the specific
internal energy ε, the matter density r , and the specific entropy s are given in (49) and
(50).

5 Remarks and applications

Problems in theoretical physics, as well as in mathematics, may be solved in many
different, non equivalent, ways. Think, for example, on the conditions for a metric to
be flat, and consider the three classical answers: “when and only when there exists
a coordinate system in which the components of the metric tensor are constant”,
“when and only when the metric is invariant by the corresponding (pseudo-)Euclidean
group” and “when and only when its Riemann tensor vanishes”. In spite of the “when
and only when” bijective correspondence of the answers to the same problem, the
three answers are not in fact equivalent, because the background set of mathematical
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elements needed for each of them is different. For example, the first answer is non-
covariant (coordinate-dependent) and non-deductive (cannot be generically checked
deductively), meanwhile the second answer, although may be checked covariantly and
deductively, is non-intrinsic (needs an element, the group, not explicit in the setting of
the problem and not deductively attached to it). Only the third answer is simultaneously
related to the data of the problem (and only to them) in an intrinsic (and consequently
covariant), deductive, explicit (the expression of the curvature tensor in terms of the
data, i.e. the metric, is explicitly known) and algorithmic (the curvature tensor is
algorithmically related to the metric) way.

Of course, in relativity one can find problems solved in intrinsic (and thus covariant,
if so were the statement of the problems) and deductive ways, but we want here to quote
two paradigmatic papers on attractive problems which try to solve them deliberately in
an intrinsic and covariant way. The first one is the work by Rainich [14] on the non null
electromagnetic field (see Sect. 5.1 below). The second one is a note by Takeno [15]
(see also [16]) where, in Takeno’s words,“...a theory concerning the discrimination
of the spherically symmetric spacetimes has been constructed. Although it is not
of the ideal form”. The shortcoming to achieve this “ideal form” comes from the
unknowledge of explicit expression for the metric invariants of the curvature tensor
used in the intrinsic characterization. This lack has been overcoming in a paper [17]
where the interest of solving problems in an IDEAL form has been outlined. The use
of the appellation IDEAL (as an acronym) seems to be adequate when the conditions
obtained are Intrinsic, Deductive (no inference process is necessary), Explicit and
ALgorithmic (a flow chart with a finite number of steps can be built).

The answers presented in this paper to the direct and inverse problems stated in
the introduction have these characteristics of IDEAL solutions. They are intrinsic
(i.e. involve only the data of the sole perfect energy tensor T, or those of the proper
hydrodynamic and thermodynamic quantities defining the thermodynamic fluid) and
thus covariant (i.e. involve T as a tensor, or the proper quantities as scalars or the unit
vector velocity, in coordinate-free form), deductive (i.e. they do not need any inductive
process to be verified), explicit (i.e. they may be verified by direct substitution of the
data and of deductive differential concomitants of them) and algorithmic (i.e. involve
a finite number of steps for their verification). These evident conceptual and practical
qualities allow us to apply our results in diverse contexts. Now we comment on some
of these applications and future prospects.

5.1 Rainich-like theories for perfect fluid solutions

The Rainich work [14] on the non null electromagnetic field provides, among others,
three interesting problems: (i) to express Maxwell equations not in terms of field
variables but in terms of the energy variables, (ii) to obtain the algebraic conditions and
the additional differential restrictions for a conserved symmetric tensor to be the energy
tensor of a Maxwell field, and (iii) to write all these conditions, via Einstein equations,
for the Ricci tensor considered as a metric concomitant. It is worth remarking that the
Rainich approach proposes IDEAL solutions to these three problems.
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A similar approach for the perfect fluid was developed in [3] by using two previous
results. On the one hand, the characterization theorem of local thermal equilib-
rium, which we presented in the same paper [3], and here we state as Theorem 1.
On the other hand, the complete algebraic study of a perfect energy tensor, which
implies, not only its intrinsic characterization and the obtention of the eigenvalues,
but also the covariant determination of the eigenvector associated to the simple eigen-
value [18].

Note that solving restricted direct and inverse problems for a specific set of fluids is
the first step for a Rainich-like theory for this set of fluids. For example, the results in
Sect. 4 will allow us to easily perform a Rainich approach for the ideal gas solutions
of Einstein equations [10].

5.2 Physical meaning of known perfect fluid solutions. The ideal gas Stephani
universes

Most of the perfect fluid solutions of Einstein equations have been obtained by consid-
ering adapted coordinates to the fluid velocity, by imposing symmetries or by assuming
a type Petrov-Bel for the Weyl tensor. The algebraic requirements on the Ricci tensor
that the field equations impose are sometimes supplemented with the energy condi-
tions. Nevertheless, the physical meaning of most of the solutions remains unclear. Our
results provide a method to test the physical reality of these solutions and to under-
stand their thermodynamic properties. Indeed, our answer to the direct and inverse
problems offers a complete algorithm, in four steps, to discern which metrics SG of
a given family S of solutions of Einstein equations represent the evolution in l.t.e. of
a specific set of fluids G. For example, when G is the set of ideal gases we have the
following steps:

Step 1 To calculate the coordinate dependence of the space–time functions π ≡ p/ρ
and χ ≡ ṗ/ρ̇ for the family of solutions S.

Step 2 To determine the ideal gas subset SG of S by imposing the ideal gas hydrody-
namic condition (53), dχ ∧ dπ = 0.

Step 3 To obtain, in this subset, the explicit expression of the indicatrix function:
χ = χ(π).

Step 4 To calculate, from χ = χ(π), the generating functions e = e(π) and f =
f (π) given in (54) and (55), and to obtain thereof the thermodynamic variables
by using (49) and (50).

In [19] we have used this algorithm to obtain the Stephani universes that can be
interpreted as an ideal gas evolving in l.t.e. We have found that five classes of ther-
modynamic schemes are admissible, which give rise to five classes of regular models
and three classes of singular models.

Of course, for a different set of fluids the four steps in the above algorithm must
be adapted taking into account the hydrodynamic characterization of such fluids. For
the full set of perfect fluids F we must use the generic characterization presented in
Theorem 1.
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