
Gen Relativ Gravit (2016) 48:162
DOI 10.1007/s10714-016-2152-0

RESEARCH ARTICLE

Static, spherically symmetric solutions with a scalar
field in Rastall gravity

K. A. Bronnikov1,3,4 · J. C. Fabris2,4 ·
O. F. Piattella2 · E. C. Santos2

Received: 29 June 2016 / Accepted: 22 October 2016 / Published online: 11 November 2016
© Springer Science+Business Media New York 2016

Abstract Rastall’s theory belongs to the class of non-conservative theories of gravity.
In vacuum, the only non-trivial static, spherically symmetric solution is the Schwarz-
schild one, except for a very special case. When a canonical scalar field is coupled
to the gravity sector in this theory, new exact solutions appear for some values of the
Rastall parameter a. Some of these solutions describe the same space–time geometry
as the recently found solutions in the k-essence theory with a power function for the
kinetic term of the scalar field. There is a large class of solutions (in particular, those
describing wormholes and regular black holes) whose geometry coincides with that of
solutions of GR coupled to scalar fields with nontrivial self-interaction potentials; the
form of these potentials, however, depends on the Rastall parameter a. We also note
that all solutions of GR with a zero trace of the energy-momentum tensor, including
black-hole and wormhole ones, may be re-interpreted as solutions of Rastall’s theory.

B J. C. Fabris
fabris@pq.cnpq.br

K. A. Bronnikov
kb20@yandex.ru

O. F. Piattella
oliver.piattella@pq.cnpq.br

E. C. Santos
edison_cesar@hotmail.com

1 VNIIMS, Ozyornaya ul. 46, Moscow, Russia 119361

2 Departamento de Física, UFES, Avenida Fernando Ferrari, 514, CEP, Vitória, ES 29075-910,
Brazil

3 Institute of Gravitation and Cosmology, PFUR, ul. Miklukho-Maklaya 6, Moscow, Russia
117198

4 National Research Nuclear University - MEPhI, Kashirskoe sh. 31, Moscow, Russia 115409

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-016-2152-0&domain=pdf


162 Page 2 of 15 K. A. Bronnikov et al.

Keywords Gravitation · Black Holes · Wormholes · Exact solutions ·
Alternative theories of gravity

1 Introduction

The coupling of a scalar field to the gravitational action in a geometric context has
been intensively studied since the emergence of the General Relativity (GR) theory.
A relativistic scalar theory of gravity was proposed just before the formulation of
GR [1]. Much later, the Jordan–Brans–Dicke theory [2,3] was proposed in order to
incorporate the idea of a variable gravitational coupling [4] as an extension of GR,
using a scalar field non-minimally coupled to the gravitational sector. Recently, the
Horndeski class of theories [5], which is the most general combination of a scalar
field and its derivative leading to second-order differential equations, called a lot of
attention, together with the Galileon theories which are, in a sense, a subclass of
the former. The very fashionable f (R) theory, with a nonlinear generalization of the
Einstein–Hilbert Lagrangian [6], can be recast in the form of a scalar-tensor theory.
This very brief list of the use of scalar fields in the gravitational context does not
exhaust the huge literature on this subject.

Another possibility that has been exploited since some years is a generalization of
the kinetic expression for the scalar field which is minimally coupled to the Einstein-
Hilbert Lagrangian, the so-called k-essence theories [7]. Originally, this proposal was
applied as an alternative to the usual inflationary models based on a self-interacting
scalar field [7–9]. In a recent paper, vacuum static spherically symmetric solutions
have been obtained for the k-essence theories [10]. Some new configurations were
obtained, including structures where an event horizon is present, but the interpretation
as a black hole still seems impossible, mainly due to the impossibility to define a distant
region from the horizon. A no-go theorem has been proved, showing that solutions
with a regular horizon (including the behavior of the energy-momentum tensor) can
be only of the cold black hole type [11,12].

On the other hand, one more possible generalization of GR is to relax the constraint
given by the conservation laws expressed by the zero divergence of the energy-
momentum tensor. One proposal in this sense is Rastall’s theory [13]. In this theory,
the divergence of the energy-momentum tensor is linked with the gradient of the Ricci
scalar, and in this way Rastall’s theory may be seen as a phenomenological implemen-
tation of some quantum effects in a curved background. At the cosmological level,
Rastall’s theory gives very interesting results. For example, the evolution of small
Dark Matter fluctuations is identical to that in the �CDM model, but in Rastall’s
theory Dark Energy is able to cluster. This potentially provides an evolution of Dark
Matter inhomogeneities in a nonlinear regime which is different from the one in the
standard CDM model [14]. The whole success of the �CDM model is reproduced at
the background and linear perturbation levels, while some new effects are expected
at the nonlinear level where the �CDM model faces some difficulties [15–20]. More-
over, the only vacuum static spherically symmetric solution is the Schwarzschild one,
except for a very particular value of the arbitrary constant characterizing this theory
[21].
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In Ref. [22], the use of the canonical energy-momentum tensor of a scalar field in
Rastall’s theory has been considered in a cosmological context and one interesting
result has been obtained: at a perturbative level, such a structure is consistent only in
presence of matter. One interesting aspect of this analysis is that the resulting coupling
of the scalar field with gravity leads to equations very similar to those in some classes
of Galileon theories.

In the present paper, we consider the problem of finding static, spherically symmet-
ric spaces in Rastall’s theory in the presence of a free or self-interacting scalar field.
We will verify that some exact solutions can be obtained, and some of them reproduce
completely, in the geometric sense, the solutions recently found in the k-essence the-
ory. These geometries, including the emerging global causal structure, were described
in detail in [10]. However, the behavior of the scalar field is different in the two dif-
ferent theories, therefore, a no-go theorem proved for the k-essence theory acquires
new features in the Rastall-scalar field system. Other properties of the scalar field may
also have consequences for the stability of these static, spherically symmetric con-
figurations. Furthermore, considering a self-interacting scalar field, it is shown that
the regular black hole structures, found in Ref. [23] for a phantom field, occur in this
Rastall-scalar field system as well, the only difference being in the form of the scalar
field potential. Again, such a distinction from the solutions obtained in Ref. [23] may
affect their stability. In the GR context, a corresponding problem was studied in [24],
and a family of linearly stable solutions was revealed.

This paper is organized as follows. In the next section we present the Rastall-scalar
field equations and write down the equations for static, spherically symmetric config-
urations. In Sect. 3, some general features of the system with and without a potential
are determined. In Sect. 4, special exact solutions are obtained for a massless scalar
field. In Sect. 5, regular solutions with a nonzero scalar field potential are obtained by
using a particular form of the radial function. In Sect. 6 we present our conclusions.

2 Field equations

Rastall’s theory of gravity is characterized by the following equations [13]:

Rμν − λ

2
gμν R = κTμν, (1)

T μν ;μ = 1 − λ

2κ
R,ν = 1 − λ

2(1 − 2λ)
T ,ν , (2)

where λ is a free parameter. When λ = 1, GR is recovered1. From now on, we fix
κ = 1. These equations can be rewritten as [25,26],

1 The connection between κ and the Newtonian gravitational coupling is given by [13], κ =
(2λ − 1)

(3λ − 2)
8πG = 8πG

a
. The special cases λ = 1/2 and λ = 2/3, corresponding to infinite or zero

values of a, respectively, will be discussed below.
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Rμν − 1

2
gμν R = Tμν − a − 1

2
gμνT, (3)

T μν ;μ = a − 1

2(2a − 3)
R,ν = a − 1

2
T ,ν , a := 3λ − 2

2λ − 1
. (4)

In this parametrization, GR is recovered if a = 1. It must be stressed that a Lagrangian
formulation for the above equations is still lacking. In Ref. [27], an action which is
not an invariant scalar was proposed. A possibility is that the equations of motion
of Rastall’s theory could be derived from a variational principle in a Weyl–Cartan
theory of gravity, i.e., when dropping the metricity condition for the connection and
allowing for the existence of torsion, breaking the usual diffeomorphism invariance,
which is a basis for the conservation laws of GR. However, there is still no clear
Lagrangian formulation for Rastall’s theory. There are works in progress, trying to
obtain a consistent Lagrangian formulation for this class of nonconservative theories
of gravity.

In what follows, we use the canonical energy-momentum tensor of a self-interacting
scalar field:

Tμν = ε

{
φ;μφ;ν − 1

2
gμνφ

;ρφ;ρ
}
+gμνV (φ). (5)

The parameter ε can take the values ±1, indicating an ordinary (+1) or phantom (−1)
scalar field. Using this expression for the energy-momentum tensor, the field equations
read

Rμν − 1

2
gμν R = ε

{
φ;μφ;ν − 2 − a

2
gμνφ

;ρφ;ρ
}

+(3 − 2a)gμνV (φ), (6)

�φ + (a − 1)
φ;ρφ;σ φ;ρ;σ

φ;αφ;α
= −ε(3 − 2a)Vφ, (7)

where the subscript φ denotes d/dφ and the box is the usual D’Alambertian operator.
Since we are interested in static, spherically symmetric solutions, we consider the

general metric representing this symmetry,

ds2 = e2γ (r)dt2 − e2α(r)dr2 − e2β(r)d�2, (8)

where α, β and γ are generic functions of the radial coordinate.
With this metric, the field equations reduce to the following set of non-linear dif-

ferential equations:

− 2β ′′ − 3β ′2 + 2α′β ′ + e2(α−β) = ε
2−a

2
φ′2 + (3−2a)V e2α, (9)

2γ ′β ′ + β ′2 − e2(α−β) = ε
a

2
φ′2 − (3 − 2a)e2αV, (10)

β ′′ + γ ′′ + β ′(γ ′ + β ′ − α′) + γ ′(γ ′ − α′) = −ε
2 − a

2
φ′2
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−(3 − 2a)e2αV, (11)

aφ′′ + (γ ′ + 2β ′ − aα′)φ′ = (3 − 2a)e2αVφ. (12)

Let us remark that there is still a freedom in choosing the radial coordinate u, which
can be done by fixing one condition on the metric functions.

The set of equations (9)–(12) depends on the specification of the potential V (φ).
It is a very complex set of equations, which can be solved exactly only for some
particular choices of V (φ); moreover, even with V (φ) = const it can be integrated
only for some values of the parameter a. In what follows we will first reveal some
general features of the possible solutions of the system, and then we will obtain some
exact solutions.

3 Some general features

3.1 Global structure

In Ref. [10] it has been shown that in GR with a k-essence scalar field without a
potential, a horizon with finite area implies a singular behavior of the scalar field. If
we require regularity of the k-essence scalar field on the horizon, only cold black holes
with an infinite area of the horizon [11,12] are possible. As we shall see, in the present
case some general observations can also be made, and, in particular, horizons with a
finite area can occur in a certain range of the Rastall parameter a.

To consider horizons, it is helpful to use the so-called quasiglobal coordinate charac-
terized by the gauge condition α+γ = 0 [28]. In this case, denoting the coordinate by
x (to be distinguished from the general case where it is denoted by u) and introducing
the notations

e2γ = A(x), eβ = r(x), (13)

the metric takes the form

ds2 = A(x)dt2 − dx2/A(x) − r(x)2d�2, (14)

and the field equations are rewritten as follows:

2
r ′′

r
+ A′

A

r ′

r
+

(
r ′

r

)2

− 1

r2 A
= −ε

2 − a

2
φ′2 − (3 − 2a)

V

A
, (15)

A′

A

r ′

r
+

(
r ′

r

)2

− 1

r2 A
= ε

a

2
φ′2 − (3 − 2a)

V

A
, (16)

r ′′

r
+ A′

A

r ′

r
+ 1

2

A′′

A
= −ε

2 − a

2
φ′2 − (3 − 2a)

V

A
, (17)

aφ′′+
{

(1 + a)

2

A′

A
+ 2

r ′

r

}
φ′ = (3 − 2a)

Vφ

A
. (18)
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where the prime denotes d/dx . It is important that the differences between Eqs. (15)
and (17) and between (15) and (16) depend neither on the parameter a nor on the
potential V (φ):

2
r ′′

r
= −εφ′2, (19)

A′′r2 − A(r2)′′ = −2 (20)

It was Eq. (20) that has allowed for proving the so-called Global Structure Theorem
[28,29] for scalar field configurations in GR. The theorem restricts possible black hole
structures irrespective of the form of the potential. It claims that if there is a static
region of space–time (such that A(x) > 0), then (i) only simple horizons are possible,
and (ii) the number of horizon cannot be larger than 2.

Let us recall here that a Killing horizon, which may be an event horizon of a black
hole, corresponds in the metric (8) to a regular zero of the function A(x), and it is
simple if this zero is simple (that is, A′(x) �= 0 where A(x) = 0).

We thus conclude that this theorem holds in the system under consideration for any
value of the Rastall parameter a and any choice of the potential V (φ).

3.2 Possible horizons with a massless field

Our second observation concerns the case where V = const, which, if nonzero, can
be interpreted as a cosmological constant. .

In this case, the scalar equation (18) has the first integral

φ′ = C A−(1+a)/(2a) r−2/a, C = const. (21)

A possible horizon is characterized by A = 0. If it occurs at a finite radius, then
φ′ → ∞ if a > 0 or a < −1. As to the energy-momentum tensor, its physical com-
ponents (the scalar field energy density and pressure) depend on Aφ′2. This quantity
is proportional to A−1/a and blows up at vanishing A if a > 0. Thus the range of a
where both φ and T ν

μ are finite at a possible horizon is only −1 < a < 0.
For a outside this interval, we obtain an analog of the no-go theorem found in

Ref. [10] for systems with k-essence: a horizon with finite area can occurs only with
singular values of φ and/or T ν

μ . However, in the range 0 > a > −1, it is possible to
have horizons with finite radius, at which T ν

μ → 0.
Our reasoning did not work for the special cases a = 0 and a = −1 which will be

considered separately below. As to the case a = 1 (GR), the corresponding solution
for a massless scalar field (see, e.g., [30,31]) does not contain a horizon.

Now let us turn to Eq. (19): it shows that r ′′ → ∞ if either a > 0 or a < −1, and
it turns to zero for −1 < a < 0. In the first case, this points at a possible cold black
hole configuration if ε = −1 and at a singular center if ε = +1. In the second case,
the vanishing of r ′′ on the horizon seems to be consistent with a regular horizon of
finite radius.
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There is, however, one more restriction: the metric, to be extendible beyond the
horizon, should be analytic in the quasiglobal coordinate x [28], therefore, if r is
finite, we should have r ′′ ∼ xn , n ∈ N, or since (according to the Global Structure
theorem) A ∼ x , we should have r ′′ ∼ An . According to (19) and (21), this happens
if and only if a = −1/(n + 1), which belongs to the admissible range. Thus a regular
horizon of finite area can only occur at discrete values of a belonging to the sequence
{an} = {−1/(n + 1)}.

3.3 Asymptotic behavior

Another problem is connected with the asymptotic behavior of possible solutions for
a scalar field with zero or constant potential, for which we have the relations (19) and
(21), at large radii. Indeed, in an asymptotically flat space–time with the metric (14)
we can assume the following analytic behavior of the metric functions as x → ∞:

A → 1, r(x) = x + r0 + rk x−k + o(x−k), (22)

where r0, rk are constants and k is some positive integer. This means that the l.h.s. of
Eq. (19) behaves at large x in the following way:

r ′′

r
= k(k + 1)rk

xk+3 (1 + o(1)).

On the other hand, from (21) it follows for the r.h.s. of (19) that

φ′2 = C2x−4/a(1 + o(1)).

Comparing the exponents of x in these expressions, we obtain for the input constant
a of Rastall’s theory

a = 4

k + 3
, k ∈ N. (23)

Only with such values of a a scalar-vacuum solution with a massless scalar field can
have an analytical flat asymptotic behavior. Thus, for k = 1, 2, 3, 4, ... one should
have a = 1, 4/5, 2/3, 4/7, ..., respectively; for all other a at a possible flat asymptotic
the function r(x) will not behave analytically.

We can conclude that if there is a regular horizon in a particular solution, this
solution cannot have an analytic flat asymptotic behavior.

Even more than that: as we saw, regular horizons require a < 0, but in this case, if
A → const > 0 at large x , then φ′ → ∞, which is incompatible with a flat asymptotic.
Thus we have a no-go theorem: in Rastall’s theory with a massless scalar field there
cannot be a static, spherically symmetric, asymptotically flat black hole.

Let us, however, recall that some special cases (a = 0,−1) were so far not included
into consideration.
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4 Special solutions

4.1 Special solution I: a = −1

To find the first special solution, we fix V = 0 and use the quasiglobal coordinate x , so
that again, according to (13), e2γ = e−2α = A(x), and e2β = r2(x). In this case, the
equations of motion have the form (15)–(18) with V = 0, and their two consequences
(19) and (20) hold, as before.

Also, as before, we have the first integral of the scalar equation (21). If we choose
a = −1, the A dependence drops out, and this relation reduces to

φ′ = Cr2, C = const. (24)

So, till the end of this subsection, we focus on the case a = −1.
Now, Eq. (19) leads to the relation

r ′′ = −ε

2
C2r5. (25)

Its first integral is

r ′2 = −ε

6
C2r6 + K1, (26)

where K1 is an integration constant. This equation can be further integrated, but with
K1 �= 0 it leads to rather complex expressions with elliptic integrals, which we will
not consider here. Assuming K1 = 0, we easily obtain

r =
(

3

2C2

)1/4 1√
x
. (27)

Hence,

φ′ =
√

3

2

1

x
⇒ φ =

√
3

2
ln x + φ0. φ0 = const. (28)

Now, using Eq. (16) and the solutions already found for r and φ, we have the
following equation:

A′ + A

x
= −

√
8C2

3
x2. (29)

Its solution is

A = K

x
− C√

6
x3, (30)
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where K is one more integration constant. Thus the metric can be written as

ds2 = A(x)dt2 − A(x)−1dx2 −
√

3

2C2

1

x
d�2, (31)

with A(x) given by (30).
The geometry described by (31) is the same as the one found in Ref. [10] and

presented there in some detail. The spatial infinities are singular, being separated by a
horizon.

There is, however, a difference with respect to Ref. [10]: the behavior of the scalar
field, which in the present case is defined in the whole range −∞ < φ < +∞,
passing zero, while in the k-essence case it is always negative, never reaching zero
and diverging at the extremes of the range of x . These different features may affect
the stability of the solution.

This first special solution described previously has been obtained for V = 0 and
a = −1. It is on the borderline of the two possibilities sketched in Subsection 3.2. If
we try to describe small deviations from this borderline, then, writing a = −1 + ε,
performing an expansion in terms of ε > 0 and considering the leading term, we can
verify that φ′ → const with a finite value. Moreover, the horizon has a finite area.
Hence, in opposition to the result of Ref. [10], the present special solution corresponds
to a regular horizon (and even with a finite scalar field) with finite area.

4.2 Special solution II: a = 0

This case implies λ = 2/3. In principle, it corresponds to an anomalous relation
between κ and the Newtonian gravitational coupling G (κ must be infinite for obtaining
a finite value of G). However, the field equations are well behaved, but the Newtonian
limit must be studied separately for this particular value of λ, since in the Newtonian
approximation we obtain a Laplace equation, i.e., no matter source. This case has
some similarities with the other critical point of a, corresponding to λ = 1/2, with
which everything is well-behaved except for the fact that the field equations only admit
coupling to conformal matter with T = 0, see [21].

Let us now consider the coordinate condition α = γ + 2β, called the harmonic
coordinate condition [31]. To distinguish it from the previous case, we will denote the
radial coordinate in this gauge by u.

Fixing a = 0 (till the end of this subsection) and considering a constant potential
V = �/3, Eq.(12) implies, under this coordinate condition,

φ′α′ = 0. (32)

Hence, there are two options: φ′ = 0, which leads to the Schwarzschild solution of
GR; or α′ = 0. On the other hand, this condition implies γ + 2β = 0. The equations
of motion reduce to

− 2β ′′ − 3β ′2 + e−2β = εφ′2 + �, (33)
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3β ′2 + e−2β = �, (34)

−β ′′ + 3β ′2 = −εφ′2 − �. (35)

Equation (34) (from which it follows � > 0) is solved giving

eβ = cosh(bu)√
3b

, b := √
�/3. (36)

Hence, the metric takes the following form:

ds2 = 9b4

cosh4(bu)
dt2 − du2 − cosh2(bu)

3b2 d�2. (37)

With the expression found for β and Eq. (33) we find

εφ′2 = −2b2
{

3 − 2

cosh2(bu)

}
. (38)

This solution exists only for ε = −1, that is, a phantom scalar field, for which we
have the expression

φ′ = ±b
√

2

√
3 − 2

cosh2(bu)
, (39)

meaning that the scalar field is an always increasing or decreasing function of the
spatial coordinate u.

The geometry of this solution exactly coincides with that of the second special
solution found in Ref. [10] for a k-essence field, described there in some detail (at
u = ±∞ there are two horizons of infinite area connected by a wormhole whose
throat is located on the sphere u = 0), but here we have again a different behavior of
the scalar field.

4.3 Special solution III: a = 3/2

This specific value of a implies λ → ∞ but again, with such a condition, the whole
set of equations is well-behaved.

If we put a = 3/2, the field equations (1) lead to R = 0. (It should be stressed that
in this case the equations do not depend on the potential V (φ), which can be chosen
arbitrarily at the outset). Together with the condition R0

0 = R2
2, also following from

the field equations and the properties of the energy-momentum tensor, it gives

3R0
0 + R1

1 = 0 ⇒ β ′′ + 2γ ′′ + (β ′ + 2γ ′)(β ′ + γ ′ − α′) = 0, (40)

where we have used the general form of the metric (8) with an arbitrary radial coordi-
nate u (not to be confused with the coordinate u of the previous subsection), and the
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prime again stands for d/du. Now, it is helpful to choose again the quasiglobal gauge
α + γ = 0: we thus return to the notations u = x , eβ = r(x), e2γ = A(x), and the
metric takes the form (14). Then Eq. (40) takes an easily integrable form:

β ′′ + 2γ ′′ + (β ′ + 2γ ′)2 = 0 ⇒ eβ+2γ ≡ Ar = px + q, (41)

where p and q are integration constants. On the other hand, the scalar field equation,
as before, leads to the relation (21), which for a = 3/2 reads

φ′ = C A−5/6r−4/3. (42)

Now, with (41) we have two qualitatively different situations, to be considered
separately.
1. p �= 0. In this case, without loss of generality, we can put q = 0 by choosing the
zero point of x and p = 1 by choosing the scale of the time coordinate t . As a result,
we have

A = x/r(x), φ′ = Cx−5/6r−1/2. (43)

It remains to find the function r(x), which can be done using the first-order equation
(16) with all necessary substitutions. We obtain

r ′ − 1 = 3εC2

4
x−2/3, (44)

whence

r(x) = x + B x1/3 + r0, B := 9

4
εC2, (45)

where r0 is one more integration constant. This completes the solution.
It is clear that at x = 0 the analyticity of this solution is violated, so it cannot be

extended beyond this value, and it makes sense to restrict ourselves to x > 0. In any
case, as follows from (43) and (45), as x → ∞ we have a spatial infinity where r ≈ x
and A → 1, but it is not a regular flat infinity because, instead of a Schwarzschild
asymptotic, A(x) behaves at large x as A(x) ≈ 1 − Bx−2/3.

The lower bound of the x range depends on the parameters B and r0. If the function
(45) has a zero at some x1 > 0, this zero corresponds to a repulsive central singularity
where r → 0 and A → ∞. This is possible if B < 0, that is, if ε = −1.

If r > 0 at all x ≥ 0, which is possible with sufficiently large r0 even if B < 0,
then the solution is defined in the whole range x ∈ R+, and at x = 0 we observe what
seems to be a horizon, but there is no extension beyond it due to the term with x1/3

that violates analyticity.
If B > 0 and r0 = 0, we have r = 0 at x = 0 and r > 0 at x > 0, the solution

is again defined for x ∈ R+, but now at x = 0 we have an attractive singular center,
r = 0 and A = 0. One can also find cases where the solution is defined between two
singularities, one horizon-like at x = 0 and another at some x > 0 having the nature
of a repulsive center.
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2. p = 0, in which case we have, instead of (43),

A(x) = q/r(x), φ′ = Cq−5/6r−1/2, q > 0. (46)

In this case, an attempt to find r(x) from the first-order equation (16) only leads to a
relation between the constants

4q2/3 = 3C2 (47)

and to the restriction ε = −1, that is, such a solution exists only for a phantom
scalar field; meanwhile, r(x) remains arbitrary. However, this function can be found
(equivalently) from Eq. (19) or (20) as follows:

r(x) = x2

3q
− K x + r0, (48)

with integration constants K and r0. The solution is defined in a range of x where
r > 0, depending on these parameter values. Where r = 0, we have a repulsive
singular center, while in any of the limits x → ±∞ we have a spatial infinity where
A → 0 (that is, a test mass is attracted there), and the spatial geometry resembles that
of a global monopole since there is an incorrect limit of the circumference to radius
ratio (we have Ar ′2 → 4/3 instead of unity at usual flat geometry).

If the parameters satisfy the inequality 3q K 2 < 4r0, then r > 0 in the whole range
x ∈ R, and the solution describes a traversable wormhole that connects two such
infinities.

5 Regular solutions with a potential

In Ref. [23], a self-interacting phantom scalar field in GR was considered, and globally
regular solutions were obtained by using the inverse problem method: a convenient
form for the radius r(x) was chosen as a function of the quasiglobal coordinate x , for
the metric written in the form

ds2 = A(x)dt2 − A(x)−1dx2 − r(x)2d�, (49)

After that, the other metric function, A(x), as well as the scalar field and its potential
were determined from the field equations, which coincide with (15)–(18) under the
condition a = 1.

It is not hard to notice that Eqs. (19) and (20), which are independent of both a and
V , are sufficient for finding the function A(x) and φ(x) provided r(x) is known. And
even more than that, these functions form a solution to the set of equation (15)–(18)
of Rastall’s theory for any value of a except a = 3/2. The only difference from GR
will be in the form of the potential V (φ) which will be now a-dependent.

Let us for convenience repeat here Eqs. (19) and (20):

2
r ′′

r
= −εφ′2, (50)
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A′′r2 − A(r2)′′ = −2 (51)

The radial function r(ρ) was fixed in [23] as

r(x) =
√

x2 + b2, (52)

where b is a constant with the dimension of length. Since with this choice r ′′ > 0, it
follows from (50) that the scalar field is phantom, which provided a variety of solutions
including wormholes with flat or AdS asymptotics as well as regular black holes of
the type that was later named black universes [32]. The latter are asymptotically flat
black holes in which an observer after crossing the horizon gets into an expanding
anisotropic universe with a Kantowski-Sachs type metric, which eventually tends to
isotropy and is asymptotically de Sitter at late times.

This picture is completely reproduced in the model under study in the present work,
with the same expressions for A(x) and φ(x) as in [23]. Thus, from (52) and (50) it
follows

φ = ±√
2 arctan

x

b
+ φ0, φ0 = const, (53)

while for the metric function A(x) we obtain from (51)

A = f0r2 + 1 + x0

b3

{
bx + r2 arctan

x

b

}
, (54)

where f0 and x0 are constants. Thus we have here the same geometric structures as in
[23].

The main difference between that case and ours resides in the expression for the
potential which now reads

V (x) = − 1

(3 − 2a)r4

{
r2(A′x − 1) + A(x2 + ab2)

}
(55)

which reduces to the case of GR when a = 1. This difference, maybe seeming tiny,
may deeply affect the stability of the model since a is in general completely arbitrary
in sign and absolute value. The only exception is a = 3/2, in which case the above
solution does not exist, and the system behaves as described in Subsection 4.3.

Since the energy-momentum tensor with zero trace is added to the Rastall equations
in the same way as to the Einstein equations, it can also be predicted that solutions
with an electromagnetic field [33] which generalize those obtained in [23] and are rich
in various global structures will also hold as solutions of Rastall’s theory but only with
modified scalar field potentials.

6 Conclusions

Rastall’s theory [13] is a nonconservative extension of GR in which the energy-
momentum tensor of matter has a divergence proportional to the gradient of the Ricci
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scalar R. A simple and immediate observation is that all solutions of GR in which
R ≡ 0 are simultaneously solutions of Rastall’s theory with an arbitrary value of its
free parameter a. This concerns not only the Schwarzschild and Reissner-Nordström
solutions and their extensions containing a massless conformally coupled scalar field
[31,34,35]; it is also appropriate to mention a number of static, spherically symmetric
solutions with R ≡ 0 describing black holes (including regular ones) [36] and worm-
holes [37] in quite a different extension of GR, the brane world concept, in which
Einstein-like gravity exists on a 4D subspace (brane) of a higher-dimensional mani-
fold (bulk) [38,39]. Thus all those wormhole and black holes configurations with zero
R satisfy the Rastall equations with the same components of the energy-momentum
tensor. (For a more general study of wormhole properties in Rastall’s theory see the
recent paper [40].)

In this paper we studied the situations of greater interest from the viewpoint of
Rastall’s theory, considering physical systems where the free parameter a plays a
significant role. We have used a canonical expression for the energy-momentum tensor
of a scalar field, in which case Rastall’s theory takes a form similar to some class of
Galileon theories [5]. Exact solutions with a massless scalar field were found by fixing
the free parameter a (at a = 1, GR is recovered) at some particular values. Surprisingly,
some of these exact solutions are, from the geometric point of view, identical to those
found in the context of k-essence theories [10]. Such solutions have very particular
features, some of them being similar to the cold black hole case (e.g., they possess
an infinite horizon area), but having singularities in the asymptotic region instead of
flat space–time. We have also shown that, in the absence of a potential term, it is in
principle possible to have black holes with a finite horizon area and with a finite and
regular scalar field, contrary to what occurs in the k-essence case. In addition to these
cases with similar features to those found in the k-essence context, new structures were
found, somewhat similar to the Schwarzschild solution of GR, but without asymptotic
flatness.

Moreover, it has been shown quite generally that it is possible, when the scalar
field is massless, to have structures with a regular horizon, admitting an analytical
extension across the horizon, for discrete values of a in the interval −1 < a < 0, but
which are not asymptotically flat.

If a self-interaction potential term of the scalar field V (φ) is included, it is pos-
sible to obtain regular solutions, completely equivalent to those existing in GR, the
only difference being in the expression for V (φ) which now depends on the Rastall
parameter a. In particular, this concerns the regular wormhole and black hole (black
universe) solutions found in Ref. [23] for a scalar field of phantom nature. As in the
previous case, this difference may substantially affect the stability properties of the
solutions.

The stability of the structures found here and in the related references is a crucial
subject, and we intend to study it in our future work.
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