
Gen Relativ Gravit (2017) 49:27
DOI 10.1007/s10714-017-2184-0

RESEARCH ARTICLE

Neutron stars in Scalar-Tensor-Vector Gravity

Federico G. Lopez Armengol1 ·
Gustavo E. Romero1,2

Received: 3 February 2016 / Accepted: 31 December 2016 / Published online: 25 January 2017
© Springer Science+Business Media New York 2017

Abstract Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity
(MOG), is an alternative theory of the gravitational interaction. Its weak field approx-
imation has been successfully used to describe Solar System observations, galaxy
rotation curves, dynamics of clusters of galaxies, and cosmological data, without the
imposition of dark components. The theory was formulated by John Moffat in 2006. In
this work, we derive matter-sourced solutions of STVG and construct neutron star mod-
els. We aim at exploring STVG predictions about stellar structure in the strong gravity
regime. Specifically, we represent spacetime with a static, spherically symmetric mani-
fold, and model the stellar matter content with a perfect fluid energy-momentum tensor.
We then derive the modified Tolman–Oppenheimer–Volkoff equation in STVG and
integrate it for different equations of state. We find that STVG allows heavier neutron
stars than General Relativity (GR). Maximum masses depend on a normalized param-
eter that quantifies the deviation from GR. The theory exhibits unusual predictions for
extreme values of this parameter. We conclude that STVG admits suitable spherically
symmetric solutions with matter sources, relevant for stellar structure. Since recent
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determinations of neutron stars masses violate some GR predictions, STVG appears
as a viable candidate for a new gravity theory.

Keywords Modified gravity · Vector gravity · Neutron stars

1 Introduction

The paramount current theory of the gravitational interaction is General Relativity
(GR). The theory earned this status because of its conceptual simplicity, its intuitive
geometrical interpretation and, of course, its remarkable successes in modeling grav-
itational phenomena. But, above the sympathy that these attributes may gender, we
must accept that the theory is defective. On a philosophical ground, GR is imperfect
as any mathematical representation of reality [1]. Regarding its physical predictions,
GR fails in reproducing rotation curves of galaxies, mass profiles of galaxy clusters,
gravitational lensing effects, cosmological data, and spacetime singularities. Some of
these problems can be solved or circumvented assuming the existence of dark matter.
However, every experiment aimed at measuring the properties of this kind of matter
has failed in its quest [2–4]. In this scenario, alternative gravity theories that do not
require the existence of dark components deserve study.

In this regard, Milgrom [5] proposed the Modified Newtonian Dynamics theory
(MOND) to account for astrophysical phenomena without dark matter. MOND cor-
rectly reproduces galactic scale observations, but the theory is deficient at galaxy
cluster and cosmological scales. Relativistic theories whose weak field limit coincides
with MOND were soon formulated. These theories were characterized by the insertion
of scalar fields that couple with matter. We highlight the contributions of Bekenstein
[6] and Sanders [7]. Afterwards, Sanders noticed that any Scalar–Tensor theory fails
in explaining light deflection observations without dark matter, so he proposed the
incorporation of vector fields to solve the problem [8]. His ideas matured with the
Tensorial–Vectorial–Scalar (TeVeS) theory of gravitation developed by Bekenstein
[9]. TeVeS is an admissible relativistic generalization of MOND and a valuable alter-
native gravity theory. For a review of MOND predictions and its relativistic extensions,
see Ref. [10].

Independently, Moffat [11] postulated the Scalar–Tensor–Vector Gravity theory
(STVG), also referred as Modified Gravity theory (MOG) in the literature. In STVG,
the gravitational coupling constant G is reified to a scalar field whose numerical value
usually exceeds Newton’s constant GN. This assumption serves to describe correctly
galaxy rotation curves [12], clusters dynamics [13], Bullet Cluster phenomena [14],
and cosmological data [15], without requiring the existence of dark contributions.
In order to counteract the enhanced gravitational coupling constant on Solar System
scales, Moffat proposed a gravitational repulsive Yukawa vector field φμ. In this way,
Newton’s gravitational constant can be retrieved and STVG coincides with GR in
Solar System predictions.

Both TeVeS and STVG seem to be good candidates for a new gravity theory. They
both propose vectorial manifestations of the gravitational field. However, TeVeS has
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been recently criticized [18,19] under light bending and stability considerations.1 On
these subjects, STVG successfully describes strong and weak gravitational lensing by
the Bullet Cluster [14], but stellar structure stability has not been studied yet. For this
reason, we begin the construction of stellar models in STVG.

Most of STVG applications are based on vacuum solutions. In this paper, we find
extended matter sourced solutions. We represent spacetime with a static, spherically
symmetric manifold, and matter sources with a spherically symmetric perfect fluid
energy-momentum tensor. We solve STVG field equations and analytically derive the
metric components. Then, from STVG conservation equation, we obtain the modified
Tolman–Oppenheimer–Volkoff equation (TOV). These results are used to construct
STVG neutron star models. We integrate numerically the modified TOV equation
for different neutron star equations of state (EoS) and compare the outcomes with
GR results. Numerical integration is carried out with a variable-step, fourth-order,
Runge-Kutta method.

This work is organized as follows: in Sect. 2 we present STVG action and field
equations, and explain certain simplifications valid for neutron stars stellar structure.
Solutions for extended matter sources are given in Section 3. Then, in Sect. 4, we derive
the modified TOV equation for STVG. In Sect. 5, we present different neutron stars
EoS and explain our numerical integration method. In Sect. 6, we show the resulting
mass-radius relation, mass-central density relation, and pressure, density, and mass
profiles for distinct STVG neutron stars models, with the corresponding discussions.
Section 7 is devoted to our main conclusions.

2 STVG action and field equations

The essential idea of Moffat’s STVG theory can be understood from its weak field,
static, spherically symmetric, and constant scalar fields approximation (see Ref. [11]).
In that regime, the radial acceleration of a test particle at a distance r from a gravita-
tional mass source M results:

a(r) = −GN(1 + α)M

r2 + GNαM

r2 e−mr (1 + mr), (1)

where we choose natural units,GN denotes Newton gravitational constant, and α,m are
free parameters of the theory. The first term of Eq. 1 prevails at r → ∞, and represents
an enhanced gravitational attraction, quantified by G = GN(1 +α). Such term served
to explain galaxy rotation curves, light bending phenomena, and cosmological data,
without dark matter. The second term is significant when mr << 1 and represents
gravitational repulsion. This Yukawa-type force counteracts the enhanced attraction
and, from the interplay, Newton gravitational constant arise at mr << 1 scales.

Numerical values for α and m depend on the central source mass M , exhibiting the
scalar field nature of G and m. To date, no functional solutions of such fields has been
proposed. However, numerical values for a wide range of central masses have been

1 Actually, there is discussion about these statements. For instance, Lasky argued that new generalizations
of TeVeS, with equivalent solutions, may solve instability problems (see [16,17]).
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determined by adjusting phenomenology. For a review of such values, see Fig. 2 of
Ref. [14], where M0 = α2M , and r0 ∼ m−1; as an example, for galaxies α ∼ 10 and
r0 ∼ 1kpc (see Ref. [20]).

STVG action reads:2

S = SGR + Sφ + SS + SM, (2)

where

SGR = 1

16π

∫
d4x

√−g
1

G
R, (3)

Sφ = ω

∫
d4x

√−g

(
1

4
BμνBμν − 1

2
m2φμφμ

)
, (4)

SS =
∫

d4x
√−g

[
1

G3

(
1

2
gμν∇μG∇νG − V (G)

)

+ 1

Gm2

(
1

2
gμν∇μm∇νm − V (m)

)]
. (5)

Here, gμν denotes the spacetime metric, R is the Ricci scalar, and ∇μ the covariant
derivative; ω = 1/

√
12, φμ denotes a Proca-type massive vector field, m is its mass,

and Bμν = ∂μφν − ∂νφμ; V (G), V (m) denote possible potentials for the scalar fields
G(x), m(x), respectively. We adopt the metric signature ημν = diag(1,−1,−1,−1),
and choose natural units. The term SM refers to possible matter sources.

Since we are interested in the structure of compact neutron stars where mr << 1,
we neglect the effects of the vector field mass m, and set m = 0. From a physical point
of view, we are not considering the decay of the Yukawa-type force because it happens
far away from the gravitational source. This very same approximation is implemented,
for instance, in Ref. [22]. However, we remark that additional work is needed on this
point in order to provide a fully satisfactory explanation of the behavior of STVG
theory in the limit m → 0, since discontinuities might appear in the corresponding
solutions.

There is too much freedom for the functional form of the scalar field G. In this
paper, we focus on the vector field contributions to the field equations, and leave the
study of different scalar field solutions of G for a future work. Then, we adopt for the
enhanced gravitational coupling constant G the same prescription as Moffat [11]:

G = GN(1 + α), (6)

and we sample the theory for different values of α.

2 Compared to Moffat’s original action at Ref. [11], we nullify the cosmological constant because its effects
are negligible over stellar structure, we ignore the scalar field nature of ω and set ω = 1/

√
12, as suggested

by Moffat [20,21], and we set the potential W (φ) = 0 as is usually stated (see Ref. [11]). Also, we propose
a slight modification: we change the sign of vector field action Sφ in order to find agreement with the
analogous Einstein–Maxwell formalism.
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Taking previous simplifications into account, the action (2) reads:

S =
∫

d4x
√−g

[
1

16πG
R + ω

4
BμνBμν

]
+ SM. (7)

Varying the latter with respect to the metric gμν yields:

Gμν = 8πG
(
TM

μν + T φ
μν

)
, (8)

where Gμν denotes the Einstein tensor, and

TM
μν = − 2√−g

δSM

δgμν
, (9)

T φ
μν = − 2√−g

δSφ

δgμν

= − ω

(
Bμ

αBνα − gμν

1

4
Bρσ Bρσ

)
. (10)

Furthermore, varying the action (7) with respect to the vector field φμ yields:

∇νB
νμ = 1

ω
Jμ

Q , (11)

where

Jμ
Q = − 1√−g

δSM

δφμ

= √
αGN Jμ

M, (12)

i.e. the source of the vector field is the four-current matter density Jμ
M multiplied by√

αGN. The latter constant is chosen to adjust observations (see, for instance, Eq. (13)
of Ref. [22]). The explicit functional dependence of SM with φμ has not been worked
out so far. This is an important issue in the foundations of the theory that deserves
further study. However, this point has no significant import for the application studied
here and is left for a future publication.

With the assumed approximations, Eqs. (8) and (11) resemble Einstein–Maxwell
equations. Their differences reside on the nature of the sources for the vector fields.
In Einstein–Maxwell theory, mass and electric charge currents are independent prop-
erties of matter, and only the latter couples to the vector field Aμ. In STVG, every
massive current serves a source and couples to the vector field φμ. Then, a given matter
distribution TM

μν determines both the dynamics of the metric and vector fields.

3 STVG static, spherically symmetric, matter sourced solution

We model spacetime with a static, spherically symmetric geometry:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (13)
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Further, we model the stellar matter content with a static, spherically symmetric,
perfect fluid, energy-momentum tensor:

TM
μν = [p(r) + ρ(r)] uμuν − p(r)gμν, (14)

where p(r) and ρ(r) denote the pressure and density of the fluid r -shell, respectively;
uμ → (

e−ν/2, 0, 0, 0
)

denotes the four-velocity of a mass element with r coordinate.
The corresponding four-current matter density is:

Jμ
M = 4πρuμ = 4πρ√

g00

dxμ

dx0 −→
(

4πρe−ν/2, 0, 0, 0
)

. (15)

Replacing the previous components of Jμ
M in the vector field Eq. (11), we obtain

the non-vanishing components for Bμν :

B41 = −B14 = − 1

ω
exp

(
−ν + λ

2

)
Q(r)

r2 , (16)

where

Q(r) ≡
∫

dreλ/2
√

αGNρ4πr2. (17)

Then, non-vanishing components of the vector field energy-momentum tensor are:

Tφ
0

0 = Tφ
1

1 = −Tφ
2

2 = −Tφ
3

3 = 1

2ω

Q2(r)

r4 . (18)

Replacing the components of both energy-momentum tensors (14) and (18) in the
field Eq. (8) we obtain the differential equation system:

[
−ν′′

2
+ λ′ν′

4
− ν′2

4
− ν′ − λ′

2r

]
e−λ = −κp − κ

2ω

Q2

r4 (19)

λ′

r
e−λ + (1 − e−λ)

r2 = κρ + κ

2ω

Q2

r4 , (20)

−ν′

r
e−λ + (1 − e−λ)

r2 = −κp + κ

2ω

Q2

r4 . (21)

Solutions for the latter system are given by:

e−λ(r) = 1 − 2GM(r)

c2r
− 1

r

4πG

c4ω

∫
dr

Q2(r)

r2 , (22)

ν(r) = −λ(r) + 8πG

c4

∫
dreλ(r)r

(
c2ρ(r) + p(r)

)
, (23)

where we have recovered the speed of light factors. Notice that, for a point mass source,
we retrieve Moffat’s spherically symmetric black hole solution [22]. The deduction
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presented in this section is similar to the work of Florides [23] for Einstein–Maxwell
equations.

4 Modified Tolman–Oppenheimer–Volkoff equation

STVG conservation equations reads:

∇μ

(
Tμν

M + Tμν
φ

)
= 0. (24)

Replacing the Christoffel symbols of metric (13) in the r -component of the previous
covariant derivative yields:

dP(r)

dr
+ d

dr

(
−Q2(r)

2ωr4

)
+ ν′(r)

2
(p(r) + ρ(r)) − 2Q2(r)

ωr5
= 0. (25)

From Eqs. (22) and (23) we obtain an expression from ν′(r), and substitute it in (25).
Isolating the radial pressure derivative we obtain the modified TOV equation:

dP(r)

dr
= − eλ(r)

r2

(
4πG

c4 p(r)r3 − 2GQ2(r)

ωc4r
+ GM(r)

c2 + 2πG

ωc4

∫
dr

Q2(r)

r2

)

×
(
ρ(r)c2 + p(r)

)
+ Q(r)

wr4

dQ(r)

dr
,

(26)

where we have retrieved the speed of light factors. Because of the similarity of STVG
and Einstein–Maxwell field equations, Eq. (26) can be compared with results of Ref.
[24] for electromagnetic mass models.

While the enhanced gravitational constant G causes a steepening of the pressure
profile, Q-terms have opposite sign and tend to slow down the decrease. These latter
terms manifest the repulsive behavior of gravity in STVG. Setting the parameter α = 0
nullifies every Q-term, G reduces to GN, and the classic relativistic TOV equation is
recovered.

5 Equations of state and numerical integration

In order to apply the modified TOV equation to neutron star structure, we need an
appropriate equation of state (EoS) that relates the pressure P(r) with the density
ρ(r) of each r -shell. We consider four distinct neutron stars EoS denoted: POLY [25],
SLY [26], FPS [27] and BSK21 [28–30].

POLY serves us to construct neutron star toy models. The EoS reads:

ζ = 2ξ + 5.29355, (27)

where ξ = log
(
ρ

[
g cm−3

])
, and ζ = log

(
P

[
dyn cm−2

])
.This EoS is mathemati-

cally simple an well-behaved. Any peculiarity that would result from this toy model
would be because of the effects of STVG.
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On the other hand, SLy, FPS and BSK21 are realistic neutron star EoS. These
equations are determined by precise nuclear strong interaction models, and are usually
given in the form of tables. In order to avoid interpolation ambiguities, we make use of
analytical representations derived by Haensel and Potekhin [31], in the cases of SLy
and FPS, and by Potekhin [32] for BSK21.

Having the neutron star EoS, we proceed to integrate Eq. (26) numerically applying
a fourth-order-Runge-Kutta method [33]. Integration is carried out from the neutron
star center up to its surface, defined as the r -shell where log

(
ρs

[
g cm−3

]) = 6.
We assume central densities in the range: 14.6 < log

(
ρc

[
g cm−3

])
< 15.9. The

integration method is taken from Ref. [34].
Deviations from GR are expected for non-vanishing α (see Eq. 6). This parameter

mediates both, gravitational repulsion and enhanced attraction. In order to find agree-
ment of STVG predictions with the perihelion advance of Mercury, Moffat determined
for solar massive sources the upper limit [11]:

α	 <<
1.5 × 105c2

GN

1

M	
cm. (28)

Neutron stars have a few solar masses. Hence, we explore the restriction given by
the inequality (28) with neutron star structure. Formally, inside the star, αNS would
depend on the contained mass of each r -shell. We take into account this dependence
with a linear ad hoc prescription. Besides, we define a normalized factor γ ∈ [0; 1) to
sample different values of α:

αNS = γ
1.5 × 105c2

GN

1

M	

(
M(r)

M	

)
cm, (29)

where M(r) is the mass of the neutron star up to the r -shell. From this definition,
STVG coincides with GR if γ = 0, and Moffat’s upper limit given by inequality (29)
corresponds to γ = 1.

6 Results and discussion

The first result of our work is analytical and involves Eq. (26), the modified TOV equa-
tion for STVG. The result shows clearly the functioning of STVG gravity: enhanced
gravitational attraction, represented by negative terms in the pressure derivative, is
counteracted by gravitational repulsion, the latter represented by positive Q-terms.
Recall that the contributions of the scalar fields to Eq. (26) have not been considered.
Future work will be devoted to the formal insertion of such Brans–Dicke type of fields.

Further results include STVG neutron stars model. We integrate Eq. (26) for each
EoS, for distinct values of the normalized parameter: γ = 0 (GR), γ = 1×10−3, γ =
2 × 10−3, and γ = 4 × 10−3. Greater values of γ yield unusual results that we will
discuss later, while smaller values do not present significant deviations from GR.

In Fig. 1 we show the total mass-radius relation (MNS − RNS) for different central
densities, for each EoS and γ values. In Fig. 2 we plot the total mass as a function
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Fig. 1 Mass-radius relations for neutron star models with central densities in the range: 14.6 <

log
(
ρc

[
g cm−3

])
< 15.9. We consider four different EoS: POLY (top, left), FPS (top, right), Sly (bottom,

left) and BSK21 (bottom, right). The parameter γ quantifies the deviation of STVG from GR. In particular,
γ = 0 corresponds to GR predictions. As we can see, greater γ implies higher maxima for neutron star
total masses

of the central density. Relativistic results are in accordance with previous works like
Ref. [34].

From both Figs. 1 and 2 we notice that STVG coincides with GR predictions
for high density neutron stars. Moffat’s idea of retrieving classical results from the
interchange of enhanced attraction and repulsion works properly in this context.
However, differences arise as the central density decreases and finds its maximum
at ρc ≈ ×1015.3g cm−3. Remarkably, the curves tend to converge again for lower
densities.

We find that STVG neutron star maximal masses exceed GR results. Such STVG
maxima are obtained for lower central densities than in GR, but the resulting star have
larger radii. Recent astronomical determinations of neutron star masses [35–38] defy
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Fig. 2 Relation between neutron star total masses and their central densities. As mentioned, the parameter
γ quantifies the deviation of STVG from GR. We consider four different EoS: POLY (top, left), FPS (top,
right), Sly (bottom, left) and BSK21 (bottom, right). We find that the highest masses for STVG are achieved
for lower central densities than in GR

relativistic limits. Hence, STVG stands as a strong candidate for a new gravity theory,
at least in this aspect.

STVG predictions are different from those of other alternative gravity theories. For
instance in Ref. [39], non-perturbative, and self consistent models of neutron stars have
been constructed in squared- f (R) gravity. For high mass neutron stars such models
predict larger radii than GR, but for low mass neutron stars the behavior changes and
final radii result smaller than the corresponding case in GR. In STVG, the first trend
prevails along the whole mass range, i.e. final radii are always larger than the ones in
GR. Contrary, as can be seen from Ref. [40], TeVeS models predict neutron stars with
smaller masses and radii than GR, as a function of vector and scalar field coupling
parameters.

In Fig. 3 we display pressure, density, and mass profiles for POLY and SLy neutron
star models. From those graphics, we notice that STVG density and pressure profiles
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Fig. 3 Pressure, density, and mass profiles for neutron star models in STVG. We display POLY (top) and
SLy (bottom) outcomes. Both FPS and BSK21 models yield similar results. The graphics manifest the
effects of STVG repulsive gravity, slowing down the pressure and density decrease. Consequently, STVG
mass profiles reach higher values than in GR
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Fig. 4 Density profiles for POLY neutron star models with central densities: log
(
ρc

[
g cm−3

])
= 14.6

(up) and log
(
ρc

[
g cm−3

])
= 15.9 (down). Significant differences between STVG and GR predictions

arise from γ ∝ 10−2. Repulsive gravity effects are intensified in low density models, up to a certain limit,
when enhanced attraction prevails. High density neutron star profiles show similar features but, enhanced
attraction effects take place at smaller radii

decrease slower than the relativistic ones. This implies that STVG mass profiles reach
higher final masses. We associate this behavior with positive Q-terms in Eq. (26). FPS
and BSK21 profiles manifest equivalent deviations.

Interesting results arise if we increase the parameter γ by an order of magnitude. In
Fig. 4 we plot density profiles of POLY neutron stars with γ = 0, γ = 1×10−2, γ =
2 × 10−2 and γ = 4 × 10−2. For low density neutron stars and great γ , repulsive
gravity causes a peculiar growing profile. However, when a certain mass is reached, the
enhanced attraction dominates and the profile decreases abruptly. A similar behavior
is seen in high density neutron stars but, for the highest γ , enhanced attraction always
prevails.

Results for γ ∝ 10−2 suggest that, beyond the effects of repulsive gravity, for
each γ there is a limiting mass from where attraction dominates. Peculiarities of these
resulting density profiles may be useful when modeling pulsating stars, inhomoge-
neous cosmologies, or formation of galaxy filaments without dark matter.

Within the approximations of our work, we find a tighter upper limit for the param-
eter α. In order to obtain neutron stars with realistic masses, i.e. near astronomical
determinations, and monotonically decreasing density profiles, we find that:

α < 10−2 1.5 × 105c2

GN

1

M	
cm. (30)

Recall that α responds to the dynamics of the scalar field G. The restriction given by
inequality (30) applies to the external field of solar-mass class of sources.
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7 Conclusions

In this paper we presented a simplified version of Moffat’s STVG field equations. We
neglected the effects of the mass m of the vector field because they manifest at large
distances from the source, and approximated G as a slowing varying constant. We
warned the reader that the limit m → 0 has not been theoretically explored, and may
be discontinuous. Also, we commented that the explicit functional form of the matter
action term has not been worked out so far. Formal work about these foundational
issues of the theory is required and left for a separate research. We modeled a static and
spherically symmetric matter distribution. Then, we solved the vector field equation
and constructed the total energy-momentum tensor neglecting the contributions of
scalar fields. After that, we solved the metric field equations, and derived the modified
TOV equation from the conservation equation in STVG.

We then constructed neutron star models. In order to integrate Eq. (26) we assumed
four different EoS. We took the restriction for α	 parameter from Solar System obser-
vations and defined the normalized factor γ . Realistic deviations from GR arose from
γ ∝ 10−3. The general feature of STVG pressure and density outcomes is a slower
decreasing profile than in GR. This implies that STVG neutron star models admit
heavier total masses than GR. The latter result is attractive because recent estimations
of neutron star masses are defying GR limits.

We incremented the parameterγ by an order of magnitude. Distinctive local maxima
and minima arose from the interchange between STVG gravitational repulsion and
enhanced attraction. We consequently propose a more restrictive upper limit for the
parameter α than the one obtained from Solar System observations.

We conclude that, under certain simplifications, STVG entails admissible spheri-
cally symmetric and static solutions with matter sources. The corresponding modified
TOV equation serves to construct realistic stellar models with higher total masses
than GR. Density profiles with local minima and maxima are distinctive properties of
STVG predictions.

We expect novel predictions when taking rotation into account, like has already
been done for TeVeS and squared- f (R) gravity [41–43]. In STVG, the presence of
Lorentz-like forces will manifest characteristic departures from other gravity theories.
Future work will be dedicated to efforts in that direction. Furthermore, we will formally
take into account the scalar fields contributions, and study stability and quasinormal
modes of spherically symmetric solutions.
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