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Abstract The paper deals with the problem of describing fundamental particles. The
Einstein–Rosen approach was revisited to explain the charge–mass ratio quantization.
Such a result is obtained once a quantization prescription is applied to the expression
of gravitational energy defined in the realm of teleparallel gravity.
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1 Introduction

In 1935 Einstein and Rosen proposed a theory to describe fundamental particles in
terms of geometry of space–time [1]. Thus particles wold be a bridge between two
sheets in space–time which is known as the Einstein–Rosen bridge. Such a structure
was later associated to wormholes. In this context the field equations slightly different
from those of general relativity was used to describe particles, it is due to a superposi-
tion aspect of nature. Macroscopic masses are described by such equations and a body
with mass is composed by particles, thus it is natural to describe particles by the same
set of equations. The difference is a minus sign to avoid singularities. Hence a fun-
damental charged particle was described by a regular version of Reissner–Nordstrom
metric. The authors of reference [1] didn’t seem to believe that solutions with sin-
gularities could be associated to elementary particles since the presence of such a
feature would bring too much arbitrariness to Physics. They also made an interesting
criticism of this approach: charge and mass are independent quantities that come from
constants in the integration. There is no evidence of such independence since there is
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no observed massless charged particle. This idea was abandoned later because it was
difficult to make predictions about the internal structure of particles or a system of
particles and more difficult to measure such predictions. This approach was unable to
explain fundamental relations between charge and mass such as the quantization of
the charge–mass ratio.

Dirac [2] showed that the quantization of the charge–mass ratio was a direct con-
sequence of the existence of a magnetic monopole which has never been observed.
However this approach tells nothing about an internal structure of a charged parti-
cle. Thus fundamental particles are described in Physics by mechanical points. It is a
strange viewpoint because a structure with mass cannot be a point. Hence the conclu-
sion is clear: this viewpoint is only an approximation. The problem on how to proper
describe fundamental particles remains as one of the most interesting challenges in
Physics.

I believe that a charged fundamental particle should have an internal structure which
is described by a geometry coupled to electromagnetic field, hence it is promising to
use Einstein–Rosen approach conjugated to a quantization process. In this way the
predictions of the theory will lay on the observables which are precisely mass and
charge. I show in this article that a quantum version of Einstein–Rosen idea leads
naturally to a quantized charge–mass ratio. Thus the metric of the fundamental particle
would yields a quantity analogous to the wave function of quantum mechanics once
a quantization prescription is introduced. On the other hand in the metric formulation
of general relativity it is not clear what quantity should be quantized since the natural
candidate, the energy, is not well defined in this context. Some attempts to construct
a non-commutative formulation of general relativity has been made, for instance see
[3], this can be viewed as a first step to establish a quantum theory of gravitation.
However it still lacks a well defined conception of energy which is a meaningful way
to quantize a certain theory. The same is not true for teleparallel gravity in which is
possible to define a reliable expression for gravitational energy. Thus such a quantity
is used in this article to explain the quantization of the charge–mass ratio.

This article is divided as follows. In Sect. 2 it is introduced the main ideas of
teleparallel gravity. Then in Sect. 3 the quantization of charge–mass ratio is discussed.
Such a result comes from a geometric theory of particle conjugated to a quantization
process. Finally the concluding remarks are presented in the last section. In addition
we adopt units where G = c = 1, unless otherwise stated.

2 Teleparallel equivalent to general gelativity (TEGR)

In this section we present some basic ideas of Teleparallel gravity which is an alter-
native theory of gravitation and dynamically equivalent to general relativity. In such
a theory the tetrad field plays the role of the dynamical variable instead of the usual
metric tensor. It was introduced by Einstein in the 1930s as a first step towards a unified
field theory [4]. The tetrad field ea μ is endowed with two symmetries: Lorentz sym-
metry which is represented by Latin indices and diffeomorphism symmetry which is
represented by Greek indices. Hence μ = 0, i and a = (0), (i). In this sense the tetrad
field projects tensors under coordinate transformations into tensors under Lorentz
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transformations. The metric tensor components are related to the tetrad field by the
relation gμν = ea μeaν which means that general relativity can be formulated in terms
of tetrads. However there is an apparent contradiction here the metric is symmetric
which leaves 10 independent components, on the other hand the tetrad field has 16
components. It should be noted that the component e(0)

μ is always tangent to the
world line of the observer, thus this is interpreted as the field velocity of the observer.
Therefore this extra components in the tetrad field are linked to the freedom in the
choice of the reference frame. In this sense the tetrad field is adapted to a specific
observer.

General relativity in its metric formulation is established into a Riemannian geome-
try in which the curvature is constructed out of a torsion-free connection, the Christoffel
symbols 0�μλν . It is possible to relate such a geometry to the Weitzenböck geometry
in which there is a non-vanishing torsion tensor that is constructed out of a curvature-
free connection �μλν , also known as Cartan connection. This connection is explicitly
given by �μλν = eaμ∂λea ν , hence it defines a torsion as

T a
λν = ∂λe

a
ν − ∂νe

a
λ. (1)

The Cartan connection satisfies the following identity

�μλν = 0�μλν + Kμλν, (2)

where

Kμλν = 1

2
(Tλμν + Tνλμ + Tμλν) (3)

is the contortion tensor. Thus the next step is associate the curvature scalar R(0�)

in Riemannian geometry to some expression in the Weitzenböck geometry which is
accomplished with the use of identity (2). Then we recall that the curvature scalar
calculated with Cartan connection vanishes identically, this yields

eR(0�) ≡ −e

(
1

4
T abcTabc + 1

2
T abcTbac − T aTa

)
+ 2∂μ(eTμ), (4)

where e is the determinant of the tetrad field and Ta = T b
ba

(
Tabc = eb μec νTaμν

)
.

Therefore a gravitational theory equivalent to general relativity can be established by
means the following Lagrangian density

L = −ke

(
1

4
T abcTabc + 1

2
T abcTbac − T aTa

)
− LM , (5)

where k = 1/16π and LM stands for the Lagrangian density of matter fields. This is
precisely the case of teleparallel gravity. It should be noted that a total divergence in
the Lagrangian density does not alter the field equations. It is interesting to rewrite (5)
as

L ≡ −ke�abcTabc − LM , (6)
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where

�abc = 1

4
(T abc + T bac − T cab) + 1

2
(ηacT b − ηabT c). (7)

Thus we can perform a variation with respect to the tetrad field which yields the field
equations. They read

eaλebμ∂ν(e�
bλν) − e

(
�bν

aTbνμ − 1

4
eaμTbcd�

bcd
)

= 1

4k
eTaμ, (8)

where δLM/δeaμ = eTaμ. Such equations are equivalent to Einstein equations. In this
sense every known solution in general relativity will also be a solution in teleparallel
gravity. However both theories do not share all features. For instance the definition
of gravitational energy remains problematic, on the other hand in teleparallel gravity
there is a reliable definition of such a quantity.

In order to define energy let us rewrite Eq. (8) as

∂ν(e�
aλν) = 1

4k
e ea μ(tλμ + T λμ) , (9)

where T λμ = ea λT aμ and

tλμ = k(4�bcλTbc
μ − gλμ�bcdTbcd). (10)

Due to the antisymmetry �aμν = −�aνμ, it follows that

∂λ

[
e ea μ(tλμ + T λμ)

] = 0. (11)

This is a local conservation equation. As a consequence we get

d

dt

∫
V
d3x e ea μ(t0μ + T 0μ) = −

∮
S
dS j

[
e ea μ(t jμ + T jμ)

]
. (12)

Therefore we identify tλμ as the gravitational energy-momentum tensor [5,6].
Thus the energy-momentum vector is defined as [7]

Pa =
∫
V
d3x e ea μ(t0μ + T 0μ), (13)

where V is a volume of the three-dimensional space. Some features of such expression
should be noted. Firstly it is independent on the coordinate system which is desirable
for each definition of energy. Secondly it is dependent on the choice of the reference
frame since it is a vector under Lorentz transformations. This dependence appears in
special relativity as well, there the energy vary from mc2 to γmc2 depending on the
reference frame. Therefore a definition of gravitational energy should take this feature
into account.
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3 Quatization of charge–mass ratio

In this section we intent to show how to obtain the quantized charge–mass ratio. In
order to accomplish such a goal we recover Einstein’s idea about the role of curvature
in the description of fundamental particles [1]. We imagine that a spinless charged
particle could be described by the Reissner–Nordstrom metric

ds2 = − f (r)dt2 + f (r)dr2 + r2dθ2 + r2 sin2 θdφ2, (14)

with f (r) = 1 − 2M
r + Q2

r2 . This description was followed by Katanaev who demon-
strated that a particle with mass m can be described by Schwarzschild metric in
isotropic coordinates [8]. Thus the internal structure of such a particle will lay in
its geometry. Let us choose a reference frame adapted to an observer at rest which is
realized by the following tetrad field

ea μ =

⎛
⎜⎜⎝

√−g00 0 0 0
0

√
g11 sin θ cos φ

√
g22 cos θ cos φ −√

g33 sin φ

0
√
g11 sin θ sin φ

√
g22 cos θ sin φ

√
g33 cos φ

0
√
g11 cos θ −√

g22 sin θ 0

⎞
⎟⎟⎠ , (15)

the energy density associated to this tetrad is

4e�(0)01 = 2
(√

g33 + √
g22 sin θ

) − 1√
g11

[√
g33

g22

(
∂g22

∂r

)
+

√
g22

g33

(
∂g33

∂r

)]
,

(16)

which specializes into

4e�(0)01 = 4r sin θ

[
1 −

(
1 − 2M

r
+ Q2

r2

)1/2
]

,

once we substitute the above metric. It should be noticed that the total energy of the
space–time is given by

P(0) = E = lim
r→∞

∫ 2π

0

∫ π

0
4e�(0)01dθdφ

= M. (17)

The next step is to obtain a quantized description of the system. This process of
mapping a classical system into a quantum one is called quantization procedure. The
essence of any quantization is to introduce non-commutative variables which replace
the commutative ones. For instance the Schrödinger equation is obtained as a result of a
quantization procedure in the classical phase space. Thus the variables are replaced by
operators following a certain prescription which in the case of Schrödinger equation is

given by xi → x̂ i = xi and pi → p̂i = −i ∂
∂xi

. However there is no consensus about
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how to establish such a quantization procedure. Probably the most accepted way is the
so called Weyl quantization prescription [9] which we have recently used to obtain a
quantized spectrum of the mass of Schwarzschild black hole [10]. As a matter of fact
the Weyl prescription yields the correct form of the variables in Schrödinger equation.
It maps f (z1, z2, ..., zn) → f̂ (ẑ1, ẑ2, ..., ẑn) by means

f̂ (ẑ1, ẑ2, ..., ẑn) := 1

(2π)n

∫
dnkdnz f (z1, z2, ..., zn) exp

(
i

n∑
l=1

kl(ẑl − zl)

)
. (18)

Then the set of operators ẑi form a non-commutative space which obeys to the fol-
lowing commutation relation

[ẑi , ẑ j ] = iβi j ,

where βi j is a skew-symmetric tensor. The product of two operators in this non-
commutative space is given by f̂ (ẑ)ĝ(ẑ) = f (z) � g(z) where the Moyal (or star)
product is defined by

f (z) � g(z) = f (z) exp

[
i

2
β i j←−∂ i

−→
∂ j

]
g(z).

Inspired by this prescription it is proposed: sin θ → ˆsin θ = α and r → r̂ = β ∂
∂α

,
where β = ıβ12 is a constant analogous to the Planck’s constant. It is interesting
to note that the quantization procedure applied to a geometric structure induces to a
space–time with non-commutative variables. The commutator between → r̂ and ˆsin θ

is β, thus β << 1 once this non-commutative property is not observed in everyday
life. As a consequence 4e�(0)01 → Ĥ. In order to avoid problems with the operator
ordering, let us symmetrize the Hamiltonian density. Hence

Ĥ = 2r̂ ˆsin θ+2 ˆsin θ r̂−2 ˆsin θ
(
r̂2 − 2Mr̂ + Q2

)1/2−2
(
r̂2 − 2Mr̂ + Q2

)1/2 ˆsin θ.

(19)
If we use β << 1 and look for an equation as Ĥψ = εψ , then we find

− 4β2α

2Q

∂2ψ

∂α2 +4β

[
α

(
1 + M

Q

)
− β

2Q

]
∂ψ

∂α
+

[
2β

(
1 + M

Q

)
− ε − 4Qα

]
ψ = 0,

(20)
the solution of this equation is given by

ψ = U (α)ψ0 exp

[(
α

β

) (
Q + M −

√
M2 + 2QM − Q2

)]
,

where U (α) = F(a, 1, x), with x =
(

2
√

M2+2QM−Q2

β

)
α and

a = −1

4

(
εQ − 2β

√
M2 + 2QM − Q2

β
√
M2 + 2QM − Q2

)
.
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It turns out that F(a, 1, x) is the Kummer function that obeys the following differential
equation

xF
′′ + (b − x)F

′ − aF = 0,

with F
′ ≡ ∂F

∂x thus F ≡ F(a, b, x).
If a = n with n an integer then F(a, 1, x) will be finite, such a condition implies

that

ε = 2β(2n + 1)

√
M2

Q2 + 2
M

Q
− 1. (21)

The total energy is

E =
∫

ψ†Ĥψd2x = ε,

this quantity is an observable which is E = M . Thus using this with expression (21),
the charge–mass ratio is given by

Q

M
=

[
2n + 1

−(2n + 1) ± √
2(2n + 1)2 + m2

]
, (22)

where m2 = M2

4β2 . Therefore the charge–mass ratio is quantized as a consequence
of non-commutative variables in a Reissner–Nordstrom geometry that describes a
spinless charged particle. It worths to point out that charge–mass ratio is given in
terms of a dimensionless factor, m, which is not constant, this means that Q/M is
dependent on the particle analyzed. Such a feature leads to a quantized charge in
terms of a fundamental charge. If m >> n then the above ratio simplifies to Q/M =
±(2n + 1)/m.

It is interesting to point out that the dependence of the charge–mass ratio with
respect to the factor m is not restricted to the approach adopted here. In fact the so
called rainbow gravity exhibits the same feature. It modifies the usual dispersion rela-
tion at high energy scale by the introduction of a new invariant, the Planck energy, thus
being suitable to describe the LHC’s physics [11]. This means that rainbow gravity
necessarily seek for a breaking down of Lorentz invariance. This theory predicts a
remnant mass for black holes [12,13] with implications for Hawking radiation [14].
Rainbow gravity has been used to study gravitational collapse [15], cosmological infla-
tion [16], neutron stars [17], radiatives space–time [18], modified gravity models [19],
the role of the observer [20], as well as thermodynamical properties of branes and black
holes [21,22]. In particular the Reissner–Nordstrom have some corrections dependent
on the Planck energy which can modify the above expression for the charge–mass

ratio by the factor g
(

E
Ep

)
, such a quantity is the rainbow function.
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4 Conclusion

In this article the Einstein–Rosen approach to describe fundamental particles has
been revisited. Particles are viewed as a space–time geometry established by Einstein
equation. This viewpoint is understood as the very nature of gravitational field which is
a macroscopic manifestation of such a geometric particle theory. In particular charged
particles is believed to be described by Reissner–Nordstrom metric. As a consequence
a quantization procedure applied to this system leads to a quantization of the charge–
mass ratio. It is important to point out that the function ψ defines such a quantization
by imposing a finite Kummer function. In such a process a constant analogous to
Planck constant is introduced and for the condition m >> n it seems to be the very

electron’s charge which is the fundamental charge or in SI units β =
(√

G
4πε0c4

)
e.

Thus it is interesting to analyze what the theory predicts for the electron itself. In my
opinion the spin should have a close relation to torsion. Although the line element
tends to Schwarzschild in the limit Q → 0, the expression (22) doesn’t lead to the
same result of that in reference [23]. The reason for that it is we have quantized the
volumetric Hamiltonian density, using a different representation for the operators r̂
and ˆsin θ . As a consequence the equation obtained there was a first order differential
equation which explains how the results here aren’t an extension of those in reference
[23] but a different approach to understand quantum gravity.
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