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Abstract We extend the Parikh–Wilczek method from Einstein gravity spacetime to
Gauss–Bonnet modified gravity and study the tunneling radiation of particles across
the event horizon of a d-dimensional Gauss–Bonnet Anti de-Sitter black hole. The
emission rate of a particle is calculated. It is shown that the emission rate of massive
particles takes the same functional form as that of massless particles although that
their motion equations tunneling across the horizon are different. It is also shown that
the emission spectrum deviates from the pure thermal spectrum but is consistent with
an underlying unitary theory. In addition, significant but interesting phenomenon is
demonstrated when Gauss–Bonnet term is present. The expression of the emission rate
for a black hole in Gauss–Bonnet gravity differs from that for a black hole in Einstein
gravity. After adopting the conventional tunneling rate, we obtain the expression of
the entropy of the Gauss–Bonnet black hole, which is in accordance with the early
results but does not obey the area law. So the research of tunneling radiation in this
paper may serve as a new perspective of understanding the thermodynamics of black
holes in Gauss–Bonnet gravity.
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Since Hawking [1] proved that the black hole could radiate particles and the emis-
sion spectrum is exactly thermal, much effort has been devoted to the study of the black
hole radiation [2–16]. The earlier work in common proves that Hawking radiation is
precisely thermal and the energy spectrum is precisely thermal one [2–6]. Recently, a
method to describe Hawking radiation as a tunneling process where a particle moves
in dynamic geometry was developed by Kraus and Wilczek [7] and elaborated upon
by Parikh and Wilczek [8]. In a coordinate system which behaves well at the event
horizon, taking the self-interaction effect into account and according to the energy
conservation, they have calculated the corrected emission spectrum of the spherically
symmetric black holes, such as Schwarzschild black holes and Reissner–Norström
black holes. After this, this method was used to calculate the emission rate of particles
from different black holes [9–19]. We also made use of this technique to calculate the
emission rate at which a particle tunnel from the black plane [20], black string [21] and
black toroidal [22]. The derived results in all the above studies indicate that the factually
radiant spectrum is not precisely thermal but is consistent with the underlying unitary
theory, and that the tunneling rate is related to the change of Bekenstein-Hawking
entropy. It is interesting to probe whether these results can be generalized to black
holes in modified gravity or not. For this purpose, we extend in this paper the work of
Parikh-Wilczek to a d-dimensional black hole in Gauss–Bonnet gravity and drive the
corrected emission spectrum by calculating the rate of the Hawking radiation. Indeed
we find some new features when the Gauss–Bonnet term is present.

Gauss–Bonnet gravity is one kind of modified gravity theories which include higher
derivative curvature terms in the Lagrangian. These terms are of great interest since
they naturally occur in the effective low-energy action of string theory. Furthermore,
they can be viewed as the corrections of large N expansion of boundary CFTs according
to AdS/CFT correspondence. Gauss–Bonnet gravity gains some fantastic features
different from Einstein gravity. The resulting equations of motion have no more than
second derivatives of metric and the theory is free of ghosts [23]. Moreover, the Gauss–
Bonnet term appears as the leading correction to the effective low-energy action of
the heterotic string theory [24,25].

Considering the d-dimensional Einstein–Maxwell theory with a Gauss–Bonnet
term and a cosmological constant, the metric of a static black hole solution can be
written as

ds2 = − f (r)dt2 + f (r)−1dr2 + r2hijdx
i dx j , (1)

where hijdxi dx j represents the line element of a (d − 2)-dimensional maximal sym-
metric Einstein space with constant curvature (d−2) (d−3)k and volume

∑
k . Without

loss of the generality, one may take k = 1, 0 and −1, corresponding to the spherical,
Ricci flat and hyperbolic topology of the black hole horizon, respectively. The metric
function f is given by [23,26–30]

f (r) = k + r2

2α̃

(

1 −
√

1 + 64πα̃M

(d − 2)
∑

k r
d−1 − 2α̃Q2

(d − 2)(d − 3)r2d−4 + 8α̃�

(d − 1)(d − 2)

)

,

(2)
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with α̃ = (d − 3)(d − 4)αGB, where αGB is the Gauss–Bonnet coefficient, M is
the black hole mass, Q is related to the charge of the black hole and � < 0 is the
cosmological constant.

Solving the equation f (r) = 0, we obtain the horizon radii and let rH denote the
position of the outer event horizon of the black hole. The mass M can be expressed in
terms of the event horizon rH as

M = (d − 2)
∑

kr
d−3
H

16π

(

k + k2α̃

r2
H

− 2�r2
H

(d − 1)(d − 2)

)

+
∑

k Q
2

32π(d − 3)rd−3
H

. (3)

The Hawking temperature of the black hole can be easily obtained by requiring the
absence of conical singularity at the horizon in the Euclidean sector of the black hole
solution, which is given by

TH = 1

4π
f ′(rH)

= 1

4πrH(r2
H + 2kα̃)

(

(d − 3)kr2
H + (d − 5)k2α̃ − Q2

2(d − 2)r2d−8
H

− 2�r4
H

(d − 2)

)

.

(4)

To describe tunneling, we make a Painlevé coordinate transformation

dT = dt − g(r)dr. (5)

Substituting Eq. (5) into Eq. (1) yields

ds2 =− f (r)dT 2 − 2 f (r)g(r)dTdr +
(

1

f (r)
− f (r)g2(r)

)

dr2 + r2hi jdxi dx j .

(6)

Considering flat Euclidean space in radial, we get

1

f (r)
− f (r)g2(r) = 1. (7)

So Eq. (6) can be re written as

ds2 = − f (r)dT 2 ± 2
√

1 − f (r)dTdr + dr2 + r2hijdx
i dx j , (8)

where + sign denotes the space-time line element of outgoing particles at the event
horizon, and—sign denotes the space-time line element of ingoing particles at the
cosmological horizon.

Obviously, the line element (8) has many superior features. First, it does not have
coordinate singularity and is well-behaved at the horizons. Second, the event horizon
and the infinite red-shift surface are coincident with each other. Third, ∂T is a Killing
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vector in the global space-time. Fourth, constant-time slices are just flat Euclidean
space. Moreover, it is easy to show that the metric in this new coordinate system
satisfies Landau’s condition of coordinate clock synchronization which is given by
[31]

∂

∂x j

(

− g0i

g00

)

= ∂

∂xi

(

−g0 j

g00

)

, (i, j = 1, 2, 3). (9)

That is, the coordinate clock synchronization in the Painlevé coordinates can be trans-
mitted from one place to another though the line element is not diagonal. In quantum
mechanics, it is an instantaneous process that particle tunnels across a barrier. All of
these make it convenient to discuss the Hawking radiation as tunneling.

According to Eq. (8), the radial outgoing null geodesic at the event horizon can be
represented as

ṙ = dr

dT
= 1 − √

1 − f (r). (10)

Equation (10) is the motion equation of a massless particle when it tunnels across
the horizon. The world-line of a massive quanta is timelike, so it does not follow
radial-lightlike geodesic (10). Similar to Ref. [10,11], we treat the outgoing massive
particle as a de Broglie wave and we can easily obtain its motion equation

ṙ = −g00

g01
= f (r)

2
√

1 − f (r)
. (11)

If the particle self-gravitation, energy conservation and angular momentum con-
servation are taken into account, when a particle of energy ω is emitted, the black
hole’s energy will become M−ω, all of the equations which are mentioned above and
related with rH(M) should be used with M → M −ω. Since the metric is of spherical
symmetry, so regarding the outgoing particle as an s-wave, i.e. a shell of energy is
reasonable. Assuming that the outgoing wave is traced back toward the horizon, its
wave-length, as measured by local fiducial observers, will be blue-shifted. Near the
horizon, the radial wave number approaches infinity, so that the Wentzel–Kramers–
Brillouin (WKB) approximation is appropriate [8].

The action of the outgoing particle which crosses the horizon outwards from ri to
rf could be expressed as.

Z =
∫ rf

ri

Prdr =
∫ rf

ri

∫ Pr

0
dPrdr , (12)

where Pr is canonical momentum conjugate to r , ri and rf represent the locations of
the event horizon before and after the particle emission. Taking the Hamilton equation
into account, we have

ṙ = dH

dPr

∣
∣
∣
∣
r

= dM

dPr
. (13)

Substituting Eqs. (10),(11) and (13) into Eq. (12), Changing the variable from the
momentum to the mass and switching the order of integration, we obtain
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Z =
∫ Mf

Mi

∫ rf

ri

dr

ṙ
dM =

⎧
⎨

⎩

∫ Mf
Mi

∫ rf
ri

1+√
1− f (r)
f (r) drdM (massless particle),

∫ Mf
Mi

∫ rf
ri

2
√

1− f (r)
f (r) drdM (massive particle),

(14)

where Mi = M; Mf = M − ω.
It is easy to find that the integrand is singular at the point r = rH. The integral can

be evaluated by deforming the contour around the pole, so as to ensure that positive
energy solution decay in time. Note that all real parts, divergent or not, can be discarded
since they only contribute a phase. Doing the r integral, we find

Z = −i2π

∫ Mf

Mi

1

f ′(rH)
dM . (15)

From Eq. (3), we have

dM = (d − 2)
∑

kr
d−6
H

16π

(

(d − 3)kr2
H + (d − 5)k2α̃ − 2�r4

H
(d − 2)

− Q2

2(d − 2)r2d−8
H

)

drH.

(16)

Substituting Eqs. (4) and (16) into Eq. (15) yields

Z = −i
(d − 2)

∑
k

8

∫ rf

ri

(rd−3
H + 2kα̃rd−5

H )drH = −i

∑
kr

d−2
H

8

(

1 + 2(d − 2)kα̃

(d − 4)r2
H

)∣
∣
∣
∣
∣

rf

ri
(17)

Adopting the WKB approximation, the tunneling probability of the particle is
related to the imaginary part of the action via � ∼ exp(−2ImZ). So

� ∼ exp(−2ImZ) = exp

{∑
kr

d−2
H

4

(

1 + 2(d − 2)kα̃

(d − 4)r2
H

)∣
∣
∣
∣
∣

rf

ri

}

= exp(�F), (18)

where

�F =
∑

kr
d−2
f

4

(

1 + 2(d − 2)kα̃

(d − 4)r2
f

)

−
∑

kr
d−2
i

4

(

1 + 2(d − 2)kα̃

(d − 4)r2
i

)

. (19)

The emission spectrum (18) obviously deviates from the pure thermal spectrum but
is consistent with an underlying unitary theory. It should be noted that the emission
spectrums of massless particles and massive ones have the same functional forms.

Compared with the conventional tunneling rate � ∼ e�SBH which has been shown
in all of the early references about tunneling radiation, where SBH is the black hole
Bekenstein–Hawking (BH) entropy and �SBH the difference of the BH entropy before
and after the particle emission, the entropy at the event horizon of a d-dimensional
Gauss–Bonnet Anti-de Sitter black hole may be expressed as

123



57 Page 6 of 7 G.-Q. Li, J.-X. Mo

SGB
BH = F(M) =

∑
k r

d−2
H

4

(

1 + 2(d − 2)kα̃

(d − 4)r2
H

)

. (20)

The result is in accord with that given by Ref. [28], where the entropy was obtained
by integrating the first law and the physical assumption was imposed that the entropy
vanishes when the horizon of black holes shrinks to zero. When k = 1, the entropy (20)
is in complete agreement with the one in [32], where the entropy of the Gauss–Bonnet
black holes without the cosmological constant is obtained by calculating the Euclidean
action of black holes. But, it is obvious that the entropy SGB

BH is not proportional
to the horizon area A = ∑

k r
d−2
H and does not obey the area law SGB

BH = A/4
unless k = 0. We think that the peculiarity can be regarded as the effects on black
hole thermodynamic quantities due to Gauss–Bonnet modified gravity. In fact, it was
pointed by Kanti and Tamvakis [33] that the Gauss–Bonnet term has an effect both on
the temperature and the entropy of the Gauss–Bonnet black hole.

We expand the F(M − ω) in terms of the energy of the emitted particle ω, i.e.

F(M − ω) = F(M) +
∞∑

n=1

anω
n (21)

where

an = 1

n!
dnF(M − ω)

dωn

∣
∣
∣
∣
ω=0

n = 1, 2, 3, . . . ,∞. (22)

Then

�SGB
BH = F(M − ω) − F(M) = −βω +

∞∑

n=2

anω
n (23)

and

� ∼ exp(�SGB
BH) = exp

(

−βω +
∞∑

n=2

anω
n

)

, (24)

where β = 1/TH is the inverse of the Hawking temperature.
In Eq. (24), the first term gives the familiar thermal Boltzmann factor exp(−βω) for

the emanating radiation, the others are the corrections resulting from the response of
the background geometry to the emission of a quantum, which can easily be calculated
to any desired order in ω → 0 and are indicative of a “greybody” factor in the emission
spectrum. The existence of these correction terms means that it is probable that we
can obtain other information from the spectrum in addition to the temperature, that is,
the corrected spectrum is not purely thermal [34].
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