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Abstract In this work, an exact regular black hole solution in General Relativity is
presented. The source is a nonlinear electromagnetic field with the algebraic structure
T 0

0 = T 1
1 for the energy–momentum tensor, partially satisfying the weak energy

condition but not the strong energy condition. In the weak field limit, the EM field
behaves like the Maxwell field. The solution corresponds to a charged black hole with
q ≤ 0.77 m. The metric, the curvature invariants, and the electric field are regular
everywhere. The BH is stable against small perturbations of spacetime and using the
Weinhold metric, geometrothermodynamical stability has been investigated. Finally
we investigate the idea that the observable universe lives inside a regular black hole.
We argue that this picture might provide a viable description of universe.

Keywords General relativity · Nonlinear electrodynamics · Regular black holes ·
Stability

1 Introduction

Standard GR is very successful in explaining the available data but suffers from the
presence of curvature singularities. Singularities are places where general relativity or
another classical theory of gravity break down. It has been argued that singularities
do not exist in nature. The singularity problem is connected to the existence of black
holes. Recently, detection of gravitational waves have put the reality of black holes
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beyond doubt [1,2]. However, a full understanding of BH physics requires avoidance
of singularities or modification of the corresponding classical theory and addressing
quantum effects. Singularities can be avoided if the energy conditions (some reason-
able physical conditions that the matter content of the space time satisfies) assumed
by the singularity theorems are violated at least in some regions of spacetime. Singu-
larities can be replaced by regular regions filled by some kind of matter that violates
the strong energy condition. The first idea, due to Sakharov and Gliner [3,4] suggest
that singularities could be avoided by a non-singular de Sitter core, with equation
of state p = −ρ (T t

t = T r
r ). Following this idea, a wide class of regular black

hole solutions appeared in the literature. A way to classify the solutions is through
the type of junctions. If there is no junction, the solution is a continuous solution
throughout space time. The first smooth regular black holes solution, based on this
idea, was proposed by the Bardeen, in which there are horizons but no singularity
and near the centre, the solution tended to a de Sitter core solution. Ayon- Beato and
Garca successfully interpreted the Bardeen black hole in the framework of non linear
electrodynamics (NED) with gauge-invariant Lagrangian L(F), F = FμνFμν , as a
magnetic monopole. In NED coupled to General Relativity there exists several regular
solutions using the F − P dual formalism, describing electrically charged black holes
and magnetic black holes and monopoles [5–26]. There are also solutions which have
boundary surfaces joining the two regions. These solutions are constructed by filling
the inner space with matter up to a certain surface and then make a smooth junction,
through a space like boundary surface of the Planckian thickness, to the Schwarzschild
and Reissner–Nordström solution as was done in [27–29]. The third solution is the
solution with thin shell layer. The thin shell layer can be time-like, space-like or null
[30–46].
The construction of a black hole spacetime satisfying the equations of motion is not
enough to appreciate the physical significance of the solution. In a realistic scenario,
we have to know whether or not the spacetime is robust for small perturbations of the
geometry and matter fields. If not, a probe, say a particle moving on the black hole
background, may cause a disruptive back reaction; and the possibility of dynamically
forming such a black hole through a physical process, such as gravitational collapse,
is put in doubt. The complete description of stability of black holes must take into
account both the classical and the thermodynamic stability because the Schwarzschild
black hole is classically stable at the linear mode level and yet it has a negative spe-
cific heat, which signals a (local) thermodynamic instability. In this work, in order
to study thermodinamical stability of regular black hole, we will use geometrother-
modynamics method. Geometrothermodynamics is a formalism that relates a contact
structure of the phase space τ with the metric structure on a special subspace of τ called
the space of equilibrium states ε [47]. This geometric study has been considered in
several papers by means of different approaches like Weinhold [48,49], Ruppeiner
and Quevedo [50,51]. In 1975 Weinhold introduced differential geometric concepts
into ordinary thermodynamics by considering a kind of metric defined as the second
derivatives of internal energy with respect to entropy and other extensive quantities
for a thermodynamical system. After that, Ruppeiner introduced another metric and
defined the minus second derivatives of entropy with respect to the internal energy
and other extensive quantities. It is notable that, the Ruppeiner metric is conformal
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to the Weinhold metric with the inverse temperature as the conformal factor. In par-
ticular, it was found that the Ruppeiner geometry carries information regarding phase
structure of thermodynamical systems. Because of their success for their applications
in ordinary thermodynamical systems, they have also been employed to study black
hole phase structures which led to interesting results. Since these two approaches fail
in order to describe phase transition of several black holes Quevedo proposed new
types of thermodynamical metrics for studying geometrical structure of the black hole
thermodynamics. This method was employed to study the geometrical structure of the
phase transition of black holes and proved to be a strong machinery for describing
phase transition and stability of black holes [52]. Thermodynamic quantities of regu-
lar black hole were studied by Man and Cheng [53]. Ma and Zhao [54,55] discussed
the thermodynamic stability of regular black holes by evaluating the heat capacity at
constant magnetic charge Cp. A form of the first law of black hole mechanics in the
context of nonlinear electrodynamics has been derived by Rasheed [56], but this form
of the first law does not satisfy requirements of a regular black hole. By considering
some extra terms, Zhang and Gao [57] derive a more general form of the first law.
Another (conventional) way to study the classical stability of a black hole is to per-
turb of black hole spacetimes and look at the quasi normal modes (QNMs) [58,59].
These modes are the resonant, nonradial perturbations of black holes that can be
excited by external perturbations. They are characterized by a spectrum of discrete,
complex frequencies, whose real parts determine the oscillation frequency, and whose
imaginary parts determine the rate at which each mode is damped as a result of the
emission of radiation. The corresponding frequencies are complex, since the pertur-
bation can fall into the black hole or be radiated to infinity. For black holes, apart
from numerical approaches, only the linear problem has been studied. Therefore, the
fundamental equations describing the perturbations of black holes reduce to a sin-
gle second-order ordinary differential equation that is similar to the one dimensional
Schrödinger equation for a particle encountering a potential barrier on the infinite
line. The nature of the potential precludes an exact, closed-form solution in terms of
known functions [58–64]. Thus there are several approaches to the study of black-
hole normal modes: Ferrari and Mashoon [65], replaced the potential barrier in the
effective one-dimensional Schrödinger equation by a parametrized analytic potential
barrier function for which simple exact solutions are known. The overall shape approx-
imates that of the true black-hole barrier, and the parameters of the barrier function
are adjusted to fit the height and curvature of the true barrier at the peak. The barrier
is located in photon sphere where waves are formed. In other words, QNM complex
frequencies are generated by a family of surface waves lying on its photon sphere [66].
Similarly, QNMs of regular black holes have been studied by several authors [67–69].
Apart from the above mentioned issues, the idea of a universe inside a black hole
with false vacuum was proposed by Farhi and Guth [70]. They studied an expanding
spherical de Sitter space time with initial space like singularity separated by a thin wall
from the outside region of the Schwarzschild geometry. In 1989 ideas were considered
by Frolov [71] in which the curvature is limited by the Planckian scale. Both Farhi
and Frolov models are based on matching the Schwarzschild and de Sitter metrics
using thin shell approach which implies that the whole dynamical evolution from the
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equation of state ρ = p = 0 to p = −ρ. Recently, in [72], cosmological inflation
inside a black hole with null junction surface is investigated.
In the present work, we follow the historical trend described above, in order to inves-
tigate charged black holes which are free from strong curvature singularities, by
employing the idea of nonlinear electrodynamics. It will be shown that a suitable
nonlinear Lagrangian for the electromagnetic field leads to an exact, regular black
hole solution with a central region having an effective equation of state in the form
p = −ρ. An interpretation of this results, together with the stability analysis of the
solution are other issues considered in the present work.

This paper is arranged as follows: in the next section the basic equations describing
a charged black hole are presented. In Sect. 3 we introduce a regular solution and
its properties. In Sect. 4, we discuss stability by using geometrothermodynamic and
classical stability criteria by using quasi-normal modes. In Sect. 5 we study the idea
of universe inside a black hole. In the final section we will make some concluding
remarks.

2 Basic equations

A static spherically symmetric line element can be written in the form

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2d�2 (1)

where d�2 is the metric of a unit 2-sphere. The metric coefficients satisfy the Einstein
equations

Gμν = Tμν (2)

which reduce to

T t
t = −ρ(r) = −e−ν(r)

(
ν

′

r
− 1

r2

)
− 1

r2 , (3)

T r
r = pr (r) = e−ν(r)

(
μ

′

r
+ 1

r2

)
− 1

r2 , (4)

T θ
θ = T φ

φ = p⊥(r) = e−ν(r)

(
μ

′′

r
+ μ

′2

4
+ μ

′ − ν
′

2r
− μ

′
ν

′

4

)
. (5)

Here the prime denotes differentiation with respect to r , ρ(r) = −T t
t is the energy

density, pr (r) = T r
r is the radial pressure and p⊥ = T θ

θ = T φ
φ is the tangential

pressure for anisotropic perfect fluid. By integrating Eq. (3), one gets

e−ν(r) = 1 − 2GM(r)

r
, M(r) = 4π

∫ r

0
ρ(x)x2dx . (6)
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From Tμ
ν ;μ = 0 one can get the TOV equation

p⊥ = pr + r

2
p

′
r + (ρ + pr )

GM(r) + 4πGr3 pr
2(r − 2GM(r))

. (7)

The boundary conditions are the Schwarzschild behavior at r → ∞,

e−ν(r) = 1 − 2Gm

r
, m = 4π

∫ ∞

0
ρ(r)r2dr, Tμν = 0, (8)

and the de Sitter behavior at r → 0

e−ν(r) = 1 − 


3
r2, Tμν = ρ0gμν (9)

where 
 = 8πGρ(r = 0) = 8πGρ0. The important feature of the de Sitter geometry
is the divergence of the geodesic congruences. To investigate the system we impose
the following requirements:
(a) Regularity of metric and density at the center. (b) Finiteness of the ADM mass. (c)
The weak energy condition for Tμν .
The weak energy condition requires

Tμνu
μuν ≥ 0 (10)

for every time-like uμ which leads to

ρ ≥ 0 ρ + pr ≥ 0 ρ + pt ≥ 0. (11)

This guarantees that the energy density as measured by any local observer is non-
negative.
The requirements imposed on the Eqs. (3–5), enforce the following behavior. Finite-
ness of the mass Eq. (8) leads to ν(r) = 0 as r → ∞, and requires the density profile
ρ(r) vanish at infinity quicker than r−3. Regularity of density ρ(r = 0) < ∞, requires
the mass function M(r) to vanish as r3 when r → 0, as a result ν(r) → 0 as r → 0.
The weak energy condition and by the Oppenheimer equation μ = 0 as r → 0 and
r → ∞. So the function ν(r) + μ(r) = 0 at r = 0 and at r → ∞ and its derivative
is non-negative. It follows that μ(r) = −ν(r) everywhere.
This class of metrics have the algebraic structure

T t
t = T r

r , T θ
θ = T φ

φ . (12)

For the class of spherically symmetric geometries with the symmetry of a source term
given by Eq. (12), the weak energy condition leads inevitably to de Sitter asymptotic
i.e. a regular center. The scalar curvature is

R = 2(ρ − p⊥) (13)
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The Ricci scalar changes sign somewhere and space-time experiences smooth changes
in topology of space-like hyper surfaces. The existence of zero gravity surface at which
the strong energy condition is violated is defined by

p⊥ = −ρ − r

2
ρ

′ = 0. (14)

By using TOV equation we have

pr = −ρ p⊥ = −ρ − r

2
ρ

′
. (15)

The weak energy condition gives ρ ≥ 0 and ρ
′ ≤ 0, and thus demands monotonic

decreasing of the density profile. This defines the form of the metric that in the region
0 < r < ∞ it has only minimum and the geometry can have not more than two
horizons [5–12].

We now require a spherically symmetric electromagnetic field with an arbitrary
gauge invariant Lagrangian L(F), which has stress energy tensor with the algebraic
structure (12). But F must vanishes at both zero and infinity to guarantee regularity
and so F must have at least one minimum in between, This leads to branching of L(F)

as a function of F . This creates problems in an effective geometry whose geodesics
are world lines of NED photons. In fact, in nonlinear electromagnetism photons do not
propagate along null geodesics of the background geometry, instead they propagate
along null geodesics of an effective geometry, which depends on the non linearities
of the theory. According to the effective scalar curvature and the effective potential
that is felt by the photons the effective geometry itself singular. This singularity is
only felt by photons (the photons with energy greater than the height of the barrier of
effective potential), the rest of the matter follows geodesics of the background space
time [13,14].
In the following we use the nonlinear electrodynamics as the source of the regular
black holes. In nonlinear electrodynamics minimally coupled to gravity, the action is
given by

S =
∫

dV

(
1

4
R − L(F)

)
(16)

where R is the scalar curvature, and Fμν = ∂μAν −∂ν Aμ is the electromagnetic field.
L(F) is an arbitrary function of F = FμνFμν , which in the weak field regime should
have the Maxwell limit. Energy–momentum tensor takes the form

Tμν = 2
dL(F)

dF
FναF

α
μ − 1

2
gμνL(F). (17)

From Eq. (15), the density and tangential pressures are given by

ρ = 1

2
L − F

dL

F
, p⊥ = −1

2
L , (18)
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and scalar curvature is

R = 2

(
L − F

dL

dF

)
. (19)

The zero gravity surface follows from Eq. (18)

p⊥ = −1

2
L = 0. (20)

Electrically charged solutions are found in the alternative form of NED obtained by
the Legendre transformation

H = 2FLF − L . (21)

Defining Pμν ≡ LF Fμν , it can be shown that H is a function of P = 1
4 Pμν Pμν =

(LF )2F , E(r) = Ftr = Hp
q

r2 i.e, dH = (LF )−1d((LF )2F) = HPdP . With the

help of H one expresses the nonlinear electromagnetic Lagrangian in the action (16)
as L = 2PHP − H , depending on the antisymmetric tensor Pμν . The weak energy
condition requires H < 0 and Hp > 0. Interpretation of the results obtained in P
framework depends essentially on transformation to F framework where Lagrangian
dynamics is specified. The two frames are equivalent only when the function F(P) is
monotonic [16–18].

3 Regular electric solution

Our solution is described by the metric

g = − f (r)dt2 + f (r)−1dr2 + r2d�2, f (r) = 1 + q2r2

r4 + q2 −
4m arctan

(
r3

q2

)
πr

(22)

This metric is obtained by using of the Eq. (6) and the energy density of the form

T t
t = T r

r = q2
(
πr10 + 12mq4 + πr4q4 − 3πq6 − 3πq2r6 + 12mr8 + 24mq2r4

)
(
q4 + r6

) (
r4 + q2

)2
π

(23)

In the limit r → ∞

ρ ≈ q2

r4 + O

(
1

r6

)
. (24)

So, the density profile at infinity vanishes quicker than r−3, and conforms with the
electric field energy density of a point charge.
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Fig. 1 The behavior of −gtt in
terms of r for different values of
q and m = 1

Moreover, the solution (22) asymptotically behaves as the Reissner–Nordström solu-
tion, i.e.,

− gtt = 1 − 2m

r
+ q2

r2 . (25)

from the 1
r term it follows that the parameter m is associated with the mass of the

configuration and from the 1
r2 term the parameter q is interpreted as the electric charge.

For a certain range of the mass and charge, our metric (22) is a black hole. For any
non vanishing value of q and m, −gtt has a single minimum. There exists a single real
critical value of q = 0.7678 m (Fig. 1).
When r → 0, the metric function (22) behaves as the de Sitter black hole with

cosmological constant 
 = 3(
4m

πq2 − 1) if 4m
πq2 > 1:

1 −
(

4m

πq2 − 1

)
r2. (26)

In Fig. 2, we plot the conditions for the existence of black hole and dS core by using
conditions of extremal (cold BH) and Eq. (26). As can be seen, for specific range of
q and m we have BH with dS center.
Two horizons, a black hole event horizon r+ and an internal Cauchy horizon r− are
shown in Fig. 3, together with zero gravity surface beyond which the strong energy
condition is violated. Horizons come together at the value of a mass parameter mcri ,
which puts a lower limit on the black hole mass. For m < mcri geometry describes
a self-gravitating particle-like structure without horizons. For m > mcri , geometry
describes the vacuum non singular black hole, and global structure of the metric is
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Fig. 2 The behavior of m in
terms of q

Fig. 3 The behavior of r in
terms of m for q = 1

similar to the Reissner–Nordström black hole except that the singularity has been
smoothed out.
Contrary to the usual electromagnetic, the trace of the energy–momentum tensor does
not vanish except in the surface that the Ricci scalar is zero, i.e, the surface that the
topology changes. Changes in the signature of the Ricci scalar is shown in Fig.4a
with dashed circles. As can be seen Ricci scalar is positive in the core and negative
outside. From the analytical expressions of the curvature invariant one concludes that
the Ricci scalar and other curvature invariants, are regular everywhere (as can be seen
from Fig. 4).
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(a) (b)

Fig. 4 The behaviure of R and Rμν Rμν in terms of r for different values of q and m = 1

Fig. 5 The behavior of ρ,
ρ + pr and ρ + p⊥ in terms of r
for q = 0.5,m = 1

From Fig. 5, one can conclude that the weak energy condition is satisfied everywhere
except in the core. Also, energy density is maximal as r → 0, which corresponds to
energy density of vacuum, in this case the electromagnetic vacuum.
The t

t component of Einstein equations (2) with the Lagrangian (16) yields the basic
equation

Gt
t = 2H(p), (27)

then by using of Eq. (21) one can get L(F). the function L(F) has only two branches
related to one minimum of F . The Lagrangian L(F) which is monotonic function of
F , first decreases smoothly along the first branch from its maximal value to Lcusp as F
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(a) (b)

Fig. 6 The behavior of F in terms of −p (left). The behavior of L in terms of F (right)

decreases from F = 0 at r = 0 to Fmin = Fcusp, then the Lagrangian increases along
the second branch from its minimal value Lcusp < 0 to its Maxwell limit L → F → 0
as F increases from Fcusp to F → 0 as r → 1 (see Fig. 6). In order to determine the
nature of rcusp, one can obtain the effective geometry that associated to a spherically
symmetric solution of Einstein,s equations

ds2 = − f (r)

φ(r)
dt2 + dr2

f (r)φ(r)
+ r2

LF
d�2, (28)

where

φ(r) = −2q

r3

1
dE

dr

(29)

it is useful to study the effective potential that is felt by the photons. According to the
symmetries of the metric, two conserved quantities is given by

E = gtt ṫ and J = r2

LF
φ̇ (30)

by using of (28) the effective potential for photons is given by

Vef f = f (r)φ(r)LF J 2

2r2 − φ(r)2E2

2
, (31)

We give in Fig. 7a plots of Vef f for different values of the relevant parameters. As
can be seen from Fig. 7a, there is a potential barrier in the right of the outermost
singularity. If incident photon with energy greater that the height of the barrier will
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(a) (b)
Fig. 7 The behavior of Vef f in terms of r for J = 10, E = 1 (left). The behavior of E, φ and gtt in terms
of r for m = 1, q = 0.5 (right)

encounter the first singularity. For a distant observer photons disappear beyond the
surface r = rcusp in the same way as they disappear beyond the event horizon of a
black hole. The redshift z of a source as measured by a static observer and using the
expression of the effective metric,

1 + z = φ(r)√
f (r)

(32)

It diverges at the BH horizon where f (r) vanishes, and at the cusp surface r = rcusp
where φ(r) diverges. At the cusp the electric field achieves its maximum and in the

asymptotic is E = q

r2 + O(
1

r4 ) (see Fig. 7b). So, by non linear of electrodynamic we

create electromagnetic black hole that only felt by photons [13,14].

4 Stability

We investigate the stability of black holes within classical general relativity via quasi
normal modes and using standard methods [65]. External perturbations excite the
QNMs which in turn appear as damped vibrations of the black hole. Quasi normal
frequencies (QNFs) are complex numbers that encode information on the system’s
relevant parameters and on its relaxation after it has been perturbed.

In order to study classical stability, we compute the quasi normal frequency cor-
responding to the massless scalar perturbations. The equation for these perturbations
takes the usual form,

1√
g
∂μ

(√
g∂μφ

) = 0, (33)
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where g is the determinant of the metric. Equation (33) can be separated by decom-
posing the scalar perturbation into appropriate harmonics,

φ = 1

r

∑
eiωtϕlm(r)Ym

l (�) (34)

and by introducing the tortoise coordinate

dx = dr

f
(35)

One then can rewrite the radial part of (33) in a Schrödinger form

[
− d2

dx2 + V (x) − ω2
]

ϕ(x) = 0, (36)

with V given by

V = f

(
l(l + 1)

r2 + f
′

r

)
(37)

In a spherical black hole, the effective potential V is independent of frequency and
V → 0 as x → ±∞. The quasi normal modes are defined to be the solutions of (36)
with the boundary conditions

ϕ(x) ∝ e∓iωx as x → ±∞ (38)

which correspond to outgoing waves at infinity and ingoing waves at the horizon. It
follows from the boundary conditions ω must be complex, ω = ωr + iωi . Stability
implies that only modes with Im(ω) > 0 are allowed. Figure 8 illustrates the behavior
of the quasi normal frequency with respect to the charge/mass ratio. The real part of
the frequency grows with the charge. In Table. 1 the values of quasi normal frequencies
are shown which are obtained using the method described in [65]. As one can see, the
imaginary part of frequency is positive and it can be concluded that metric is stable.

We now turn to the geometrothermodynamic description of the black hole. In the
space of equilibrium states, we consider a Legendre invariant of Weinhold metric
which is given by [48,49]

ds2
w = MgabdE

adEb, gab = ∂2M

∂Ea∂Eb
(39)

where Ea = {s, q}, s, q being entropy and electric charge. For a static charged black
hole, the denominator of Weinhold Ricci scalar
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(a) (b)

Fig. 8 The real part of the quasi normal frequency corresponding to the scalar perturbations for several
values of l ≥ 2 (left), and the imaginary part of the quasi normal frequency for l = 4 (right)

Table 1 Quasinormal
frequencies of the scalar
perturbations for m = 1 and
n = 0

q l = 2 l = 3 l = 4

0.1 0.394+0.304 i 0.620+0.295 i 0.826+0.294 i

0.2 0.397+0.306 i 0.622+0.298 i 0.830+0.295 i

0.3 0.401+0.307 i 0.628+0.300 i 0.840+0.296 i

0.4 0.408+0.310 i 0.638+0.305 i 0.851+0.301 i

0.5 0.417+0.314 i 0.652+0.308 i 0.870+0.306 i

0.6 0.431+0.319 i 0.671+0.314 i 0.894+0.311 i

0.7 0.452+0.324 i 0.699+0.319 i 0.930+0.316 i

0.8 0.489+0.320 i 0.747+0.316 i 0.989+0.314 i

den(Rw) =
(
MssMqq − M2

sq

)2
M2 (40)

where Mss = ∂2M

∂s2 and Msq = ∂2M

∂s∂q
.

The roots of the Eq. (40) should coincide with the type two of the phase transitions in
the heat capacity. In order to investigate the local stability of a black hole with fixed
charge (canonical ensemble), one can investigate the behavior of the heat capacity.
The positivity of the heat capacity ensures thermal stability. In addition, the behavior
of heat capacity represents two types of phase transition. The changes in the signature
of the heat capacity determines type one phase transition and divergency of the heat
capacity is denoted by type two phase transition. As can be seen from Fig. 9, at fixed
charge as entropy increases, the black hole becomes unstable and at fixed entropy, as
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Fig. 9 The behavior of heat
capacity in terms of s for
different values of q and m = 1

(a) (b)

Fig. 10 The denominator of Weinhold Ricci scalar verses s for different values of q (left), Mss verses s
for different values of q (right)

charge is increased the black hole remains stable. The changes in signature of the heat
capacity and its singularity which is plotted in Figs. 9 and 11, show type one and two
phase transitions. Therefore, this black hole is stable only when entropy is between
the two phase transitions.

In Fig. 10a, the denominator of Weinhold Ricci scalar is plotted. As it can be seen,
only one type of phase transition exists which does not coincide other types of phase
transitions. On the other hand, as can be seen from Table 1, black hole is classically
stable.
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(a) (b)

Fig. 11 Cq and Ms in terms of s for different values of q

5 Universe inside black hole?

To investigate a 
BH and remove singularity of r+ and r− and maximal analytic
extension we introduce the Finkelstein coordinates, related to radial geodesics of non
relativistic test particles, are given by

τ = t +
∫ √

2M(r)

r

dr

1 − 2M(r)

r

, (41)

R = t +
∫ √

r

2M(r)

dr

1 − 2M(r)

r

. (42)

The metric (22) transforms into the Lemaitre metric

ds2 = −dτ 2 + eλ(R,τ )dR2 + r2d�2, eλ = 2M(r)

r
(43)

For the metric (43) the Einstein equations reduce to [73,74]

r
′2 + 2rr

′′ + prr
2 = 0 (44)

Where prime is differentiation with respect to τ . The further evolution of the function
r , velocity r

′
are shown in Figs. 12 and 13, obtained by ODE plot of the equation

of motion (44) with different initial conditions. For r0 = 1, r
′
0 = 1.583, numerical

calculation of the Eq. (44) shows an exponential growth of r(τ ) at the beginning (Fig.
12). Figure 14 shows the pressure components pr and pt versus r .
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(a) (b)

Fig. 12 r and r
′

in terms of τ for values of q and m and for initial conditions r0 = 1, r
′
0 = 1.583

(a) (b)

Fig. 13 r and r
′

in terms of τ for different values of q and m and for initial conditions r0 = 1, r
′
0 = 0

r ∝ eατ (45)

For r0 = 1, r
′
0 = 0, in the limit τ → 0 the law of the expansion is (Fig. 13)

r ∝ τ 2 (46)

For both case, according to the Fig. 15, near the center we have p⊥ 
 pr 
 −ρ,
followed by an anisotropic Kasner-type stage when the anisotropic pressure leads to
an anisotropic expansion (with contraction in the radial direction and expansion in the
tangential direction).
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Fig. 14 The behavior of pr and
p⊥ in terms of r

Fig. 15 The behavior of M in
terms of r for q = 0.5

As, can be seen in Fig. 15, the mass is zero at the center and as the universe expands
mADM increases as r3. Because in the center ρ = ρ0 is constant, this is consistent

with the M = ρV = ρ
4π

3
r3. The general behvior of mass is given by

M(r) =
2m arctan

(
r3

q2

)
π

− q2r3

2(r4 + q2)
. (47)
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In the limit r → ∞

M(r) ≈ m + O

(
1

r

)
, (48)

while for r → 0

M(r) ≈
(

4m

πq2 − 1

)
r3 + O(r7). (49)

finally, we study the region near r = 0 as a small false vacuum bubble which can be
a seed for the quantum birth of a universe. The standard procedure of quantization
results in the Wheeler–DeWitt equation in the minisuperspace for the wave function
of universe which reduces to the Schrödinger-like equation

d2�

da2 +U (a)� = 0. (50)

If we begin with the FRW metric, the effective potential is

U (a) = (144ka2 − 48
a4). (51)

The superpotential may have a maximum necessary for quantum tunnelling. The super-
potential consists of two terms, a curvature term 144ka2 and the 
 term 48
a4. If
k > 0 and 
 > 0 we have quantum tunnelling. By plotting the effective potential one
can investigate the quantum tunnelling [73,74].

6 Conclusion

In this paper, we introduced regular spherically symmetric electrically charged solu-
tions in the framework of nonlinear electrodynamics coupled to general relativity.
Corresponding diagrams for different values of mass and charge were considered.
Weak energy condition for the electromagnetic source was shown to be satisfied, while
strong energy condition is violated somewhere inside the black hole. We showed that
this solution undergoes change in topology in the sense that the Ricci scalar changes
its sign. Then, by using common methods in the study of stability of singular black
holes, we studied the global stability of the solution by employing the heat capacity,
a geometrothermodynamic method, and classical stability analysis through QNMs.
We conclude that the black hole is stable under small perturbations of space time.
By increasing the mass of the black hole, after phase transition of type two evaporate
and vacuum non singular black hole evolves towards a self-gravitating particle-like
vacuum structure without horizons. Finally, we speculate that the early universe was
inside a primordial black hole. The interior of the black hole was shown to be dS.
By numerical calculation, we concluded that for positive cosmological constant and
curvature constant the inner universe can enter an accelerated phase.
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