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Abstract Starting from a Geometrothermodynamics metric for the space of thermo-
dynamic equilibrium states in the mass representation, we use numerical techniques
to analyse the thermodynamic geodesics of a supermassive Reissner Nordström black
hole in isolation. Appropriate constraints are obtained by taking into account the
processes of Hawking radiation and Schwinger pair-production. We model the black
hole in line with the work of Hiscock and Weems (Phys Rev D 41:1142–1151, 1990).
It can be deduced that the relation which the geodesics establish between the entropy
S and electric charge Q of the black hole extremises changes in the black hole’s
mass. Indeed, the expression for the entropy of an extremal black hole is an exact
solution to the geodesic equation. We also find that in certain cases, the geodesics
describe the evolution brought about by the constant emission of Hawking radiation
and charged-particle pairs.

Keywords Reissner Nordström black hole · Geometrothermodynamics · Geodesics ·
Hawking radiation · Schwinger mechanism

1 Introduction

Black holes are commonly thought of as regions of spacetime where gravity is so strong
that it allows nothing, not even light, to escape. Such regions can be fully characterised
by their mass, electric charge, and angular momentum, a property better known as the
No-Hair Theorem of black holes [2]. The black hole concept has its origins in the
eighteenth century, when John Michell [3] and Pierre Simon Laplace [4] considered
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classical bodies with escape velocities exceeding the speed of light. Until the 1970s,
black holes were thought of as ‘black’, non-emitting objects at absolute zero. Things
began to change when it became apparent that unless black holes were assigned an
entropy, the second law of thermodynamics could be violated [5]. Bekenstein con-
jectured that this entropy would be proportional to the black hole area [5]. In 1973,
Bardeen, Carter and Hawking put together a number of similarities between black hole
mechanics and ordinary thermodynamics to formulate the four laws of black hole ther-
modynamics [6]. The following year, Stephen Hawking discovered that black holes
radiate particles continuously with a black body spectrum [7]; this radiation earned
the name Hawking radiation. Since then, black holes have increasingly been studied
in terms of their thermodynamic properties.

The last few decades have seen a growing interest in the use of geometry as a means
of extracting important information about the thermodynamics of a system. The key
points in the development of this practice are highlighted in [8,9]. Stemming from
the pioneering work of Gibbs [10] and Carathéodory [11], geometric thermodynamics
refers to the modelling of thermodynamic systems in terms of differential manifolds.
Riemannian geometry was introduced into thermodynamics by Rao in 1945 [12]. In the
1970s, Hermann modelled the thermodynamic phase space as a manifold with contact
structure [13], while the first application of Riemannian geometry to the space of
equilibrium states—a subset of the phase space—was due to Weinhold and Ruppeiner,
who constructed metric structures on this space1 from the Hessian matrices of the
internal energy [15–19] and entropy [20], respectively. The two metric structures are
conformally equivalent [21]. Using these metrics, Nulton et al. [22] concluded that
when a system undergoes a quasi-static thermodynamic process made up of K steps,
each equilibrating with a proper reservoir, the minimum changes in the availability and
entropy of the Universe are proportional to the squared thermodynamic length of the
path traversed. In other words, thermodynamic length controls the dissipation in finite-
time processes. Indeed, starting from the Ruppeiner metric structure, it can be shown
that the entropy produced irreversibly during a fixed thermodynamic time is least
when the system evolves along a geodesic [23]. Crooks [24] considered how to define
and computationally measure thermodynamic length for a small system described by
equilibrium statistical mechanics.

The formalism of Geometrothermodynamics (GTD) was put forward in recent
years by Quevedo [8]. In GTD, a system with n thermodynamic degrees of freedom is
described by a thermodynamic phase space, this being defined as a Riemannian contact
manifold (T ′,Θ,G). T ′ represents a (2n + 1)-dimensional manifold equipped with
a non-degenerate metric G, and Θ is a linear differential one-form with the property
that2 Θ ∧(dΘ)n �= 0. An n-dimensional submanifold ε is defined by requiring that the
smooth embedding map ϕ : ε → T ′ has a pullback ϕ∗ which satisfies ϕ∗(Θ) = 0; ε

is termed the space of thermodynamic equilibrium states and its geometric properties,

1 To be precise, Weinhold worked in the tangent space defined at a general point of the equilibrium manifold,
although it is possible to use his metric as a measure of distance in the manifold itself [14].
2 ∧ stands for the exterior product, ‘d’ the exterior derivative, and (dΘ)n is equal to dΘ ∧ · · · ∧ dΘ , where
dΘ appears n times.
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described by means of the metric g = ϕ∗(G), yield information on the equilibrium
thermodynamics of the corresponding physical system [25].

The (2n+1) coordinates of the phase space T ′ consist of n extensive variables Ea ,
n conjugate intensive variables I a and the thermodynamic potential Φ. The subset of
extensive variables is usually chosen to coordinatize ε. The first law of thermodynam-
ics, dΦ = IbdEb, is satisfied on ε—and in turn, so are the conditions for equilibrium.
In other words, Ib = ∂Φ/∂Eb for all intensive variables I b [25].

Unlike the Ruppeiner and Weinhold formalisms [26,27], GTD isLegendre invariant
[25]. Legendre transformations refer to the exchange of the role played by one or
more extensive variables with that of the conjugate intensive ones, and invariance
under such transformations ensures that the various thermodynamic potentials give
rise to equivalent descriptions of the system [28]. This is in line with equilibrium
thermodynamics, in which the physical properties of a system are independent of the
thermodynamic potential used to describe it [28].

As pointed out in [25], all the known field interactions have an associated curvature
that acts as a measure of the interaction. This is also one of the benefits of the geometric
description of thermodynamics embodied in GTD. More specifically, the curvature of
the space of equilibrium states can serve to probe the thermodynamic interactions
of the system—for instance, curvature singularities indicate the presence of phase
transitions. The link between geometry and thermodynamics provided by GTD has
been investigated for a number of diverse systems, in works such as [8,9,25,29–35].
In particular, the Geometrothermodynamics of the Reissner Nordström (RN) black
hole are tackled in [29,31,32], and those of the asymptotically anti-de Sitter RN black
hole in [25]. Another point of interest is the new metric introduced in [36] to analyse
the phase transition points of the heat capacity. This metric is partly based on GTD,
and has been used to study the geometric thermodynamics of charged black holes in
Gauss–Bonnet-massive gravity [37] and in Brans–Dicke theory [38], among others.

Equipped with GTD, it becomes possible to investigate the thermodynamic geo-
desics in the space of equilibrium states by extremising the thermodynamic ‘length’∫ √

gabdEadEb. However, not all solutions to the geodesic equations are necessar-
ily competent with the laws of thermodynamics. Those that do satisfy these laws
represent quasi-static thermodynamic processes, which can hence be interpreted as
a dense collection of equilibrium states (see ‘Thermodynamic systems as bosonic
strings’ by Vázquez, Quevedo and Sánchez [arXiv:0805.4819v5]). In ‘A geometric
approach to the thermodynamics of the van der Waals system’ [arXiv:1205.3544v1],
Quevedo and Ramírez obtain the geodesics numerically by means of the equation
Ëa + Γ a

bc Ė
b Ėc = 0 (where a dot denotes differentiation with respect to an arbitrary

affine parameter); the Christoffel symbols are calculated from the thermodynamic met-
ric on the space of equilibrium states. A different approach is taken in ‘A Lagrangian
Description of Thermodynamics’ [arXiv:1110.6152v1], where Vaz constructs a ther-
modynamic metric for several systems, including a Kerr black hole. In the case of the
black hole, the equations for the temperature T and angular velocity Ω take the role
of equations of state, from which a metric is derived; the geodesic equations are deter-
mined from Hamilton’s equations and it is pointed out that they can also be obtained
by extremising the reparametrisation-invariant action.
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The main aim of this work is to investigate the thermodynamic geodesics of an
RN black hole in the space of equilibrium thermodynamic states. In a 2010 work by
Vázquez, Quevedo and Sánchez, it was reported that there is no explicit time parameter
in the GTD metric structures, and that the formalism did not as yet incorporate non-
equilibrium thermodynamics [39]. To our knowledge, this is still the situation at the
present time. We therefore refrain from delving into finite-time thermodynamics and
the associated dissipations. To this end, the black hole is modelled in such a way
that its properties do not change significantly on a geometrical time scale, as further
discussed in Sect. 3.

The procedure we adopt is as follows: in Sect. 2 we derive a differential equation for
the geodesics, and in Sect. 3 present a model of an RN black hole that evolves slowly
via Hawking radiation and the Schwinger mechanism. We solve the geodesic equation
numerically for this black hole in Sect. 4 and comment on the results, then conclude
in Sect. 5. Throughout this paper, metrics are assigned the signature (+,−, . . . ,−)

and, unless otherwise stated, the geometric unit system is adopted, with G = c =
k = ke = 1 (ke is the Coulomb constant, equivalent to 1/4πε0). In these units, the
reduced Planck’s constant h̄ becomes 2.6122 × 10−70 m2 (to five significant figures
and without the associated uncertainty).3 Furthermore, the electric charge Q of the
black hole is assumed to be positive (Q > 0).

All numerical analysis was carried out using Wolfram Mathematica®10. The figures
were created using the LevelScheme scientific figure preparation system [41].

2 A differential equation for the geodesics

Thermodynamic systems characterised by second-order phase transitions, such as
black holes, can be modelled as a contact manifold T ′ with thermodynamic metric
[29]:

G =
(

dΦ − δab I
adEb

)2 +
(
δabE

a I b
) (

ηcddEcdI d
)

(1)

where δab and ηab are the Euclidean and Minkowski metrics, respectively.
This in turn gives rise to the thermodynamic metric g on ε [29]:

g =
(

Ea ∂Φ

∂Ea

) (

ηcb
∂2Φ

∂Ec∂Ed
dEbdEd

)

(2)

The metric g can easily be computed for a given thermodynamic system once the
fundamental equation Φ = Φ(Ea) is known [29].

In the mass representation (i.e. with the mass acting as thermodynamic potential),
the thermodynamic metric g describing an RN black hole in a four-dimensional space-
time is given by:

3 The full value and its uncertainty, in SI units, are given in [40].
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[gab] = (SMS + QMQ)

(
MSS 0

0 −MQQ

)

(3)

M stands for the total mass of the black hole and S its entropy, while Q represents the
electric charge. Subscripts denote partial derivatives with respect to the corresponding
coordinate. Equation (3) was obtained from [25], where it was used to describe an RN
anti-de Sitter black hole, but it can easily be deduced that it is also valid in the absence
of a cosmological constant. The metric signature was changed to (+,−).

The Lagrangian L takes the generic form
√
gabẋa ẋb:

L =
√
MSS(SMS + QMQ)Ṡ2 − MQQ(SMS + QMQ)Q̇2 (4)

The dot stands for differentiation with respect to an arbitrary parameter ζ that is
assumed to be affine. Substituting for L in the Euler–Lagrange equations (where x1

stands for S and x2 for Q):

d

dζ

(
∂L

∂ ẋa

)

= ∂L

∂xa
; a = {1, 2} (5)

then yields:

χS Ṡ
2 + 2χQ Q̇Ṡ + ξS Q̇

2 = −2χ S̈ (6)

χQ Ṡ
2 + 2ξS Q̇ Ṡ + ξQ Q̇

2 = −2ξ Q̈ (7)

with

χ = MSS(SMS + QMQ); ξ = MQQ(SMS + QMQ) (8)

Expressions for MS, MQ, MSS and MQQ can be obtained by first deriving an
expression for M from the Bekenstein–Hawking area–entropy relation, which reads
[5,42,43]:

S = A

4h̄
(9)

The event-horizon area A is computed as the surface area of a two-sphere with radius
r+, so that

A = 4πr2+ (10)

where r+ is the radius of the (outer) event horizon and is given by:

r+ = M +
√
M2 − Q2 (11)
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One can then simply write A in terms of M and Q via (10) and (11) and solve (9) for
M :

M = πQ2 + h̄S

2
√

π h̄S
(12)

This is equivalent to the Smarr mass formula [44] with the angular momentum set
equal to zero, although [44] gives M in terms of A and Q rather than S and Q.

The quantities MS, MQ, MSS and MQQ then follow easily from (12), giving for χ

and ξ [Eq. (8)]:

χ = 9π2Q4 − h̄2S2

32π h̄S3 ; ξ = 3πQ2 + h̄S

4h̄S
(13)

The geodesics in the space of equilibrium states can be determined by substituting
for χ, ξ and their derivatives in (6) and (7) and solving the resulting differential
equations. Nonetheless, a few comments are in order before we proceed. An RN
black hole can be characterised by any two variables from the set {S, Q, M}. In this
case, we have chosen the entropy S and charge Q, with the third variable—the mass
M—uniquely determined by S and Q via (12). However, given that the space of
equilibrium states has coordinates S and Q, any geodesic would have an equation of
the form f (S, Q) = 0. In other words, the geodesic equations introduce a dependence
between S and Q. Furthermore, as will be shown later, this dependence causes any
changes in M to be extremised.

The starting point, therefore, is to write4 the derivative Ṡ = dS/dζ as Ṡ = dS/dQ×
dQ/dζ = dS/dQ× Q̇. Consequently, it becomes possible to combine (6) and (7) into
one equation that reads (assuming Q̇ �= 0):

ξS + dS

dQ

[

2χQ − χ

ξ
ξQ

]

+
(

dS

dQ

)2 [

χS − 2χ

ξ
ξS

]

−
(

dS

dQ

)3
χ

ξ
χQ = −2χ

d2S

dQ2

(14)

Substituting for χ, ξ [Eq. (13)] and the corresponding partial derivatives in (14) yields:

h̄2S2 − 9π2Q4

16π h̄S3

d2S

dQ2 = 3(9πQ3 + h̄QS)

16h̄S3

dS

dQ
− 9Q3(3πQ2 − h̄S)

64h̄S5

(
dS

dQ

)3

+ h̄2S2 − 3πQ2(3πQ2 + 2h̄S)

32π h̄S4

(
dS

dQ

)2

− 3πQ2

4h̄S2 (15)

The complexity of the differential equation thus obtained makes it exceedingly hard to
solve analytically. Numerical techniques will instead be employed, but these require
constraints which can only be determined by choosing an appropriate black hole model.

4 Note that it is also possible to choose Q as the dependent variable. This will be treated in greater detail
in Sect. 4.
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3 Choosing a black hole model

In any astrophysically realistic case, charged black holes tend to get neutralised quickly.
This happens because particles with an opposite charge are attracted to the black hole,
neutralising some of its charge until this becomes too small to have a significant effect
on the surrounding spacetime. Thus one begins by assuming that the black hole exists
in isolation, surrounded by a perfect vacuum that is devoid of even cosmic background
radiations [1]. The assumption of complete isolation is perhaps not very plausible, but
it becomes indispensable if an RN black hole with a geometrically interesting charge
is to be investigated [1].

Even if the black hole is not surrounded by any matter or radiation, it nonetheless
discharges quickly due to the creation of electron–positron pairs in the electric field
close to the horizon [1]. This pair production would be rapid unless the mass of
the black hole is very large (>105 M�) [45]. Hence one makes the assumption that
the black hole mass exceeds the said limit. This—together with the isolation of the
black hole—allows the magnitude of the charge to be comparable to that of the black
hole mass; the electric charge would then have a considerable effect on the geometry
of spacetime [1]. Very massive, charged black holes in isolation were considered by
Hiscock and Weems in [1] and in fact the above assumptions were made in accordance
with their work.

The only factors influencing the evolution of such a black hole would be Hawking
radiation [7] and the Schwinger mechanism [46]. We emphasise that this is only the
case because the black hole is in isolation, and so can neither accrete matter from an
external distribution nor absorb radiation. Although Hawking radiation actually refers
to the emission of both massless and massive particles, stellar-mass black holes effec-
tively emit only the former, their thermal energy being much less than the rest energy of
massive particles [47]. This automatically excludes the production of charged particles,
since these necessarily have mass. The same can be said of supermassive black holes.
Charged-particle pairs are instead produced via the Schwinger mechanism. Strictly
speaking, this mechanism should also be classified as a type of Hawking radiation
[1]. There is nonetheless a subtle difference between the two processes. In the case
of Hawking radiation, the primary factor responsible for the separation of a virtual
particle pair and the formation of real particles is the presence of a causal disconnec-
tion, while for the Schwinger mechanism it is the strong electric field surrounding the
black hole. Both processes, however, lead to the slow evaporation of the black hole.
For the purpose of this study, ‘slow’ means that the mass and/or charge do not change
significantly on a geometrical time scale τ (τ 	 M) [1]. Thus the spacetime around
the black hole can still be equipped with the usual RN metric, and its line element is
given by

ds2 = f dt2 − f −1dr2 − r2(dθ2 + sin2 θ dφ2)

where

f ≡
(

1 − 2M

r
+ Q2

r2

)

(16)
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although M and Q should now be seen as slowly-varying functions of time [1].
Hiscock and Weems make several other assumptions to construct their model. Three

of these place a lower bound on the mass M of the black hole, and they can be
summarised as the requirement that M � Q0, where Q0 = eh̄/πm2

e ≈ 1.7 ×
105 M� (e being the elementary charge and me the electron mass). This justifies
the use of flat-space quantum electrodynamics and the truncation of the Schwinger
formula (presented below) to the first term. Furthermore, since particles created with
a charge of the same sign as the black hole’s are acted upon by a very large radial
repulsive force, and those with an opposite charge are absorbed by the black hole,
scattering can effectively be neglected. Under these approximations, the rate Γ per
unit four-volume at which particles of massm are produced in pairs can be represented
by the Schwinger formula ([46] as cited by [1]):

Γ = e2

4π3h̄2

Q2

r4 exp

(

−πm2r2

h̄eQ

)

×
(

1 + O

[
e3Q

m2r2

]

+ . . .

)

(17)

and it is possible to find dQ/dt by integrating Γ over the three-volume outside r+.
First, however, the temporal dimension of the four-volume should be re-expressed
in terms of the coordinate time, rather than the proper time [1]. Upon integration,
one obtains an expression for dQ/dt with a term in erfc[r+/

√
QQ0], where erfc(x)

denotes the complementary error function of x . If the condition that M � Q0 is
satisfied, this function can be approximated by its asymptotic series [1]. The rate of
charge loss from the black hole is then given by [1]:

dQ

dt
= − 1

2π3

e4

h̄m2
e

Q3

r3+
exp

(

− r2+
Q0Q

)

(18)

Since dQ/dt has an exponential dependence on the square of the mass of the created
particles in the denominator (via Q0), the contributions of muons and heavier particles
were ignored [1].

The evaporation of the charged black hole results in mass being lost at a total rate:

dM

dt
= −σεT 4A + Q

r+
dQ

dt
(19)

where ε is the emissivity, T the Hawking temperature and A the event-horizon area.
The Stefan–Boltzmann constant σ is given by:

σ = π2

60h̄3 (20)

Since a black hole is modelled as a black body, ε is set equal to one.
The first term on the right-hand side of (19) is simply the radiated power as stipulated

by the Stefan–Boltzmann law, and accounts for the energy lost as a result of the
emission of massless particles. It is a slightly modified version of the expression in
[1]. Hiscock and Weems model the rate of mass loss due to thermal emission in
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terms of the total cross section of the black hole, while taking into account—via a
parameter α—the number of neutrino species produced and the thermally-averaged
cross sections for neutrinos, photons and gravitons. The use of their expression in (19)
instead of −σεT 4A simply amounts to replacing r2+ [which determines A according
to (10)] with the product of α and b2

c , the latter being the squared critical value of the
apparent impact parameter for photons, and did not yield any significant differences
in our results. In fact, if α is fixed at5 0.26792, the ratio of αb2

c to r2+ for the values
set down in (29) is close to unity, meaning that both approaches yield the same order
of magnitude for the thermal power. Hence we opt for the Stefan–Boltzmann law,
this being considerably simpler and, in fact, quite popular in the literature (see, for
instance, [49–51]). The second term on the right-hand side of (19) arises due to pair
production via the Schwinger mechanism.

It now becomes necessary to consider the first law of black hole thermodynamics
as applied to an RN black hole:

dM = T dS + φ dQ (21)

Equivalently:

dM

dt
= T

dS

dt
+ φ

dQ

dt
(22)

and since the electrostatic potential φ is given by Q/r+, it can easily be deduced, by
comparing (22) with (19), that

T
dS

dt
= −σT 4A (23)

The Hawking temperature T is related to the surface gravity κ via the equation T =
(h̄κ)/2π [7,43], but it can also be obtained by considering Eq. (21). Since M is a state
function, dM must be an exact differential, from which it follows that ∂M/∂S = T
(and similarly, ∂M/∂Q = φ). Equation (12) then gives for T :

T = −πQ2 + h̄S

4
√

π h̄S3
(24)

The radius of the event horizon can be written as a function of S by substituting for
M [Eq. (12)] in (11):

r+ = √
h̄S/π (25)

5 Two values are given in [1]—one for the emission of three massless neutrino species, and another (0.26792)
valid when no massless neutrinos are produced, where by massless is meant a mass less than about 10−10 eV
(the black hole would be too cold to emit anything heavier) [1]. Since the upperbounds available nowadays
for the mass of neutrino flavours [48] are much greater than this value, we use α = 0.26792 when comparing
our work with [1].
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so that Eq. (10) becomes A = 4h̄S. This can be inserted, together with Eqs. (20) and
(24), into (23) to obtain an expression for the rate of change of entropy:

dS

dt
= −

√
π(h̄S − πQ2)3

960(h̄S)7/2 (26)

while substituting (25) for r+ in (18) and further simplication results in an expression
for the rate of charge loss in terms of S and Q:

dQ

dt
= −

e4 exp
(
−m2

e S
eQ

)
Q3

2m2
e

√
π3h̄5S3

(27)

4 Choosing appropriate constraints and solving

From (26) and (27) it follows that:

dS

dQ
= dS

dt

dt

dQ
= −

π2h̄5/2m2
eS

3/2(πQ2 − h̄S)3 exp
(
m2

e S
eQ

)

480e4Q3(h̄S)7/2 (28)

The elementary charge e and electron mass me have values 1.3807 × 10−36 m and
6.7646 × 1058 m, respectively (each stated to five significant figures and without the
associated uncertainty).6

The necessary constraints were obtained by fixing the mass M at M∗ = 3 × 109 m
(2 × 106 M�), with Q∗ set equal to 8 × 108 m (9 × 1025 C). The latter satisfies the
requirement that the charge be comparable in magnitude to the mass of the black
hole. For the given value of M∗, the maximum charge the black hole can have is also
3 × 109 m, in which case the black hole would be extremal. This is equivalent to
3 × 1026 C.

The entropy S can be calculated from (9) after substituting for A [Eq. (10)] and r+
[Eq. (11)]. When M∗ = 3× 109 m and Q∗ = 8× 108 m, S∗ evaluates to 4.1742× 1089,
while Eq. (28) yields a value for (dS/dQ)∗ of 1.7311 × 1026 m−1.

Thus the constraints used to solve (15) numerically are as follows:

Q∗ = 8 × 108 m; S∗ = 4.1742 × 1089;
(dS/dQ)∗ = 1.7311 × 1026 m−1 (29)

Similarly, four other sets of constraints were obtained, each corresponding to the
same M∗ but a different value of Q∗. The resulting solutions, together with the one for
(29), are illustrated in Fig. 1. A closer inspection (Fig. 2) reveals that each trajectory
is characterised by a maximum that occurs very close to the state specified by the
constraints, indicating that—to a good approximation—a black hole with M = M∗

6 The full values and uncertainties, in SI units, are given in [40].
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Fig. 1 Thermodynamic geodesics obtained by solving Eq. (15) numerically for 5 different sets of con-
straints, each calculated at M∗ = 3 × 109 m (2 × 106 M�)

and Q = Q∗ evolves along the corresponding geodesic by losing entropy via Hawking
radiation, both if discharging and also in the purely theoretical scenario of an increase
in Q. This can be traced back to the fact that the Schwinger mechanism does not alter
the entropy of the black hole, as can be demonstrated by a simple calculation. One
should first note that for each pair of particles produced, the charge of the black hole
decreases by e and the mass7 by eQ/r+. Using the equation:

�r+ = �M

(
M + √

M2 − Q2
√
M2 − Q2

)

− �Q
Q

√
M2 − Q2

(30)

in conjunction with the relations �M = −eQ/r+ and �Q = −e yields the result
�r+ = 0. Hence, the area of the event horizon [Eq. (10)] remains constant and, as
follows from Eq. (9), so does the entropy. One should also note that the closer Q∗
is to the extremal value, the smaller the value of S∗ and consequently, the lower the
corresponding curve. Since the five sets of constraints were obtained for the same
value of M∗, this mirrors the fact that at a fixed value of M (=M∗), the entropy (S∗)
is least when the black hole is closest to extremality. Furthermore, each curve bends
downwards as Q approaches its extremal value, so that the entropy decreases and is
least for maximum Q. In the limit of extremality, however, Eq. (15) becomes stiff.
This is in line with the third law of black hole thermodynamics, which forbids a non-
extremal black hole from evolving into an extremal one. Strictly speaking, an extremal
black hole is defined as having M equal to Q (in the geometric unit system), and given
that M evolves from its constraining value M∗ along the geodesic, the reader should
be aware that the word ‘extremality’ is used rather loosely in this situation, since here
an extremal black hole is considered to be one with Q = M∗.

7 The rest energy of the positron (the particle with the same-sign charge as the black hole) is not taken
into account; the large charge-to-mass ratio of this particle implies that the energy eQ/r+ it gains when
repelled to infinity is much greater [1].
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(a) (b)

(c)

(e)

(d)

Fig. 2 Thermodynamic geodesics over a restricted domain. M∗ is set to 3 × 109 m, with Q∗ being: a
6 × 108, b 7 × 108, c 8 × 108, d 9 × 108 and e 1 × 109 metres

Figure 1 also shows that at small values of Q, the geodesics can be well-
approximated by straight lines. This indicates that the space of equilibrium states
becomes less curved, and the thermodynamic activity of the black hole decreases.
The possibility of using curvature as a probe of the thermodynamic interactions of a
system makes GTD very advantageous, as outlined in the Introduction. In fact, the
equilibrium states of an ideal gas, whose constituent particles do not interact, give
rise to a flat space. Consequently, with the proper choice of coordinates, the resulting
geodesics take the form of straight lines [30].

It should nonetheless be noted that, as shown by Hiscock and Weems, it is possible
for sufficiently large RN black holes to initially evolve closer to extremality by losing
mass while keeping their charge approximately constant. This is unlike what happens
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(a) (b)

Fig. 3 Thermodynamic geodesics obtained by solving Eq. (15) numerically for 5 different sets of con-
straints, each calculated at a M∗ = 5 × 109 m (3.4 × 106 M�) and b M∗ = 7 × 109 m (4.7 × 106 M�)

in the case of a rotating black hole, which always evolves towards the Schwarzschild
limit [1].

The analysis was repeated for two other constraining values of M , and the results
are presented in Fig. 3. In all three cases, the constraints were not chosen as randomly
as it might seem, because certain values for M∗, despite being significantly greater
than Q0 (≈1.7× 105 M�), yield very high rates of change for values Q∗ whose order
of magnitude is comparable to that of M∗, implying a black hole that would discharge
much too quickly to be of relevance to this work. In most of these situations, (dS/dt)∗
also turns out to be unacceptably large.

The fact that S always decreases for a black hole with Q = Q∗ and S = S∗,
regardless of what Q does, might initially seem at odds with the assumption that S is
a function of Q. However, although the Schwinger mechanism does not change the
area A of the event horizon, it does affect dA/dt . Indeed, the loss of charge makes
A decrease faster, and thus effectively increases the rate at which entropy is lost.
This becomes apparent if one takes the time derivative of the relation A = 4h̄S [the
Bekenstein–Hawking area–entropy relation, Eq. (9)] and substitutes for dS/dt [Eq.
(26)], getting:

dA

dt
= −4h̄

√
π(h̄S − πQ2)3

960(h̄S)7/2 (31)

Given that the Schwinger mechanism leaves the entropy intact but decreases the charge,
the overall result is an increase in |dA/dt | and hence in the rate of entropy loss. In
other words, changes in Q have a direct bearing on the amount by which S decreases
in a given time. It is in this sense that the geodesics in the space of thermodynamic
equilibrium states can be expressed as a function f (S, Q) = 0. Furthermore, one might
just as well have chosen Q as the dependent variable, because any function Q(S) has a
corresponding inverse S(Q), provided it is one-to-one. Should a solution Q(S) to the
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geodesic equation (this having been expressed in terms of Q′(S) and Q′′(S)) be many-
to-one, its inverse—or a portion of it—would still turn up as a solution of Eq. (15),
but the gradient of the resulting curve would be singular at one or more points, and the
solver would detect a stiffness problem there. Fortunately, the solutions presented in
this work are not stiff over the given domain, and so the possibility that the technique
employed might be generating portions of one-to-many solutions is eliminated.

We now turn our attention to the physical significance of the result, in the sense that
we shall try to understand how our analysis fits in with the evolution of a ‘real’ black
hole, whose thermodynamics would be governed at all times by Eqs. (18) and (19).
The starting point is the metric on the space of thermodynamic equilibrium states [Eq.
(3)]. We write it again below for ease of reference:

[gab] = (SMS + QMQ)

(
MSS 0

0 −MQQ

)

(32)

The two-by-two matrix on the right-hand side is reminiscent of the metric proposed
by Weinhold [15–19], which can be expressed as gW = ∂2U/∂Eα∂Eβ (Eα and Eβ

represent extensive variables). Weinhold’s metric can provide a measure of distance
in several ways. As mentioned in the Introduction, Weinhold himself worked in the
tangent space defined at a general point of the equilibrium manifold [14,52]. Let us
suppose that our n-dimensional manifold—described by the equation of state U =
U (Eα) = U (E1, . . . , En)—is embedded in an (n + 1)-dimensional space R

n+1. Its
coordinates in this space would be (Eα;U (Eα)). If we then consider the tangent
space at an equilibrium point (Eα

0 ;U (Eα
0 )) and adopt Weinhold’s choice of metric,

the quantity �s2 = gW�Eα�Eβ would denote the square of the distance between
(Eα

0 ;U (Eα
0 )) and the neighbouring point in the tangent spacewith coordinates8 (Eα

0 +
�Eα;U (Eα

0 )+λα�Eα) [52]. To lowest order, gW�Eα�Eβ is also equivalent to twice
the distance between the displaced state (Eα

0 +�Eα;U (Eα
0 +�Eα)) on the manifold

and the tangent space at the equilibrium point (Eα
0 ;U (Eα

0 )) [53]. In the latter case,
the distance can be identified with the availability of the displaced system [53].

Additionally, it is possible to use Weinhold’s metric as a means of introducing a
notion of distance in the equilibrium manifold itself, although the Gibbsian picture
of the space of equilibrium states as a convex hypersurface would then have to be
abandoned [14]. The authors of [22] concluded that the thermodynamic length thus
computed controls the dissipation in finite-time processes. This approach is more
relevant to us, since we are specifically interested in thermodynamic distances in the
space of equilibrium states.

Both of the above-mentioned applications show that Weinhold’s metric makes it
possible to obtain bounds on the change in energy associated with a thermodynamic
process. The main difference between Weinhold’s metric and the two-by-two matrix
in Eq. (32) is the introduction in the latter of the metric signature (+,−). Just as in
normal spacetime, the signature distinguishes between the temporal dimension and
the spatial ones, its role in the line element constructed from (32) is to make the

8 Here, λα stands for the intensive thermodynamic variables of the system. At equilibrium, λα = ∂U
∂Eα

∣
∣
∣
Eα

0
[52].
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distinction between the term in dQ2, which represents fluctuations in the electrostatic
energy of the black hole, and that in dS2. The latter is associated with changes in the
irreducible mass of the black hole, so called because it cannot be extracted by any
classical process.

The two-by-two matrix in Eq. (32) is scaled by the sum SMS +QMQ , equivalent to
ST + Qφ. If we compare this sum to the first law of black hole thermodynamics [Eq.
(21)], it can easily be deduced that it amounts to the total energy (mass) expended by
an ‘infinite reservoir’—whose temperature and electrostatic potential remain constant
at all times—to produce a black hole having entropy S and charge Q.

These considerations allow us to conclude that extremising the thermodynamic
length computed from (32) must yield some important information about the way the
black hole’s mass changes as it evolves. To further clarify the nature of this information,
we extend our analysis to the geodesic equation itself. It turns out that the expression
for the entropy of an extremal black hole—i.e. S = πQ2/h̄—is an exact solution to
Eq. (15). Let us consider a point P on this curve. A black hole at P , being extremal,
cannot increase its charge unless it first gains mass. The smallest increase in mass
occurs if the black hole remains extremal as it evolves—i.e. if it ‘moves’ to a state
P + δP that also lies on the curve S = πQ2/h̄. On the other hand, should the black
hole at P lose charge, it could only keep to the curve if the decrease in M is the
largest possible. In other words, the curve S = πQ2/h̄ is a solution to the geodesic
equation which extremises the change in mass accompanying a variation in the electric
charge of a hypothetical black hole, maximising �M if the black hole is discharging
and minimising it if Q increases. It can thus be inferred, irrespectively of whether
the solution S = πQ2/h̄ has physical meaning,9 that any solution to the geodesic
equation extremises the change in M for a given increase or decrease in Q.

Now that we have established the nature of the thermodynamic geodesics, the
only question yet to be answered is whether a ‘real’ black hole follows a geodesic as it
evolves. With this in mind, we solve Eqs. (18) and (19) numerically, adopting the values
that constrain a particular geodesic as initial conditions.10 The result is subsequently
used to plot a curve M(Q), which is then compared with the solution obtained by
rewriting (15) in terms of the mass of the black hole and solving the derived equation
(while applying the same constraints). Note that here we work with the mass—rather
than the entropy—because this is the most easily-measured parameter. Additionally,
given that a ‘real’ black hole would be discharging, rather than gaining charge—
especially in view of its assumed isolation—we only consider values of Q that satisfy
Q ≤ Q∗. The results for six of the geodesics are presented in Fig. 4.

Provided it is not surrounded by any matter or radiation, a ‘real’ black hole evolves
via the emission of thermal radiation and charged-particle pairs. The path it traces in
thermodynamic space depends on the initial conditions and would be represented by
a curve similar to the dashed ones in Fig. 4. It can be noted that the smaller values of
Q∗ (= Q(t = 0)) give rise to thermodynamic geodesics which follow the respective

9 Several authors are of the opinion that a black hole which is exactly extremal has zero entropy; see, for
instance, [54–58].
10 For instance, in the case of the geodesic with constraints given by Eq. (29), we set Q(t = 0) = 8×108 m
and M(t = 0) = 3 × 109 m.

123



4 Page 16 of 19 C. Farrugia, J. Sultana

(a) (b)

(c) (d)

(e) (f)

Fig. 4 The variation of mass with charge for a supermassive, isolated RN black hole. The solid-line curves
correspond to evolution along the geodesic with: (first 3 subfigures) M∗ = 3 × 109 m and Q∗ equal to a
6 × 108, b 8 × 108, c 1 × 109 metres; (last 3 subfigures) M∗ = 5 × 109 m and Q∗ equal to d 1.5 × 109,
e 2.5 × 109 and f 3.5 × 109 m. The dashed curves represent the relation M(Q) obtained by setting the
constraints of the respective geodesic as the initial conditions M0 and Q0 used to solve (18) and (19)

dashed curve closely, indicating that the evolution along them coincides with the
one stipulated by the combined processes of Hawking radiation and Schwinger pair
production. On the other hand, as Q∗ increases, the deviation between the solid-line
and dashed curves becomes more marked. When this happens, the former lies below
the latter, signifying a solution to the geodesic equation which maximises changes in
M during discharge. Note that since Q would be decreasing, time progresses from
right to left in Fig. 4.
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5 Conclusion

In this work, using an appropriate thermodynamic metric that emerges from the
recently introduced formalism of Geometrothermodynamics [25], a differential equa-
tion is obtained to describe the geodesics in the space of thermodynamic equilibrium
states of a supermassive Reissner Nordström black hole in isolation. The geodesic
equation is then solved numerically by considering the processes of Hawking radi-
ation and Schwinger pair production to derive sets of appropriate constraints. We
construct our black hole model on the one presented by Hiscock and Weems [1].
However, we replace their expression for the rate of mass lost due to thermal emission
with the Stefan–Boltzmann law for a black body.

Since we work in the mass representation (i.e. with the mass M of the black hole
acting as thermodynamic potential), the space of equilibrium states is coordinatized
by the entropy S and electric charge Q. Consequently, geodesic curves establish a
relation between the two. We propose that this relation extremises changes in the
black hole’s mass, as can be inferred from the fact that the expression for the entropy
of an extremal black hole (S = πQ2/h̄) is an exact solution to the geodesic equation.
If such a black hole were to lose charge, the accompanying decrease in mass would be
maximum if the discharging black hole remained extremal, i.e. if it evolved along the
curve S = πQ2/h̄. On the other hand, in the scenario of an increasing Q, variations
in M would be minimised if the black hole retained its extremal nature.

Next, we investigate how the mass varies with charge along a geodesic by solving
the geodesic equation in the entropy representation. The results are compared with
the actual evolution of the black hole, which can be worked out from Eqs. (18) and
(19). Whenever a geodesic deviates from the corresponding trajectory mapped out by
a ‘real’ discharging black hole in thermodynamic space, it is characterised by a greater
loss in mass, implying that—as was the case with S = πQ2/h̄—it maximises changes
in M . We note that this deviation becomes especially marked as Q∗ approaches its
extremal limit (Q∗ is the value of Q used to constrain the geodesic equation; it also
serves as initial condition when solving (18) and (19), and depends on the particular
geodesic). For smaller values of Q∗, the proximity of the geodesics to the actual
evolution indicates that under certain conditions, the emission of Hawking radiation
and charged-particle pairs causes a supermassive, isolated RN black hole to trace a
path in thermodynamic space that extremises the thermodynamic length computed
from the metric (3).
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