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Abstract Higher-dimensional solutions for Einstein–Maxwell equations that gener-
alize the charged Nariai spacetime are obtained. The solutions presented here are
made from the direct product of several 2-spaces of constant curvature. These solu-
tions turn out to have many magnetic charges, contrary to the usual higher-dimensional
generalization of the Nariai spacetime, which has no magnetic charge at all. These
solutions are then used to generate black hole metrics. Finally, it is analyzed how these
generalized Nariai solutions are modified in more general theories of gravity.
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1 Introduction

The use of higher-dimensional spacetimes to explain our physical world has a long
history in physics. Indeed, even prior to the publication of the final form of general
relativity, Nordström [1] made use of a five-dimensional spacetime in order to unify
gravity and electromagnetism into a single scheme. Few years later, under the light of
general relativity, Kaluza and Klein [2–4] made this possibility clearer in influential
works whose concepts are of relevance until now. However, the idea that the universe
can have more that four dimensions started to spread and be considered by a bigger
community around the 70s, when string theory arose as a possibility of providing
a quantum theory of gravity [5]. According to the current interpretation, the reason
why we are not used to notice the six extra dimensions necessary in string theory is
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that they are very small and, therefore, can only be probed through highly energetic
experiments. Nevertheless, from the theoretical point of view, it is also possible to
reconcile our impression that we live in a four-dimensional world with the existence
of large extra dimensions [6,7]. In this scenario, the interactions of the standard model
are restricted to a four-dimensional brane while gravity permeates all dimensions. Even
infinity extra dimensions are not necessarily in contradiction with our daily experiences
[7,8]. Nevertheless, it is fair to say that astrophysical and earth-based high energy
experiments have put huge constraints in the possibility of existing extra dimensions
of sizes much greater than the Planck length [9,10]. Nowadays, another important
source of attention for higher-dimensional spacetimes is the AdS/CFT correspondence
[11], which relates a gravitational theory in the bulk of an n-dimensional spacetime
with a conformal field theory in the (n − 1)-dimensional boundary. Due to all these
branches of physics that make use of higher-dimensional spacetimes, it is increasing
the amount of research in such subject.

The Schwarzschild-de Sitter black hole is not in thermodynamical equilibrium,
since the temperatures of the black hole horizon and cosmological horizon are not
the same. As the limit of equal temperatures is taken, the two horizons approach each
other and the outcome of this limit process is the Nariai spacetime [12,13], a solution
first found in Ref. [14]. The Nariai metric is a four-dimensional vacuum solution of
Einstein’s field equation in the presence of a positive cosmological constant that is the
direct product of two spaces of constant curvature, namely dS2 and S2. Analogously,
the so-called anti-Nariai, Bertotti–Robinson and Plabański–Hacyan solutions are other
vacuum solutions formed by the direct product of two spaces of constant curvature
[15–18]. For an account of impulsive gravitational waves in these spacetimes, see
[18,19], while the thermodynamics of the Nariai spacetime have been considered in
Ref. [20].

An electrically charged higher-dimensional generalization of the Nariai spacetime
have been obtained in Ref. [21]. This solution of Einstein–Maxwell equations is the
direct product of the spaces dS2 and Sn−2, and can be obtained from Schwarzschild–
Tangherlini black hole in the limit of equal temperatures of the horizons, as proved
in [22]. Here, we will present a different higher-dimensional generalization of the
Nariai solution that is formed from the direct product of dS2 with several 2-spheres
possessing different radii. One interesting feature of the latter solution is that, besides
having an electric charge, it also admits several magnetic charges, diversely from the
solutions obtained in Refs. [21,22], which have no magnetic charge at all. In addition,
we will investigate whether these new generalized Nariai spacetimes are associated to
black holes and if they have counterparts in theories of gravity that are more general
than Einstein’s theory.

The outline of the article is the following. In Sect. 2, the new higher-dimensional
generalizations of Nariai solutions are presented and some of their geometrical and
physical properties are investigated. Moreover, we also obtain higher-dimensional
extensions of anti-Nariai, Bertotti–Robinson and Plabański–Hacyan solutions. Then,
in Sect. 3, we use the generalized Nariai metrics to obtain black hole solutions for
Einstein–Maxwell equations. In Sect. 4, we investigate metrics made from the product
of 2-spaces of constant curvature that are solutions for more general gravitational
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theories coupled to an electromagnetic field through a minimal coupling. Finally, in
Sect. 5, we summarize the results and discuss some perspectives.

2 Generalized charged Nariai solutions in Einstein’s theory

In this starting section we are interested in obtaining solutions for a gravitational system
interacting, via minimal coupling, with an electromagnetic field and a cosmological
constant �. The system is described by the following action

S =
∫ √−g

[
R − (n − 2)� − 1

4
FcdFcd

]
,

where Fab = ∇[aAb] is the electromagnetic field, R stands for the Ricci scalar and n
is the dimension of the spacetime. The field equations of this system are:

Rab − 1

2
F c
a Fbc = gab

2

[
R − (n − 2)� − 1

4
FcdFcd

]

and ∇aFab = 0. (1)

In order to write the solutions that will be presented in the sequel, it is useful to adopt
the notation

d�2
j = dθ2

j + sin2 θ j dφ2
j

to represent the line element of the unit sphere S2. In what follows, we will assume
that the dimension n is even and that the index j ranges from 2 to n/2.

The first result presented here is that a static solution for the equations of motion
(1) is provided by the following fields:

ds2 = R2
1(− sin2 x dt2 + dx2) +

n/2∑
j=2

R2
j d�2

j ,

F = q1R
2
1 sin x dt ∧ dx +

n/2∑
j=2

q j R
2
j sin θ j dφ j ∧ dθ j , (2)

where q1 is an electric charge and q j are magnetic charges. The radii R1 and R j are
real constants that are related to the charges and the cosmological constants by the
subsequent relations:

R1 =
[

� − 1

2
q2

1 + Q

2(n − 2)

]−1/2

, (3)

R j =
[

� + 1

2
q2
j + Q

2(n − 2)

]−1/2

, (4)
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where

Q ≡ q2
1 −

n/2∑
j=2

q2
j . (5)

One can check that in order for the radii to be real, which assures the Lorentzian
signature, the following constraint must be satisfied by the cosmological constant:

2 (n − 2)� ≥ (n − 3) q2
1 +

n/2∑
j=2

q2
j . (6)

In particular, the cosmological constant must be positive. If n �= 4, the relations (3)
and (4) can be inverted to write the charges q1 and q j in terms of the radii, the final
result being

q1 =
√

4 (n − 2)

(n − 4)
� − 4

(n − 4)R2
0

− 2

R2
1

, (7)

q j =
√

− 4 (n − 2)

(n − 4)
� + 4

(n − 4)R2
0

+ 2

R2
j

, (8)

with R0 being defined by

1

R2
0

≡ 1

R2
1

+
n/2∑
j=2

1

R2
j

.

Thus, instead of considering the electromagnetic charges as being arbitrary, we can,
equivalently, suppose that the radii R1 and R j are arbitrary, while the charges are
determined in terms of these radii by Eqs. (7) and (8). This is quite interesting from
the point of view of compactification of extra dimensions, since we can set R1 and
R2 to be much bigger than the other radii. However, this freedom of choosing either
{q1, q j } or {R1, R j } as being the independent parameters is not valid in the particular
case n = 4, as can already be grasped from Eqs. (7) and (8), which diverge in such a
case. Indeed, by means of Eqs. (3) and (4) one can see that if n = 4 the radii R1 and
R2 are not independent from each other, they must obey the constraint

1

R2
1

+ 1

R2
2

= 2 �.

Thus, when n = 4 the solution presented here reduces to the well-known charged
Nariai solution [14]. Therefore, the metric (2) should be seen as a higher-dimensional
generalization of the Nariai solution.

Just as the Nariai solution, the higher-dimensional version of the Nariai spacetime
presented here has no singularities. Indeed, its Riemann tensor and its Weyl tensor are
both covariantly constant and, therefore, all invariant scalars that can be constructed
from the curvature are constant. For instance, the full contractions of the products of
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the Riemann tensor are given by

Ra1b1
a2b2

. . .Ranbn
a1b1

= 2n

⎡
⎣ 1

R2n
1

+
n/2∑
j=2

1

R2n
j

⎤
⎦ .

These generalized Nariai spacetimes are contained in the Kundt class of metrics
[23,24], inasmuch as the null directions

� = csc x ∂t + ∂x and n = csc x ∂t − ∂x

are geodesic, shear-free, twist-free and expansion-free. They are also repeated princi-
pal null directions of the Weyl tensor [25–27],

Cab[cd �e]�b = 0 = Cab[cd ne]nb,

so that, according to the boost weight classification [28,29], the algebraic type of the
Weyl tensor is D. These properties are also in agreement with the four-dimensional
Nariai solution.

Using the coordinates τ = R1 t and r = R1 cos x , the line element of the general-
ized Nariai spacetime is written as

ds2 = − h(r) dτ 2 + 1

h(r)
dr2 +

n/2∑
j=2

R2
j d�2

j ,

where h(r) = 1 − r2/R2
1. In these coordinates, it is clear that the hyper-surfaces

r = ±R1 are closed null surfaces and comprise event horizons. The entropies of these
horizons are given by one quarter of their area,

S = 1

4

n/2∏
j=2

4 π R2
j . (9)

These null hyper-surfaces are Killing horizons associated to the Killing vector ∂τ . In
order to calculate the temperature of such horizons, one must compute the surface
acceleration of the of this Killing vector,

κ =
√

− 1

2
∇aξb ∇aξb

∣∣∣∣∣
r=rh

, (10)

where rh is the value of the coordinate r at the horizon and ξa is the Killing vector
field properly normalised. A natural way to normalize ξ = λ ∂τ is to choose the
multiplicative constant λ in such a way that ξaξa = −1 at the value of r = r
for which ξ is a geodesic vector field, just as happens at the asymptotic infinity of
an asymptotically flat spacetime [13]. At r = r the gravitational, electromagnetic
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and cosmological forces balance each other and the observer can stay still without
acceleration. Computing the Christoffel symbol �a

ττ , we see that this value of r is the
one for which h′(r) = 0, with h′(r) standing for the derivative of h(r) with respect
to r . Therefore, the normalized Killing vector field and the temperature of the horizon
are respectively given by

ξ = 1√
h(r)

∂τ and T = κ

2π
= |h′(rh)|

4 π
√
h(r)

In the case of the metric considered here, we have rh = ±R1 and r = 0, so that the
temperature of the horizons of the generalized Nariai solutions considered here is

T = 1

2 π R1
.

This is the temperature measured by a still observer at r = 0. Of course, other observers
should measure different temperatures. For a nice account on the thermodynamics of
the four-dimensional Nariai spacetime, the reader is referred to Ref. [20].

We have seen that, due to Eq. (6), these generalized Nariai solutions exist only
for positive cosmological constant. Nonetheless, it is also possible to make analytical
continuations on the coordinates and find the analogue of the latter solution in the
case of negative cosmological constant, obtaining a generalized anti-Nariai solution.
Indeed, the line element (2) is the direct product of the de Sitter space dS2 with
( n2 − 1) copies of the sphere S2, which are both two-dimensional spaces of constant
positive curvatures. Thus, in an analogous fashion, we can find a solution whose
metric is the product of spaces of constant negative curvatures, namely the product
of anti-de Sitter space AdS2 with ( n2 − 1) copies of a hyperboloid H2, in which case
the cosmological constant can be negative. Actually, we can go one step further and
consider the ansatz of a spacetime whose metric is the direct product of 2-spaces
of arbitrary constant curvature, which provides a generalization of Bertotti–Robinson
and Plebański–Hacyan four-dimensional solutions [15–17]. In order to accomplish this
goal it is useful to define the following function depending on a discrete parameter ε:

Sε(θ) = 1√
ε

sin(
√

ε θ) =
⎧⎨
⎩

sin θ, if ε = 1
θ, if ε = 0

sinh θ, if ε = −1.

(11)

Then, the line element of a constant curvature two-dimensional space can be conve-
niently written as

d�̃2
ε j

= dθ2
j + Sε j (θ j )

2 dφ2
j , (12)

with the case ε j = 1 representing a sphere, the plane being represented by ε j = 0,
while the hyperboloid corresponds to ε j = −1. Then, we shall seek for solutions
whose line elements are given by

123



Generalized charged Nariai solutions in arbitrary… Page 7 of 20 160

ds2 = R2
1

[
−Sε1(x)

2 dt2 + dx2
]

+
n/2∑
j=2

R2
j d�̃2

ε j
. (13)

One can check that metric (13) is a solution of the field equations (1) when n ≥ 6
provided that the electromagnetic field is given by

F = q1 R2
1 Sε1(x) dt ∧ dx +

n/2∑
j=2

q j R
2
j Sε j (θ j ) dφ j ∧ dθ j ,

where the electric charge q1 and the magnetic charges q j might be given by the
following relations respectively

q1 =
√

4 (n − 2)

(n − 4)
� − 4

(n − 4)R̃2
0

− 2 ε1

R2
1

, (14)

q j =
√

− 4 (n − 2)

(n − 4)
� + 4

(n − 4)R̃2
0

+ 2 ε j

R2
j

. (15)

The constant R̃0 used in the latter expression is defined by

1

R̃2
0

≡ ε1

R2
1

+
n/2∑
j=2

ε j

R2
j

. (16)

Now, let us define the following 1-forms constituting a local basis:

e1 = R1 Sε1(x) dt, ẽ1 = R1 dx
e j = R j Sε j (θ j )dφ j , ẽ j = R j dθ j .

(17)

Then, the vector fields associated to these 1-forms by means of the metric comprise a
Lorentz frame. In terms of such basis, the electromagnetic field is given by

F = q1 e1 ∧ ẽ1 +
n/2∑
j=2

q j e j ∧ ẽ j .

Since the components of F in this Lorentz frame are constant, we interpret it as a
uniform electromagnetic field throughout the spacetime.

From Eqs. (14) and (15), one can grasp that if either ε1 or some ε j vanish then
these equations cannot be inverted to write the radii R1 and R j in terms of the charges
q1 and q j . For example, let us say that ε1 = 0, then the expressions of q1 and q j

do not depend on R1, so that, generally, we cannot write R1 as a function of the
electromagnetic charges. Nevertheless, if none of the 2-spaces that form the metric is
flat, namely if ε1 and ε j are all different from zero, then Eqs. (14) and (15) can be
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inverted and solved for the radii R1 and R j in terms of the charges q1 and q j . In the
latter case, the electromagnetic charges can be arbitrarily assigned to the solution.

A different generalization of the charged Nariai solution to higher dimensions has
also been found elsewhere [21,22], but such spacetime is the direct product of just
two spaces of constant curvature, namely AdS2 × Sn−2. On the other hand, the metric
presented here is the direct product of several 2-spaces of constant curvature. It is
also worth pointing out that whereas the solution presented in Refs. [21,22] admits
no magnetic charge at all, which is related to the fact that the second Betti number
of the sphere Sn−2 is different from zero only if n = 4 [30], the solution obtained
here has several magnetic charges. This interesting feature makes these metrics a rich
arena for studying the physics of higher-dimensional spacetimes. After the release of
the pre-print of this article, Marcello Ortaggio kindly warned that the purely magnetic
case of the solutions presented here, namely when q1 = 0, is contained in the broad
class of solutions obtained in Ref. [31].

3 Associated black hole solutions

It is well-known that the four-dimensional Nariai solution can be obtained from the
Schwarzschild-de Sitter metric in the limit that the temperature of the black hole hori-
zon coincides with the temperature of the cosmological horizon. Indeed, the Nariai
solution is the metric perceived by an observer between the two horizons as they coa-
lesce into a single hyper-surface. Since the coordinate range between the two horizons
shrinks to zero as the temperatures of the horizons approach each other, a careful near
horizon limit must be taken in order to obtain Nariai metric [12,13]. Therefore, it is
natural to think that a similar approach works in higher dimensions. Indeed, this was
the path taken in Ref. [22] to obtain another higher-dimensional generalization of the
Nariai solution. In the latter reference, the limit of equal temperatures of the horizons
of the Schwarzschild–Tangherlini solution [32] have been taken and the final result
was a spacetime of the form AdS2 × Sn−2.

Here, we already have a higher-dimensional generalization of the Nariai solution.
Thus, we could think the other way around: are the generalized Nariai metrics obtained
in this article related to black hole solutions? In order to answer this question, let us
investigate whether it is possible to attain the metric (2) from a black hole solution with
coalescing horizons. Let us start with the following general static black hole ansatz
that has the same topology of the spacetime presented in Eq. (2):

ds2 = − f (r) dt̃ 2 + 1

f (r)
dr2 +

n/2∑
j=2

R j (r)
2 d�2

j . (18)

Then, we take the limit in which two horizons have the same temperature while the
horizons coalesce into a single surface r = rh . The hallmark of a degenerate horizon
is that f (r) and f ′(r) both vanish at the horizon, so that near the horizon we can write

f (rh + ρ) = − λ ρ2 + O(ρ3),
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where λ is some non-vanishing constant. Therefore, using ρ = r − rh as a coordinate
while we take the near horizon limit, the general ansatz (18) becomes

ds2 = λ ρ2 dt̃ 2 − 1

λ ρ2 dρ2 +
n/2∑
j=2

R j (rh)
2 d�2

j . (19)

Then, defining t̃ = λ−1 e−t cot x , ρ = et sin x , R j = R j (rh) and R1 = λ−1/2,
we retrieve the generalized Nariai spacetime (2). Therefore, we conclude that the
generalized Nariai solution presented here induces the search for static black hole
solutions of the form (18), which we do in the sequel.

Before proceeding, it is useful to introduce the following notation:

Eab ≡
(
Rab − 1

2
gabR

)
− Tab,

where Tab is the energy-momentum tensor of the electromagnetic field. Then, the
condition Ea

b = 0 is just Einstein’s equation (1).
In spite of the simplicity of the line element (18), it turns out that it is quite hard to

integrate Einstein–Maxwell equations for this metric in the general case. Therefore,
we shall make some simplifying assumptions. First, inspired by Eq. (2), let us adopt
the following ansatz for the electromagnetic field

F = F1(r) dt̃ ∧ dr +
n/2∑
j=2

Fj (r) sin θ j dφ j ∧ dθ j . (20)

Even with the latter assumption, it is difficult to integrate Einstein’s equation without
making restrictions over the functions R j (r) that appear in the metric (18). Never-

theless, imposing equation E t̃
t̃
− Er

r = 0, we find that the following condition must
hold:

n/2∑
j=2

R′′
j (r)

R j (r)
= 0. (21)

The simplest solution for the latter equation is attained when each term of the above
sum vanishes, in which case the functions R j (r) have a linear dependence on r :

R j (r) = a j r + b j , (22)

where a j and b j are constants. In particular, when the constants a j are all zero we
retrieve the generalized Nariai metric (2). Another case that is not so alluring happens
when just one of the constants a j is non-vanishing, in which case we obtain the direct
product of the Reissner–Nordström solution with n−4

2 spheres of constant radii.
A particularly interesting case happens when we assume that a j are non-vanishing

and the constants b j in Eq. (22) are all equal. In such a case, we can redefine the origin
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of the coordinate r so that the constants b j vanish. Then, after some calculations, the
integration of the field equations leads to the following black hole solution:

ds2 = − f (r) dt̃ 2 + 1

f (r)
dr2 + r2

n/2∑
j=2

d�2
j ,

F = √2(n − 2)(n − 3)
q1

rn−2 dt̃ ∧ dr

+2 q2

n/2∑
j=2

sin θ j dφ j ∧ dθ j , (23)

where the constants q1 and q2 are arbitrary parameters proportional to the electric and
magnetic charges respectively, while the function f (r) is given by

f (r) = 1

n − 3
− 2 μ

rn−3 + q2
1

r2(n−3)
− q2

2

(n − 5)r2 − � r2

n − 1
, (24)

with μ being an arbitrary constant. The latter parameter is proportional to the mass,
i.e., it is proportional to the conserved charge associated to the Killing vector field
∂t̃ . One interesting feature of this solution is that it only has one magnetic charge
q2, whereas in the generalized Nariai solution (2) a different charge can be assigned
for each sphere factor in the line element. As a consequence, all sphere factors in the
black hole solution (23) must have the same radius. Note that we started the integration
process with arbitrary coefficients a j and, in principle, they were independent from
each other. Nonetheless, the field equations impose that all the constants a j must
coincide, leading to the same radius and magnetic charge for each sphere factor. This
black hole solution has already been obtained in Ref. [33], as a particular case of
a broader solution in which the (n − 2)-dimensional spatial part of the metric is an
Einstein manifold possessing an almost-Kähler structure. Moreover, the cases q2 = 0
(purely electric) and q1 = 0 (purely magnetic) of this black hole solution can be
attained in the limit of Einstein–Maxwell theory from the solutions found in Ref. [30].

The spacetime presented in Eq. (23) has a singularity at r = 0, which is indicated
by the fact that the Kretschmann scalar diverges in the limit r → 0. Also, the null
vector fields

� = 1√
f

∂t̃ +√ f ∂r and n = 1√
f

∂t̃ −√ f ∂r (25)

are repeated principal null directions of the Weyl tensor [25–27],

Cab[cd �e]�b = 0 = Cab[cd ne]nb.

Therefore, according to the boost weight classification [28,29], the algebraic type of
this spacetime is D. The latter classification is a generalization of the Petrov classi-
fication to arbitrary dimension. These repeated principal null directions are geodesic,
shear-free and twist-free, but have non-zero expansion. Thus, the solution presented
here is contained in the Robinson–Trautman class of spacetimes [34,35].
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In the special case n = 4, the solution (23) reduces to the well-known Reissner–
Nordström solution in the presence of a cosmological constant, with μ denoting the
mass, q1 is the electric charge and q2 is the magnetic charge. However, for n > 4 the
solution presented here differs, in several respects, from the charged version of the
Schwarzschild–Tangherlini spacetime. First, the topology of the spatial infinity and of
the horizons are different in both cases. For instance, while the topology of the horizon
in Schwarzschild–Tangherlini spacetime is R × Sn−2, in the solution presented here
the topology of the horizon is the cartesian product of a real line with several 2-spheres.
Second, note that the additive constant term in the function f (r) is different from 1
if n �= 4, and this constant factor cannot be modified by a coordinate transformation.
Moreover, a higher-dimensional Schwarzschild metric possessing a magnetic charge
does not exist, which is related to the fact that the second Betti number of the sphere
Sn−2 is different from zero only if n = 4 [30]. Regarding the magnetic charge q2, it
is also worth stressing that the sign of in front of q2

2 in Eq. (24) becomes negative if
n ≥ 6, which implies the existence of an event horizon even in the case of vanishing
mass parameter μ.

Besides the Killing vector field ∂t̃ , each sphere factor of the metric (23) provides
three space-like Killing vector fields for the spacetime, so that the total number of
Killing vector fields is 3

2n − 2. On the other hand, the Schwarzschild–Tangherlini
spacetime possesses 1

2n
2 − 3

2n + 2 Killing vectors. Besides, for each sphere factor of
the line element (23) there exists a Killing-Yano tensor given by

Y j = r3 sin θ j dθ j ∧ dφ j .

Nevertheless, the conserved quantities along the geodesic motion associated to these
Killing-Yano tensors are not independent from the ones generated by the Killing vector
fields.

Finally, let us analyse some thermodynamic properties of the black hole solu-
tion (23). In four dimensions, its is simple matter to interpret a magnetic charge and
its associated potential, due to the electric/magnetic duality. Nevertheless, in higher
dimensions these two phenomena have different features, and the physical interpre-
tation of the thermodynamic variable conjugated to a magnetic charge is trickier.
Hence, for simplicity, in what follows we will consider that the magnetic charge is
zero, q2 = 0. Being rh the radius of the horizon, namely, the value of the larger root
of f (r), the entropy of the horizon is just one quarter of its area:

S = 1

4

n/2∏
j=2

4 π (rh)
2 .

In its turn, the temperature is given by T = κ/(2π), where κ is the surface acceleration
at the horizon, given by the expression (10) with the Killing vector being ξ = ∂t̃ .
Since the coordinate r is not suitable at the horizon, we must use another coordinate
system in order to do the calculation of the temperature properly. For instance, using
Eddington-Finkelstein coordinates we easily find
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T = 1

2
f ′(rh).

In the presence of electric charges, the electromagnetic field obeys d F = 16π J ,
where J is the 1-form representing the electromagnetic current. Then, if � is a space-
like slice of the spacetime, the electric charge is given by:

Q =
∫

�

J = 1

16π

∫
∂�

F

= (4π)
n−2

2

16π

√
2(n − 2)(n − 3) q1.

Denoting the 1-form potential of the electromagnetic field by A, the conjugated ther-
modynamic variable of the electric charge is the electric potential:

� = ξa Aa |r=rh − ξa Aa |r=∞ =
√

2(n − 2)

n − 3

q1

(rh)n−3 .

Finally, the Komar mass of the spacetime is given by:

M = n − 2

8π (n − 3)

∫
dSab ∇a ξb = n − 2

8π
(4π)

n−2
2 μ,

where a divergent piece arising from the cosmological constant has been subtracted,
in accordance with the usual procedure [36]. Using these expressions, we can check
that the first law of thermodynamics holds, namely

dM = T dS + � dQ.

Concerning the Smarr formula, one would expect that a relation of the type M =
α1T S + α2�Q would be valid, for some constants α1 and α2. Nevertheless, this is
no true. The reason is that the cosmological constant � should also be considered a
thermodynamical variable, which is identified as the analogous of pressure [37,38].
Indeed, the pressure is generally defined by

P = − �

8π
.

In this formalism, the mass is identified with the enthalpy, rather than the energy, so
that the variable thermodynamically conjugated to P , the “volume”, is defined by

V =
(

∂M

∂P

)
S,Q

= n − 2

2(n − 1)
(4π)

n−2
2 (rh)

n−1. (26)
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In the latter derivation, its has been used the relation f (rh) = 0 to write M in terms
of S, Q and P . With these definitions, one can check that the broader first law

dM = T dS + � dQ + V dP

holds, as well as the Smarr formula

M = n − 2

n − 3
S T + � Q − 2

n − 3
P V,

which is in perfect accordance with the general results of Ref. [38]. As a final remark
on the thermodynamical aspects of the solution (23), note that the thermodynamical
volume (26) is generally different from the geometric volume of the space inside the
horizon, which is

VGeom =
∫ rh

0
dr

n/2∏
j=2

r2 d�2
j = 2

n − 2
V .

Thus, the coincidence between the thermodynamical volume and the geometric volume
occurs just in four dimensions, whereas in higher dimensions VGeom is smaller than
V . The discrepancy between these volumes should not raise any concern at all. For
instance, it is known that for rotating black holes this difference also occurs [37]. The
nice thing of the solution presented here is that it is a static black hole in which the
geometric volume and the thermodynamical volume do not agree, differently from the
Schwarzschild–Tangherlini spacetime.

In order to obtain solution (23), we have assumed that the constants b j defined by
Eq. (22) are all equal. Nevertheless, it is worth pointing out that there are also solutions
for the general case in which the constants are distinct. As an example, it will be shown
a solution in six dimensions, n = 6. Assuming that a2 = a3 = a, where a is non-zero,
it follows that we can always redefine the origin of the coordinate r in such a way that
b3 = −b2 = b, so that

R2(r) = a r − b and R3(r) = a r + b. (27)

In such a case, one can check that a solution is provided by the ansatz (18) along
with the electromagnetic field (20), where the functions F1, Fj and f are fixed by the
integration process. Indeed, imposing Maxwell’s equation (1) we find that

F1(r) =
√

8

3

q1

(b2 − a2 r2)2 , (28)

where q1 is an integration constant that represents the electric charge. Then, imposing
relations E t

t + Eθ2
θ2

= 0, E t
t + Eθ3

θ3
= 0 and Eθ2

θ2
+ Eθ3

θ3
= 0, which are imme-

diate consequences of Einstein’s equation, we end up with the following relations
respectively
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F2(r) = b − ar

b + ar

[
− 8�

(
b2 − a2r2

)2 + 6a2r2 + 4abr + 6b2

− 2a2
(

9a2r2 + 2abr − 3b2
)
f

+ 2a(b2 − a2r2)(5ar + b) f ′ −
(
b2 − a2r2

)2
f ′′
]1/2

,

F3(r) = b + ar

b − ar

[
− 8�

(
b2 − a2r2

)2 + 6a2r2 − 4abr + 6b2

+ 2a2
(
−9a2r2 + 2abr + 3b2

)
f

+ 2a(b2 − a2r2)(5ar − b) f ′ −
(
b2 − a2r2

)2
f ′′
]1/2

,

f (r) = 1

15
(
b2 − a2r2

)
{
C1 − 1

2
C2 log

(
ar + b

b − ar

)

+ 4b2

a2

(
4b2� − 5

)
log
(
b2 − a2r2

)
+ 5q2

1

4a2b4 log2
(
ar + b

b − ar

)

− 1

a2b4
(
b2 − a2r2

)
[

14a2b8�r2 + a2b6r2
(

5 − 17a2�r2
)

− 5b2q2
1 + a4b4r4

(
3a2�r2 − 5

) ]}
(29)

with C1 and C2 being integration constants. The remaining components of Einstein’s
equation are immediately satisfied once Eqs. (28) and (29) are assumed to hold.
Computing the Ricci scalar and the Kretschmann scalar we see that they diverge
at r = ±b/a, indicating that this spacetime has two singularities. Besides the latter
solution, it has been checked that solutions also exist in six and eight dimensions for
the general case in which the constants a j and b j are different from each other, con-
trasting with the assumption made in Eq. (27). Nevertheless, the expressions for the
functions Fj and f turn out to be quite messy in such a broad case, so that they will
not be presented here.

4 Generalized Nariai spacetimes in higher order curvature theories

It is widely believed that Einstein’s theory of gravitation is just the low-energy limit
of a more complete (quantum) theory that is valid up to energies of the order of
the Planck scale, as exemplified by String theory [39]. In this scheme, the Einstein–
Hilbert Lagrangian density is supplemented by terms of higher order in the curvature.
Since these modified theories of gravitation have equations of motion that differ from
Einstein’s equation, it turns out that, generally, vacuum solutions of the latter are not
vacuum solutions of the former theories. Nevertheless, there are special metrics called
universal that, apart from a possible rescalement by a constant multiplicative factor,
are vacuum solutions in any gravitational theory arising from an action that is invariant
under diffeomorphisms [40]. For instance, the maximally symmetric spacetimes, and
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the Kerr-Schild metrics that are in the Kundt class are examples of universal solutions
[41]. These universal spacetimes are of great physical interest because they can be used
as consistent vacuum states for the quantum theory of gravity, irrespective of its form.
Given the relevance of these issues, in this section we shall investigate the generalized
charged Nariai solution in a much broader theory of gravity than general relativity,
and we will show that the uncharged generalized (anti-)Nariai solution presented here
is a universal metric.

The Einstein–Hilbert Lagrangian density is just a linear function of the Ricci scalar
R. The simplest way to modify it is to consider that the gravitational Lagrangian
density is a more general function of the Ricci scalar, f (R), where f could be chosen
on phenomenological and experimental grounds. So, the action of the system in such
a case is given by

S =
∫ √−g [ f (R) + Lmatter] ,

where Lmatter is the Lagrangian density of the matter content. Performing the variation
of this action with respect to the metric, we end up with the following field equation

f ′(R)Rab − [∇a ∇b − gab ∇c∇c] f ′(R)

− 1

2
f (R) gab = Tab, (30)

with Tab denoting the energy-momentum tensor of the matter, which is obtained from
the following relation:

Tab = −1√−g

δSmatter

δgab
.

It is worth pointing out that the field equation (30) generally involves derivatives of
metric that are higher than second order. Thus, it is natural to imagine that this feature
would lead to a theory whose initial value problem is not well-posed. However, it can
be proved that f (R) theory is equivalent to Einstein’s gravity coupled non-minimally
with a scalar field [42], so that the Cauchy problem is well established, at least in four
dimensions [43].

Another interesting way to systematically add higher order curvature terms to the
Einstein–Hilbert Lagrangian is provided by the so-called Lovelock gravity [44], whose
gravitational Lagrangian density is given by

LLov. =
n−2

2∑
k=0

αk

2k
δ
c1d1...ckdk
a1b1...akbk

Ra1b1
c1d1

. . .Rakbk
ckdk

,

where αk are constants that should be fixed by phenomenology. In n dimensions, this
sum could continue up to values k ≥ n/2. However, these extra terms would not
contribute to the field equations, since they are purely topological. The great feature

123



160 Page 16 of 20 C. Batista

that defines Lovelock gravity is that the above Lagrangian is the most general one
that provides a field equation that is of second order on the derivatives of the metric
[44]. The term k = 0 in the above sum represents the cosmological constant part of
the Lagrangian, while the term k = 1 gives the Ricci scalar. Thus, the term k = 2
is the first “non-conventional” term and is called the Gauss–Bonnet (GB) Lagrangian
density, whose expression is given by:

LGB =
(
R2 − 4RabRab + RabcdRabcd

)
.

In four dimensions, this term is purely topological and, hence, does not contribute to the
gravitational field equation. Nevertheless, in higher dimensions it changes Einstein’s
field equation. It has recently been proved that Lovelock gravity can be seen as general
relativity coupled with skew-symmetric auxiliary fields [45], but these form fields are
non-dynamical [46].

In order to cover a great amount of gravitational theories, here we shall consider
that the gravitational Lagrangian density is given by a sum of the term f (R) with
the Gauss–Bonnet term. Considering that the gravitational field is interacting with an
electromagnetic field through a minimal coupling, we end up with the following final
action

S =
∫ √−g

[
f (R) + αLGB − 1

4
FcdFcd

]
, (31)

where f is an arbitrary function and α is some arbitrary constant. The field equations
in such a case are given by ∇aFab = 0 along with:

f ′(R)Rab − [∇a ∇b − gab ∇c∇c] f ′(R) − 1

2
f (R) gab + αHab = Tab, (32)

where the tensor Hab is defined by

Hab = 2
(
RRab − 2RacRc

b − 2RacbdRcd + RacdeR cde
b

)
− 1

2
gab LGB,

and the electromagnetic energy-momentum tensor is given by

Tab = 1

2
F c
a Fbc − 1

8
gab FcdFcd .

We shall integrate these field equations starting with the following ansatz for the metric
and for the electromagnetic field respectively:

ds2 = R2
1

[
−Sε1(x)

2 dt2 + dx2
]

+
n/2∑
j=2

R2
j d�̃2

ε j
,

F = q1R
2
1 Sε1(x) dt ∧ dx +

n/2∑
j=2

q j R
2
j Sε j (θ j ) dφ j ∧ dθ j ,
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where R1 and R j are constants, the functions Sε have been defined in Eq. (11) and
the line elements d�̃2

ε are the ones presented in Eq. (12). Plugging such fields into
the equation of motion for the electromagnetic field, ∇aFab = 0, and into the field
equation for the gravitational field, Eq. (32), lead us to the conclusion that these fields
are a solution to such equations of motion provided that the electric charge q1 and the
magnetic charges q j are respectively given by

q1 =
√√√√− 4

n − 4
f (2/R̃2

0) +
[

4

(n − 4)R̃2
0

− 2ε1

R2
1

]
f ′(2/R̃2

0) +
(

1

R̃2
0

− ε1

R2
1

)
8 α ε1

R2
1

,

q j =
√√√√ 4

n − 4
f (2/R̃2

0) −
[

4

(n − 4)R̃2
0

− 2ε j

R2
j

]
f ′(2/R̃2

0) −
(

1

R̃2
0

− ε j

R2
j

)
8 α ε j

R2
j

,

where R̃0 was defined in Eq. (16). In particular, note that these expressions reduce to
the ones presented in Eqs. (14) and (15) when α vanishes and f (R) = R− (n− 2)�.
At this point, it is pertinent to mention that the entropy of horizons in theories of
gravity with Lagrangian densities possessing higher order curvature terms is not just
one quarter of the area [47,48], so that Eq. (9) is not valid in the context of this section.
Indeed, the total entropy will be the sum of a term arising from the Gauss–Bonnet part
of the Lagrangian, which is essentially the integral of the Ricci scalar along the horizon
[47], plus a term arising from the f (R) part of the Lagrangian, which is essentially
the integral of f ′(R) along the Horizon [49]. Since the expression for the entropy is
not particularly illuminating, we will omit it here.

In the particular case of vanishing electromagnetic field, in which q1 = 0 and
q j = 0, the gravitational field equation imposes that the radii R1 and R j must be all
equal to each other as well as the parameters ε1 and ε j must all coincide. In such a
case, the only free parameters are R1 and ε1, and the metric is given by

ds2 = R2
1

⎡
⎣− Sε1(x)

2 dt2 + dx2 +
n/2∑
j=2

(
dθ2

j + Sε1(θ j )
2dφ2

j

)⎤⎦ (33)

Irrespective of the parameters R1 and ε1, it turns out that the above metric is such
that the left hand side of the field equation (32) is equal to the metric times a constant
multiplicative factor. This means that, given some R1 and ε1, we can always choose
the value of the cosmological constant in such a way that the field equation is satisfied.
Actually, the same holds for any gravitational theory, not only for the ones covered by
the action (31). Indeed, since the spacetime (33) is the direct product of n/2 metrics
of two-dimensional maximally symmetric spaces possessing the same Ricci scalar, it
is a universal spacetime, as recently proved in Ref. [50]. The proof goes as follows.
The Riemann tensor of this spacetime is the “sum” of the Riemann tensors associated
to each these 2-spaces. More precisely, the Riemann tensor is given by:
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Rabcd = R1 abcd +
n/2∑
j=2

R j abcd ,

where
R ab

1 cd = −4 ε1R
−2
1 e [a

1 ẽ b]
1 e1 [c ẽ1 d],

R ab
j cd = 4 ε1R

−2
1 e [a

j ẽ b]
j e j [c ẽ j d],

where the Lorentz frame (17) has been used. Thus, any symmetric tensor of rank
two constructed from contractions of the curvature tensor is a sum of the analog
contractions on the Riemann tensors of the 2-spaces. For example,

RacdeR cde
b = R1 acdeR cde

1 b +
n/2∑
j=2

R j acdeR cde
j b .

But, if a space is maximally symmetric, any symmetric tensor of rank two built from
contractions of its Riemann tensor must be proportional to its metric. Thus, a rank
two symmetric tensor constructed from contractions of the curvature of the whole
spacetime (33) is a linear combination of the metrics of the 2-spaces. But, since these
2-spaces all have the same Ricci scalar, the coefficients in front of each of the two-
dimensional metrics are coincident, so that this linear combination is proportional to
the metric of the whole spacetime (33). This proves that the uncharged generalized
(anti-)Nariai solution is a universal spacetime [40,50].

5 Conclusions and perspectives

In this article we have obtained higher-dimensional generalizations of the Nariai,
anti-Nariai, Bertotti–Robinson and Plabański–Hacyan spacetimes that are made from
the direct product of several 2-spaces of constant curvature. In n dimensions, these
solutions admit n/2 electromagnetic charges, one being electric and the rest being
magnetic. These charges generate an uniform electromagnetic field throughout the
spacetime. Since in four dimensions the Nariai solution can be obtained from the
Schwarzschild-de Sitter spacetime in the limit that the black hole horizon and the
cosmological horizon have the same temperature, we have searched for higher-
dimensional black holes whose limits of thermodynamical equilibrium converge to
the generalized Nariai solutions presented here. We have also seen that similar con-
figurations of metric and electromagnetic fields provide solutions for more general
theories of gravity, the only difference being the expressions for the electromagnetic
charges.

One interesting feature of the generalized Nariai solutions and their associated
black holes presented here is that they possess magnetic charge, while the usual
higher-dimensional generalization of the Nariai metric [21,22] and the Schwarzschild–
Tangherlini black hole [32] are not magnetically charged. Therefore, it would be
interesting to study the physics of the solutions obtained here. Particularly, one can
seek for a rotating version of the black hole solution given by Eqs. (23), (24). Another
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nice feature of the solutions (13) is that the radii R j can be arbitrarily chosen. In partic-
ular, one can set R3, R4, . . . Rn−2

2
much smaller than R2 and study gravitational waves

and other physical phenomena in such scenario. The point being that in the latter case
only four dimensions of the spacetime are accessible through low energy excitations,
which is of relevance for theories and models that assume that our universe have tiny
curled extra dimensions.
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