
Gen Relativ Gravit (2016) 48:150
DOI 10.1007/s10714-016-2146-y

RESEARCH ARTICLE

Stability of differentially rotating disks in f (T ) theory

Shoulong Li1 · Hao Wei1

Received: 2 March 2016 / Accepted: 6 October 2016 / Published online: 20 October 2016
© Springer Science+Business Media New York 2016

Abstract To explain the accelerated expansion of our universe, many dark energy
models and modified gravity theories have been proposed so far. It is argued in the
literature that they are difficult to be distinguished on the cosmological scales. There-
fore, it is well motivated to consider the relevant astrophysical phenomena on (or
below) the galactic scales. In this work, we study the stability of self-gravitating dif-
ferentially rotating galactic disks in f (T ) theory, and obtain the local stability criteria
in f (T ) theory, which are valid for all f (T ) theories satisfying f (T = 0) = 0 and
fT (T = 0) �= 0, if the adiabatic approximation and the weak field limit are con-
sidered. The information of the function f (T ) is mainly encoded in the parameter
α ≡ 1/ fT (T = 0). We find that the local stability criteria in f (T ) theory are quite
different from the ones in Newtonian gravity, general relativity, and other modified
gravity theories such as f (R) theory. We consider that this might be a possible hint
to distinguish f (T ) theory from general relativity and other modified gravity theories
on (or below) the galactic scales.

Keywords f (T ) theory · Stability of differentially rotating disks · Modified gravity ·
Cosmology · Local stability criterion

B Hao Wei
haowei@bit.edu.cn

Shoulong Li
sllee_phys@bit.edu.cn

1 School of Physics, Beijing Institute of Technology, Beijing 100081, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-016-2146-y&domain=pdf


150 Page 2 of 22 S. Li, H. Wei

1 Introduction

The discovery of accelerated expansion of our universe from the observations of Type
Ia supernovae in 1998 [66,69] has been one of the most amazing achievements in
modern cosmology. The simplest way to explain this fantastic phenomenon is intro-
ducing a cosmological constant [1,3,7,8,27,28,33,43,44,54,59,63–65,68,75,82,92].
However, it is plagued with the fine-tuning and cosmic coincidence problems (see
e.g. [1,3,7,8,27,28,33,43,54,59,63,64,68,75,82]). So, many dynamical dark energy
(DE) models have been proposed, for instance, quintessence [49,98], phantom [20,21]
and so on. On the other hand, modifying general relativity (GR) [31,60,61] on the
cosmological scales has also been extensively considered to explain the accelerated
expansion of our universe without introducing DE. In fact, there exist many modified
gravity theories in the literature, such as f (R) theory [24,26,34,62,78], f (T ) the-
ory [15,40,41,52], massive gravity [35,36,46]. In particular, the well-known f (R)

theory [24,26,34,62,78] is constructed by replacing the Einstein–Hilbert Lagrangian
(namely Ricci scalar R) with an arbitrary function f (R). Similarly, the so-called f (T )

theory [15,40,41,52] is constructed by replacing the ordinary Lagrangian (namely
torsion scalar T ) in the teleparallel equivalent of general relativity (TEGR) with an
arbitrary function f (T ). In fact, there are other modified gravity theories in the litera-
ture, such as scalar-tensor theory, braneworld model, Galileon gravity, Gauss–Bonnet
gravity, etc. We refer to e.g. [4,15,24,26,31,34–36,40,41,46,52,60–62,78] for more
details about modified gravity.

Since we have a flood of models of DE and modified gravity in the literature, some
authors focus on how to differentiate one model from others. For example, in order
to differentiate dynamical DE from cosmological constant, the expansion history of
the universe is considered. Caldwell and Linder proposed a so-called w − w′ analysis
in [22,53], and then it was extended in e.g. [30,77]. Another method is the statefinder
diagnostic proposed by Starobinsky et al. [10,74]. We refer to e.g. [91] and references
therein for some relevant works on w − w′ analysis and statefinder diagnostic. How-
ever, as is well known (see e.g. [76]), one can always build models sharing a same
cosmic expansion history, and hence these models cannot be distinguished by using the
expansion history only. Later, it is realized that if the cosmological models share a same
cosmic expansion history, they might have different growth histories characterized by
the growth function δ̂(ẑ) ≡ δρm/ρm (namely the matter density contrast as a func-
tion of redshift ẑ). Therefore, the cosmological models might be distinguished from
each other by combining the observations of both the expansion and growth histories
(see e.g. [9,16,47,55,83,84,97]). However, this approach has been challenged. For
instance, if non-trivial dark energy clustering (e.g. non-vanishing anisotropic stress)
is allowed, it is found in e.g. [17,50] that DE models still cannot be distinguished
from modified gravity theories even by using the observations of both the expansion
and growth histories. On the other hand, without invoking non-trivial dark energy
clustering, it is found in e.g. [48,94] that the interacting DE models also cannot be
distinguished from modified gravity theories. In fact, the work in [48,94] was fur-
ther generalized in [89]. It is found that the interacting DE models, modified gravity
theories and warm dark matter models are indistinguishable [89]. Therefore, the com-
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plementary probes beyond the ones of cosmic expansion history and growth history
are required to distinguish various cosmological models.

Notice that in all the arguments of [9,16,17,47,48,50,55,83,84,89,94,97], it is
assumed that the matter density contrast δ̂(ẑ) is linear. If this key assumption is invalid,
the hope to distinguish various cosmological models still exists. This draws our atten-
tion to the observations on the smaller scales. For instance, the galactic scales might
be suitable, since the matter density contrast δ̂(ẑ) becomes non-linear on (or below)
these scales. So, it is well motivated to consider the relevant astrophysical phenomena
on (or below) the galactic scales.

In the present work, we are interested to consider the stability of equilibria of galactic
disks. We hope this can bring some possible hints to discriminate various modified
gravity models. The study of stability of stellar equilibria is one of the most important
tasks in galactic dynamics [18], since it is used in many aspects such as the star
formation [67]. For many equilibria of stellar systems, a slight perturbation will cause
them evolve violently away from their initial states. In other words, many equilibria
of stellar systems are unstable. The instabilities considered in this work are caused by
cooperative effects, in which a density perturbation gives rise to extra gravitational
forces deflecting the stellar orbits in such a way that the original density perturbation
is enhanced. In order to relate to observation, the stellar systems considered in this
work is differentially rotating disks, because realistic galactic disks are not static and
do not rotate uniformly. Besides, the phenomena of instability in disks are strongly
influenced by differential rotation. The stability analysis for differentially rotating
systems are more difficult than static spherical systems and uniformly rotating systems.
Fortunately, Lin and Shu [56] recognized that the structure of spiral arms in a stellar
disk could be regarded as a density wave, a wavelike oscillation that propagates through
the disk in much the same way that waves propagates through violin strings. They also
realized that the techniques of wave mechanics, which has been developed into the
so-called density wave theory, could be applied to deduce the properties of density
waves in differentially rotating stellar disks.

To our knowledge, the stability analysis was firstly investigated by Safronov [73]
and Toomre [81], respectively. By studying the behavior of the density waves in self-
gravitating disks in Newtonian gravity, Toomre [81] derived the so-called dispersion
relation which relates the wavenumber to its frequency, and then he got the local
stability criterion (known as Toomre’s stability criterion in the literature) which can
be used to approximately determine whether the system is locally stable to a small
axisymmetric perturbation by applying the dispersion relation. It is worth noting that
the gravitational potential plays an important role in deriving the dispersion relation
and local stability criterion for a given system. When we study the stability in GR, the
derived gravitational potential in the weak field limit reduces to the one in Newtonian
gravity. However, in the framework of modified gravity theory rather than GR, it is
natural to anticipate a different gravitational potential, and then a different dispersion
relation as well as a different local stability criterion for a given self-gravitating system.
Therefore, the stability of self-gravitating disk might be used to reflect the difference
between various gravity theories.

In the literature, the stability of differentially rotating disks were considered in some
modified gravity theories, e.g. Modified Newtonian Dynamics (MOND) [57], Moffat’s
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Modified Gravity (MOG) [25,70,71], f (R) theory [72], and so on. In the present work,
we try to consider the stability of differentially rotating disks in another modified
gravity theory, namely f (T ) theory [15,40,41,52]. As one of the important modified
gravity theories, f (T ) theory has some interesting features. For instance, unlike the
metric f (R) theory whose equations of motion are 4th order, the equations of motion
in f (T ) theory are 2nd order. This virtue makes f (T ) theory fairly attractive. On the
other hand, it is worth noting that f (T ) theory can provide a mechanism for realizing
bouncing cosmology [19], thereby avoiding the Big Bang singularity. The seminal
work of [40,41] also obtained a cosmological picture without the initial singularity.
This is another one of the advantages of f (T ) theory. In fact, there are many relevant
works on f (T ) theories in the literature (e.g. [12,14,19,29,37,39,42,51,80,85,87,88,
90,95,96]). Actually f (T ) theory becomes one of the active fields in cosmology, and
it received a huge attention from the very beginning, as is shown by the references
in [4].

The rest of this paper is organized as follow. In Sect. 2, we briefly review the key
points of f (T ) theory, and then derive the Poisson’s equation in the weak field limit.
In Sect. 3, we consider the behavior of density waves in differentially rotating disks in
f (T ) theory by using the density wave theory. We obtain the perturbed gravitational
potential by considering a small perturbation of the equilibria, and derive the dispersion
relations for both gaseous disks and stellar disks. In Sect. 4, we use the dispersion
relations to get the corresponding Toomre’s local stability criteria for an axisymmetric
perturbation in both gaseous disks and stellar disks. Finally, some brief concluding
remarks are given in Sect. 5.

2 f (T ) theory

2.1 Key points of f (T ) theory

Here, we briefly review f (T ) theory following e.g. [15,40,41,52]. In fact, it is a
generalization of TEGR. Teleparallelism uses the Weitzenböck connection [93] (which
has torsion but it is curvatureless) to describe spacetime, while GR uses the Levi-
Civita affine connection (which has curvature but it is torsionless). In this sense,
teleparallelism is a sector of Einstein-Cartan theories [5,45], which describe gravity
by means of a connection having both torsion and curvature. Teleparallel gravity uses
a vierbein field ea = eaμ∂μ as dynamical quantity, where Greek indices μ, ν, . . ., run
over 0, 1, 2, 3 on the manifold, and Latin indices a, b, . . ., run over 0, 1, 2, 3 on the
tangent space of the manifold. We use the Einstein notation throughout this work. The
vierbein field eaμ relates to the spacetime metric gμν through [15,40,41,52]

gμν = ηab e
a
μ ebν , (1)

where ηab = diag (+1, −1, −1, −1) is the Minkowski metric. The Weitzenböck
connection �λ

μν and the torsion tensor T ρ
μν are defined by [15,40,41,52]

�λ
μν = ea

λ ∂μe
a
ν ,
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T ρ
μν = �ρ

νμ − �ρ
μν = −ea

ρ
(
∂μ eaν − ∂ν e

a
μ

)
. (2)

Unlike the Levi-Civita connection, the indices μ and ν in Weitzenböck connection
are not symmetric, so the torsion tensor is not vanishing. The torsion scalar is given
by [15,40,41,52]

T = T ρ
μν Sρ

μν , (3)

where

Sρ
μν = 1

2

(
Kμν

ρ + δμ
ρ T λν

λ − δν
ρ T λμ

λ

)
, (4)

and Kμν
ρ is contorsion tensor,

Kμν
ρ = −1

2

(
Tμν

ρ − T νμ
ρ − Tρ

μν
)

. (5)

The action of f (T ) theory is given by [15,40,41,52]

S =
∫

d4x

[ |e| f (T )

16πG
+ LM

]
, (6)

where G is the gravitational constant, |e| is the determinant of vierbein eaμ, f (T ) is a
function of torsion scalar T , and LM is the Lagrangian of matter. Note that it reduces
to TEGR if f (T ) = T . We obtain the equations of motion for the vierbein from the
variation of the action (6) with respect to eaν [15,40,41,52],

|e|−1 ∂μ

(|e| Saμν
)
fT (T ) + 1

4
ea

ν f (T ) + Sa
μν ∂μ T fT T (T )

+T ρ
μa Sρ

νμ fT (T ) = 4πGea
μ Tμ

ν . (7)

where Saμν = Sρ
μν eaρ , T ρ

μa = T ρ
μν eaν , a subscript T denotes a derivative with

respect to T , and Tμ
ν = −|e|−1eaμ (δLM/δeaν) is the energy-momentum tensor of

matter. In this work, we consider the perfect fluid, and its energy-momentum tensor
is given by T μν = −pgμν + (p + ρ) uμuν , where ρ, p and u are the energy density,
pressure and velocity four-vector, respectively, withu0 = 1 andui = 0. In the literature
(e.g. [4,15,52]), some typical forms of f (T ) have been extensively considered, for
instance,

f (T ) = T + c1 (−T )n , (8)

and
f (T ) = T + c2

(
1 − e−c3

√−T
)

, (9)

where c1, c2, c3 and n are constants. As is shown in the literature, these two specific
f (T ) models are interesting and viable. For example, the constraints on these two
typical f (T ) models were considered in e.g. [14,85,87,95]; the equation of state in
these two f (T ) theories was studied in e.g. [12]; the Noether and Hojman symmetries
were considered in e.g. [88,90]; the dynamical behavior was studied in e.g. [96], and so
on. In the literature, there are many relevant works on these two typical f (T ) models,
and it is hard to mention them in details. We refer to e.g. [4] (and the references
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therein) for a comprehensive review on f (T ) theory. We stress that our results are not
only valid for the specific forms of f (T ) given in Eqs. (8) and (9). In fact, the results
obtained in the present work do not rely on the specific forms of f (T ), and they are
valid for all f (T ) theories satisfying f (T = 0) = 0 and fT (T = 0) �= 0, if the
adiabatic approximation and the weak field limit are considered (see below).

2.2 Weak field limit of f (T ) theory

Here, we consider the weak field limit of f (T ) theory. Following e.g. [18,72], we
restrict ourselves to the adiabatic approximation, in which the evolution of the universe
is very slow in comparison with local dynamics. It means that we can choose the
Minkowski metric ηab instead of Friedmann–Robertson–Walker (FRW) metric as the
background metric [72]. In fact, the quantitative studies (e.g. [2,6,23,32,38,58,79])
showed that the physics of gravitationally bound systems (such as galaxies, clusters,
or planetary systems) which are small compared to the radius of curvature of the
cosmological background is essentially unaffected by the expansion of the universe.
Here, we briefly mention the key points of these quantitative studies (e.g. [2,6,23,32,
38,58,79]). If the gravitationally bound system is massive enough, the local spacetime
might be affected, and hence it should take an interpolating metric. By calculating
the effective potential minimum, one can find the numerical evolution of the radius
of the gravitationally bound system. It is found that the effect of cosmic expansion
on the gravitationally bound systems on (or below) the galactic/cluster scales are
insignificant. We refer to e.g. [2,6,23,32,38,58,79] for details. Thus, it is reasonable
to adopt the adiabatic approximation and use the Minkowski instead of FRW metric
as the background metric in the present work. In this case, the vierbein eaν can be
rewritten as a sum of flat component and small perturbed component, namely

eaν = diag (1 + �, 1 − �, 1 − �, 1 − �) , (10)

where � and � are the gravitational potentials (� � 1, � � 1), and they are functions
of spacetime coordinates. From Eq. (1), it is easy to get the metric gμν as

gμν = diag (1 + 2�, −1 + 2�, −1 + 2�, −1 + 2�) . (11)

Note that f (T ) gravity is not a local Lorentz invariant theory [42,51] (we thank the
referee for pointing out this issue). In general, the lack of local Lorentz symmetry
implies that there is no freedom to fix any of the components of the tetrad [42,51]. The
choice of tetrad is crucial, and different tetrads will lead to different field equations [80].
The authors of [80] suggested to speak of a “good” tetrad if it imposes no restrictions
on the form of f (T ). As mentioned above, we adopt the adiabatic approximation and
use the Minkowski metric as the background metric. Note that for the Minkowski
metric diag (+1, −1, −1, −1), the simplest choice for the background vierbein is
given by diag (+1, +1, +1, +1), according to Eq. (1). This motivates us to suggest
the perturbed vierbein in Eq. (10), which is actually the simplest background vierbein
diag (+1, +1, +1, +1) plus small perturbed components �, �. In fact, the tetrad
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choice (10) is “good” according to the standard proposed in [80]. On the other hand,
the metric gμν in Eq. (11) obtained from the tetrad choice (10) via Eq. (1) coincides
with the well-known one considered in Newtonian gravity and the weak field limit
of GR (see e.g. [24,26,31,34,60–62,72,78] and the references therein). This also
supports the tetrad choice given in Eq. (10). In fact, the role played by the non-local
Lorentz invariance in perturbation theory in the context of f (T ) gravity is far from
clear, and the literature is quite confusing about this. However, in our particular case
the Minkowski metric is perturbed at the first order, and the lack of local Lorentz
invariance could not be a problem (we thank the referee for pointing out this issue).
Anyway, let us move forward.

Substituting Eq. (10) into Eq. (7), we find the linearized vierbein field equations as

E0
0 = −∂i∂

i� fT |0 = 4πGρ , (12)

E0
i = ∂0∂

i� fT |0 = 0 , (13)

Ei
0 = ∂ j∂

0� δ
j
i fT |0 = 0 , (14)

Ei
j = 1

2
∂k∂

j (� − �) δki fT |0 = 4πG∂i∂
jπ S (i �= j) , (15)

Ei
j =

[
−δ

j
i ∂0∂

0� + 1

2
∂k∂

j (� − �) δki − 1

2
∂k∂

k (� − �) δ
j
i

]

× fT |0 = 4πGp (i = j) , (16)

where the indices 0 and i, j, k = 1, 2, 3 indicate the time component and space
components of the spacetime coordinates, respectively; ρ and p are the density and
pressure of the perfect fluid, respectively; π S is the scalar component of the anisotropic
stress [29]; ∂k denotes ∂/∂xk ; the subscript “|0” means that the corresponding quantity
is evaluated at T = 0, for instance, fT |0 = fT (T = 0). Note that the evaluation at
T = 0 in the dynamical equations is a consequence of the linearization process. We
have adopted the adiabatic approximation, and hence the Minkowski spacetime is in
the vacuum, i.e. the zeroth order approximation of the energy-momentum tensor is
vanishing (ρ̄ = p̄ = 0). This makes the right-hand sides of Eqs. (13) and (14) be zero,
while ρ, p are treated as the perturbations of the same order of �, �. On the other
hand, one can find f (T = 0) = 0 by considering the zeroth order approximation of
the vierbein field equations (namely the unperturbed equations). Actually, this is also a
consequence of the adiabatic approximation (so the zeroth order approximation of the
energy-momentum tensor is vanishing). In fact, the most popular f (T ) theories in the
literature, e.g. the ones given by Eqs. (8) and (9), naturally satisfy f (T = 0) = 0. This
also justifies the adiabatic approximation used in this work. From Eq. (12), if ρ �= 0,
we see that fT |0 �= 0 and the gravitational potential � must depend on the space
coordinates (namely it cannot depend only on the time). Then, from Eqs. (13) and
(14), we find that ∂0� = 0, and hence � must depend only on the space coordinates.
If one adopts the zero-anisotropic-stress assumption, it is easy to see that � = � and
p = 0 from Eqs. (15) and (16). However, in the general cases we need not assume
the vanishing of the anisotropic stress, and then � = � and p = 0 are not necessary.
In the following discussions, we only use the Poisson’s equation given in Eq. (12),
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without the assumptions � = � and p = 0. The Poisson’s equation of gravitational
potential in f (T ) theory [namely Eq. (12)] can be rewritten as

� ≡ ∇2� = 4πGαρ , (17)

where  ≡ ∇2 is the well-known Laplacian, and

α ≡ 1/ fT |0 . (18)

As mentioned above, the results obtained in the present work do not rely on the specific
forms of f (T ), and they are valid for all f (T ) theories satisfying f (T = 0) = 0 and
fT (T = 0) �= 0, if the adiabatic approximation and the weak field limit are considered.
The information of the function f (T ) is mainly encoded in the parameter α given in
Eq. (18). If f (T ) = T , or equivalently α = 1, our results reduce to the ones of GR. At
first glance, one might redefine the gravitational constant as Geff = αG, and then the
Poisson’s equation (17) becomes the one of GR. However, we note that this does not
work if α → 0 or even α < 0, otherwise the effective gravitational constant becomes
zero or negative. In fact, as is shown in Sect. 5, if α ≤ 0, the disks are unconditionally
stable. This is significantly different from the cases of α > 0 (especially α = 1 in GR),
in which the disks can be stable only when some conditions are satisfied. Thus, we
do not redefine the gravitational constant, so that the cases of α ≤ 0 can be included,
which can lead to interesting results.

3 Dispersion relation

In this section, we study the behavior of density waves in self-gravitating differentially
rotating disks in f (T ) theory by using density wave theory [18,56]. As mentioned
in Sect. 1, to the best of our knowledge, Lin and Shu [56] are the pioneers who
developed density wave theory for the first time. For convenience, in the present work,
we mainly follow the modern formalism of density wave theory given in e.g. [18].
We firstly calculate the gravitational potential by using the Poisson’s equation (17),
and then determine how the potential perturbation affects the equilibria of the self-
gravitating system. We finally obtain the dispersion relations for gaseous and stellar
systems in f (T ) theory, respectively. Note that the stability will be analyzed in the
next section (Sect. 4).

Since the gravitational force is long-range, galaxy can be regarded as a strongly
coupled system. In principle, the wave patterns should be determined numerically.
To be simple, in our analysis, we assume that the spiral galactic disks are tightly
wound. In density wave theory, the long-range coupling can be neglected for tightly
wound density waves [18,56]. Therefore, it is reasonable to adopt the tight-winding
approximation (also known as Wentzel–Kramers–Brillouin (WKB) approximation in
the literature) to make the analytic derivations possible and simple. As mentioned in
e.g. [18,72], the WKB approximation can be used in most cases without much loss of
generality.
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The stability analysis in self-gravitating fluid (gaseous) system is similar to the
analysis in stellar system, because a fluid system is supported against gravity by
gradients in the pressure p, while a stellar system is supported by gradients in the
stress tensor [18]. However, the stellar disk is more complicated than gaseous disk.
It is easy to use the results of gaseous disk to analyze the difference between various
theories. Since the response of a gaseous disk exhibits most of the important features
that also occur in the stellar case, we find that it is helpful to consider spiral structure
in gaseous disks before we tackle the more complicated stellar disks.

3.1 Potential of a tightly wound spiral pattern

Now, we consider an extremely thin disk whose surface density is �, occupying the
plane z = 0 and rotating in the x and y directions (we use the Cartesian coordinate
system (x, y, z) here). So, the Poisson’s equation (17) can be rewritten as

� = 4πGα�δ(z) . (19)

The properties of an equilibrium system are described by the time-independent quan-
tities. For the Poisson’s equation, we consider small perturbations of potential � and
surface density �, which can be written as � = �0 + �1, � = �0 + �1, where the
subscript “0” denotes unperturbed (time-independent) components and the subscript
“1” denotes perturbed components. Then, the linearized Poisson’s equation reads

�1 = 4πGα�1δ(z) . (20)

To solve Eq. (20), it is convenient to adopt the following ansatz �1 = �a

exp [i(k · x − ωt)], �1(z = 0) = �a exp [i(k · x − ωt)], where �a and �a are con-
stants, ω is the frequency andk is the wave vector. Note that the perturbations should be
real. If the complex functions �1 and �1(z = 0) satisfy Eq. (20), 
(�1) and 
(�1(z =
0)) also satisfy the equation, where 
(ξ) gives the real part of the complex function ξ .
So, we allow �1 and �1(z = 0) to be complex, with the understanding that the physical
density is given by its real part instead. We refer to [18] for detailed discussions.

Without loss of generality, we choose x-axis to be parallel to k, so k = kex, where
k is the wavenumber and ex is the unit vector parallel to x-axis. Since when z �= 0 we
have �1 = 0, the potential perturbation can be rewritten as

�1 = �a e
i(k·x−ωt)−|kz| . (21)

To relate �a to �a , we integrate Eq. (20) from z = −ζ to z = +ζ , where ζ > 0 and
ζ → 0. Since ∂2�1/∂x2 and ∂2�1/∂y2 are continuous at z = 0, but ∂2�1/∂z2 is not,
we have

lim
ζ→0

∫ +ζ

−ζ

∂2�1

∂z2 dz = lim
ζ→0

∂�1

∂z

∣∣∣∣

+ζ

−ζ

= −2|k|�1

= lim
ζ→0

4πGα�1

∫ +ζ

−ζ

δ(z) dz = 4πGα�1 , (22)
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where we have used Eq. (21) in the second “=”. So, it is easy to find that

�a = −2πGα

|k| �a . (23)

If α → 1, Eq. (23) reduces to the Newtonian case as expected. It is worth noting that
the derivation of Eq. (23) only involves the fundamental aspects of wave equations,
regardless of whether the disks are uniformly rotating or differentially rotating. So,
Eq. (23) is valid for both the uniformly and differentially rotating disks [18]. Note
also that Cartesian coordinates are used when we derive the gravitational potentials.
One should be aware that we might switch to polar or cylindrical coordinates in
the following derivations, although the transformation between different coordinate
systems is easy.

The disks considered above are the uniformly rotating disks in which we can use
general wave dynamics. If we instead consider the differentially rotating disks, the
structure of spiral arms in the disks should be regarded as density waves, according to
the density wave theory [18].

To be self-contained, here we briefly introduce the so-called tightly wound spiral
arms [18]. The spiral arm of galaxy can be viewed as a spiral curve which can be
written as φ + g(R, t) = const., where φ is the azimuthal angle, R is the distance
from the center of galaxy to the point of the curve (we use the polar coordinate system
here). We assume that the galaxy with m-fold symmetry has m > 0 spiral arms (m is a
positive integer). So, the locations of all m arms are given by mφ + F(R, t) = const.,
where F(R, t) = mg(R, t) is the shape function. The condition for tight winding is
related to the so-called pitch angle ϑ of the arm which is given by cot ϑ = |kR/m| at
any radius r . When cot ϑ = |kR/m| � 1, namely the pitch angle ϑ is very small, we
can say that the spiral arms are tightly wound.

The surface density of a zero-thickness differentially rotating disk is the sum of an
unperturbed component �0(R) and a perturbed component �1(R, φ, t). For a tightly
wound spiral, according to density wave theory [18], �1(R, φ, t) can be expressed as
a form separating the rapid variations in density as one passes between arms from the
slower variation in the strength of the spiral pattern as one moves along an arm. It is
convenient to write the perturbed surface density �1 as

�1 = H(R, t) ei (mφ+F(R, t)), (24)

where H(R, t) is a smooth function of radius R that gives the amplitude of the spiral
galaxy. Since the surface density oscillates rapidly around zero mean, the perturbed
potential at a given location will be determined by the properties of the pattern within
a few wavelengths of that location. We can replace the shape function F(R, t) by its
Taylor series in the vicinity of (R0, φ0), F(R, t) → F(R0, t) + k(R0, t)(R − R0).
The perturbed surface density �1 can be rewritten as

�1 � �a e
ik(R0, t)(R−R0), (25)
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where
�a = H(R0, t) e

i(mφ0+F(R0, t)). (26)

From Eq. (25), we find that the spiral wave closely resembles a plane wave with wave
vector k = keR in the vicinity of (R0, φ0), where eR is the unit vector parallel to R
direction. Note that the gravitational potential for uniformly rotating disks is given
by Eq. (23). So, we can write the similar perturbed potential in differentially rotating
disks as

�1 � �a e
ik(R0, t)(R−R0) , (27)

where �a is given by Eq. (23). We refer to e.g. [18] and references therein for a detailed
introduction of density wave theory.

3.2 Gaseous disks

The stability analysis in self-gravitating fluid system is similar to the analysis in stellar
system, because a fluid system is supported against gravity by gradients in the pressure
p, while a stellar system is supported by gradients in the stress tensor [18]. On the
other hand, the stability analysis of fluid system has been studied previously in the
literature. So, it is better to consider the response of tightly wound density waves
of self-gravitating gaseous system at first, and then deal with the similar analysis of
self-gravitating stellar system later.

For our aim, it is necessary to obtain the corresponding continuity equation and
the Euler equation, which are two of the most important equations in fluid dynamics
and are useful for the stability analysis of the gaseous system. We consider a zero-
thickness disk occupying the plane z = 0 (we use the cylindrical coordinate system
(R, φ, z) here). In Newtonian gravity, the continuity equation and Euler equation are
given by [18]

∂ρ

∂t
+ ∇ · (ρ v) = 0 , (28)

∂v
∂t

+ (v · ∇) v = − 1

ρ
∇ p − ∇� , (29)

respectively, where the pressure p and velocity v of the perfect fluid act only in
the disk plane z = 0, and the volume density ρ can be replaced by the surface
density � for our aim. According to [72], since only the potential � appears in the
equation of motion of a test particle, the continuity equation and Euler equation in
f (T ) theory take the same forms in Newtonian gravity or f (R) theory, i.e. Eqs. (28)
and (29), while the information of f (T ) theory is carried by the modified gravitational
potential �.

By using cylindrical coordinates, the continuity equation (28) can be rewritten as

∂�

∂t
+ 1

R

∂

∂R
(� R vR) + 1

R

∂

∂φ

(
� R vφ

) = 0, (30)
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where vR and vφ are the radial and azimuthal components of velocity, respectively.
On the other hand, the radial and azimuthal components of Euler equation (29) can be
rewritten as

∂vR

∂t
+ vR

∂vR

∂R
+ vφ

R

∂vR

∂φ
− v2

φ

R
= −∂�

∂R
− 1

�

∂p

∂R
, (31)

∂vφ

∂t
+ vR

∂vφ

∂R
+ vφ

R

∂vφ

∂φ
+ vφ vR

R
= − 1

R

∂�

∂R
− 1

�R

∂p

∂φ
. (32)

Since the gaseous disk is introduced to serve as a heuristic model of stellar system, we
are free to choose a simple equation of state p = K�γ , where K and γ are constants.

It is convenient to define a specific enthalpy h ≡
∫

�−1dp = γ

γ − 1
K�γ−1, and

then Eqs. (31) and (32) can be simplified to

∂vR

∂t
+ vR

∂vR

∂R
+ vφ

R

∂vR

∂φ
− v2

φ

R
= − ∂

∂R
(� + h) , (33)

∂vφ

∂t
+ vR

∂vφ

∂R
+ vφ

R

∂vφ

∂φ
+ vφ vR

R
= − 1

R

∂

∂R
(� + h) . (34)

As mentioned above, the equilibrium of system is determined by the time-independent
quantities. For gaseous system, we can consider that the spiral wave is a small per-
turbation on axisymmetric disk. We can write surface density � = �0 + �1, radial
component of velocity vR = vR0 + vR1 = vR1, azimuthal component of velocity
vφ = vφ0 + vφ1, gravitational potential � = �0 + �1 and enthalpy h = h0 + h1,
where the subscript “0” denotes unperturbed quantities and the subscript “1” denotes
small perturbed quantities. Note that in the equilibrium, we have vR0 = 0 and
∂�0/∂φ = ∂h0/∂φ = 0. The linearized equations of Eqs. (30), (33) and (34) are
given by

∂�1

∂t
+ 1

R

∂

∂R
(�0 R vR1) + �

∂�1

∂φ
+ �0

R

∂vφ1

∂φ
= 0 , (35)

∂vR1

∂t
+ �

∂vR1

∂φ
− 2 �vφ1 = − ∂

∂R
(�1 + h1) , (36)

∂vφ1

∂t
+ �

∂vφ1

∂φ
+

[
d (�R)

dR
+ �

]
vR1 = − 1

R

∂

∂φ
(�1 + h1) , (37)

where � = vφ0/R is the circular frequency. For differentially rotating disk, � is related
to radial coordinate R. According to the similar analysis in Sect. 3.1, the ansatz for
the solutions of Eqs. (35), (36) and (37) can be written as

�1 = 

[
�a(R) ei(mφ−ωt)

]
, (38)

�1 = 

[
�a(R) ei(mφ−ωt)

]
, (39)
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vR1 = 

[
vRa(R) ei(mφ−ωt)

]
, (40)

vφ1 = 

[
vφa(R) ei(mφ−ωt)

]
, (41)

h1 = 

[
ha(R) ei(mφ−ωt)

]
, (42)

where m > 0. Substituting Eqs. (38)–(42) into Eqs. (36) and (37), we get

vRa = − i

�

[
(m� − ω)

d

dR
(�a + ha) + 2m�

R
(�a + ha)

]
, (43)

vφa = 1

�

[
−2B

d

dR
(�a + ha) + m (m� − ω)

R
(�a + ha)

]
, (44)

where

B = −1

2

[
d (�R)

dR
+ �

]
= −� − R

2

d�

dR
, (45)

� = κ2 − (m� − ω)2 , (46)

in which the epicyclic frequency κ is defined by

κ2 = R
d �2

dR
+ 4�2 = −4B� . (47)

The linearized equation of state is given by

ha = γ K�a�
γ−2
0 = v2

s�a/�0 , (48)

where the sound speed vs is given by v2
s = γ K�

γ−1
0 .

In principle, the linearized continuity equation (35), the expressions of velocity
Eqs. (43), (44), and the linearized equation of state Eq. (48) can be numerically solved
to yield the global forms of the self-consistent density waves in a given disk [11,13].
Instead, here we use the WKB approximation (namely |kR| � m ≥ 1) mentioned
above to get the analytic local solutions for density waves. The potential of a tightly
wound wave can be written as

�a(R) = W (R) ei F(R) = W (R) exp

(
i
∫ R

0
k dR

)
, (49)

where k = dF(R)/dR and |kR| � 1. From Eqs. (20), (38), (39) and (48), we see
that �a and ha share the same factor exp (i F(R)) with �a . Therefore, we can write
d(�a+ha)/dR = ik(�a+ha) and then neglect the terms proportional to (�a+ha)/R
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in Eqs. (43) and (44) because |kR| � 1. So, Eqs. (43) and (44) become

vRa = k (m� − ω) (�a + ha)

�
, (50)

vφa = −2i Bk (�a + ha)

�
. (51)

For the similar reason, the continuity equation (35) can be rewritten as

(m� − ω) �a + k�0 vRa = 0 . (52)

Using Eqs. (52), (50), (48), (46) and (23), we find that the dispersion relation for a
gaseous disk in the tight-winding limit is given by

(m� − ω)2 = k2v2
s − 2πG|k|α�0 + κ2 . (53)

Note that our result is suited for differentially rotating disks. If κ = 2�, noting
Eqs. (47), (45) and � = vφ0/R, we see that Eq. (53) reduces to the dispersion relation
for uniformly rotating disks. On the other hand, if α → 1, namely fT |0 → 1, this
dispersion relation in f (T ) theory reduces to the one in Newtonian gravity [18]. Since
in the weak field limit GR reduces to Newtonian gravity, the dispersion relation in
f (T ) theory also reduces to the one in GR when α → 1. This is not surprising,
because f (T ) theory is equivalent to GR if f (T ) = T , as is well known. It is worth
noting that the corresponding dispersion relation in f (R) theory [72] is quite different
from the one in f (T ) theory, namely Eq. (53).

3.3 Stellar disks

In this subsection, we study the dispersion relation for stellar disks. As a fluid system,
the dynamics of gaseous disk is determined by the continuity equation and Euler
equation. However, the dynamics of stellar disk is instead described by the so-called
collisionless Boltzmann equation. The collisionless Boltzmann equation in Newtonian
gravity (the weak field limit of GR) reads

∂D

∂t
+ v · ∇D − ∇� · ∂D

∂v
= 0 , (54)

where v is the stellar velocity and D is the distribution function. As mentioned above,
the stability analysis in stellar system is closely similar to the one in fluid system,
because a fluid system is supported against gravity by gradients in the pressure p ,
while a stellar system is supported by gradients in the stress tensor [18]. So, we could
use the similar technique used in the analysis for gaseous disks to obtain the dispersion
relation for stellar disks. We refer to [18] for more detailed discussions.

The important step is to determine the perturbation v̄R1 induced by �1 in the mean
radial velocity of the stars at a given point (R, φ). If the unperturbed orbits are circular,
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namely the disk is quite “cold”, v̄R1 is given by

v̄Ra = m� − ω

�
k�a , (55)

which could be obtained from Eq. (50) with ha = 0, since the disk would be dynam-
ically identical to a gaseous disk with zero pressure [18]. This formula is accurate
unless the stellar epicycle amplitude is much smaller than the wavelength 2π/k of
spiral pattern. Otherwise, Eq. (55) should be modified to

v̄Ra = m� − ω

�
k�aF , (56)

where F ≤ 1 is the reduction factor. For a given potential perturbation, the reduction
factor describes how much the response to a spiral perturbation is reduced below the
value for a cold disk. Then, we can calculate the response density �a once we have
v̄Ra , since the so-called Jeans equation, ∂ν/∂t + ∂(ν v̄i )/∂xi = 0, is identical to the
continuity equation of the gaseous disk. So, the analogue of Eq. (52) is given by

(m� − ω)�a + k�0 v̄Ra = 0 . (57)

According to [18], the reduction factor F in Newtonian gravity is given by

F(s, χ) = 1 − s2

sin (πs)

∫ π

0
e−χ(1+cos τ) sin (sτ) sin τ dτ , (58)

where

s = ω − m�

κ
, (59)

χ =
(
kσR

κ

)2

, (60)

in which σR is the radial velocity dispersion. We refer to e.g. [18] and references
therein for a detailed introduction to the reduction factor F . Note that F takes the
same form in different gravity theories, because the gravitational potential does not
appear in Eq. (58). Using Eqs. (56), (57), (58), (46) and (23), we obtain the dispersion
relation for stellar disks,

(m� − ω)2 = κ2 − 2πG|k|α�0 F(s, χ) . (61)

Again, if α → 1, namely fT |0 → 1, this dispersion relation in f (T ) theory reduces
to the one in Newtonian gravity (the weak field limit of GR) [18]. It is worth noting
that the corresponding dispersion relation in f (R) theory [72] is quite different from
the one in f (T ) theory, namely Eq. (61).

The dispersion relations Eqs. (53) and (61) are the main equations for studying the
density waves in disks. Although the WKB approximation is valid conditionally, it can
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Fig. 1 The neutral stability curves for various α on the Qg −λ/λc plane according to Eq. (65) obtained in
f (T ) theory for gaseous disk. Note that the curve with α = 1 corresponds to the one in GR and Newtonian
gravity. See the text for details

be used in most cases without much loss of generality, as mentioned in e.g. [18,72].
These dispersion relations could provide an invaluable guide for the numerical analysis
of stability, and they establish the relation between wavenumber and frequency that is
satisfied by a traveling wave as it propagates across the disk [18].

Comparing the dispersion relations in f (R) theory [72] and f (T ) theory for both
gaseous and stellar disks, we find that the main difference between them is that the
dispersion relations in f (T ) theory only relate to the first order derivative of f (T ),
while the dispersion relations in f (R) theory relate to not only the first but also the
second order derivatives of f (R). So, we suppose that it might be a possible hint to
distinguish f (T ) theory from f (R) theory.

4 Local stability

In the previous section, we obtained the dispersion relations Eqs. (53) and (61) for
gaseous and stellar disks in f (T ) theory, respectively. In this section, we apply these
relations to determine whether a given disk is locally stable to axisymmetric pertur-
bations. Note that the above analysis is mainly for tightly wound non-axisymmetric
disturbances, namely |kR/m| � 1 and m > 0. However, the results obtained above
are still valid for the axisymmetric disturbances (m = 0), so long as |kR| � 1 [18].
In the following, we try to obtain the local stability criteria in f (T ) theory for both
gaseous and stellar disks.
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4.1 Gaseous disks

At first, we consider the local stability of gaseous disks. For m = 0, Eq. (53) becomes

ω2 = k2v2
s − 2πG|k|α�0 + κ2 . (62)

The right-hand side of Eq. (62) is real, so ω2 should be real. If ω2 > 0, the frequency ω

is real and hence the disk is stable [nb. Eqs. (38)–(42)]. On the other hand, if ω2 < 0,
the disk is unstable. The neutral stability curve (ω2 = 0) is given by

k2v2
s − 2πG|k|α�0 + κ2 = 0 , (63)

which is a quadratic equation with respect to |k| in fact. Noting that Eq. (62) can be
regarded as a parabola opening upward on the ω2 −|k| plane, if there is no real solution
for the quadratic equation with respect to |k| given in Eq. (63), we have ω2 > 0 for
any |k|, and hence the gaseous disk is stable against all axisymmetric perturbations.
Thus, by requiring that there is no real solution for Eq. (63), it is easy to obtain the
condition for axisymmetric stability,

Qg ≡ vsκ

πG�0
> α . (64)

This is the local stability criterion in f (T ) theory for gaseous disk. In order to plot the
curve of neutral stability given in Eq. (63), it is useful to introduce the longest unstable
wavelength λc = 4π2G�0/κ

2 and y = λ/λc, where λ = 2π/|k|. So, we can recast
Eq. (63) as

Qg = 2
√

αy − y2 , (65)

where Qg ≡ vsκ/(πG�0) is defined in Eq. (64). In Fig. 1, we plot the neutral stability
curves for various α on the Qg−λ/λc plane according to Eq. (65). Noting that Eq. (62)
can be rewritten as

Q2
g − 4

(
αy − y2

)
= ω2

(
κ

πG|k|�0

)2

, (66)

the disk is stable/unstable in the regions above/below the neutral stability curve for a
given α on the Qg − λ/λc plane, respectively. Note that Eq. (64) reduces to the one
in Newtonian gravity if α → 1.

4.2 Stellar disks

Let us turn to the local stability of stellar disks. In the case of axisymmetric perturba-
tions (m = 0), Eq. (61) becomes

ω2 = κ2 − 2πG|k|α�0 F
(
ω/κ, (kσR/κ)2

)
. (67)
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Again, noting Eqs. (38)–(42), if ω2 > 0 the disk is stable, and if ω2 < 0 the disk is
unstable. The neutral stability curve (ω2 = 0) is given by

κ2 − 2πG|k|α�0 F
(

0, (kσR/κ)2
)

= 0 . (68)

By using Eqs. (58)–(60) and the identity exp (z cos θ) =
+∞∑

n=−∞
In(z) cos (nθ) [18], it

can be recast as

|k|σ 2
R

2πGα�0
= 1 − exp

(

−k2σ 2
R

κ2

)

I0

(
k2σ 2

R

κ2

)

, (69)

where I0 (χ) is the modified Bessel function. If there is no real solution for Eqs. (68)
or (69) with respect to |k|, the stellar disk is stable against all axisymmetric perturba-
tions. Note that Eqs. (67)–(69) are closely similar to the ones in Newtonian gravity,
except that an additional factor α appears. Therefore, in analogy to the derivations in
Newtonian gravity [18], one can obtain the modified local stability criterion in f (T )

theory as

Qs ≡ κσR

3.36G�0
> α . (70)

Obviously, it reduces to the standard Toomre’s criterion in Newtonian gravity if α → 1.
Note that the neutral stability curve determined by Eqs. (68) or (69) involves an

integration function F given in Eq. (58) or a modified Bessel function I0. So, it is not
easy to solve the complicated equations given in Eqs. (68) or (69). Some complicated
tricks are needed, as in e.g. [72]. However, the resulted curves are similar to the ones
in Fig. 1 (see e.g. [72]), and hence we do not present them here.

It is of interest to briefly compare the stability criteria in f (T ) theory [Eqs. (64) and
(70)] with the ones in f (R) theory obtained in [72]. The main difference is that the
stability criteria in f (T ) theory involve only the first order derivative of the function
f (T ) (encoded in the parameter α), whereas the stability criteria in f (R) theory
involve not only the first but also the second order derivatives of the function f (R)

(encoded in the parameters α and β [72], respectively). This is mainly due to the fact
that the equations of motion in f (T ) theory are 2nd order, whereas the ones of f (R)

theory are 4th order.

5 Concluding remarks

In this work, we consider the stability of self-gravitating differentially rotating disks
in f (T ) theory. At first, we get the Poisson’s equation in the weak field limit, using the
adiabatic approximation. Then, we obtain the gravitational potential in differentially
rotating disks for a small perturbation. By studying the behavior of density wave, we
obtain the dispersion relations for both gaseous and stellar disks. Finally, we study the
local stability of both gaseous and stellar disks by applying the dispersion relations,
and obtain the modified Toomre’s criteria (the local stability criteria) in f (T ) theory,
i.e. Eqs. (64) and (70).
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Comparing the local stability criteria in f (R) theory [72] and f (T ) theory, we find
that the main difference between them is that the local stability criteria in f (T ) theory
only relate to the first order derivative of f (T ), while the local stability criteria in
f (R) theory relate to not only the first but also the second order derivatives of f (R).
So, we suppose that it might be a possible hint to distinguish f (T ) theory from f (R)

theory.
Let us observe the local stability criteria (64) and (70) closely. If α → 1, namely

fT |0 → 1, both of Eqs. (64) and (70) reduce to the standard Toomre’s criteria in
Newtonian gravity. This is not surprising, because f (T ) theory is equivalent to GR if
f (T ) = T , while GR reduces to Newtonian gravity in the weak field limit. However,
if α �= 1, Toomre’s criterion should be modified. If α is larger/smaller than 1, a
larger/smaller Qg (compared with the one in Newtonian gravity or the weak field
limit of GR) is needed to make the disk stable, respectively. This means that the disk
needs larger/smaller pressure (compared with the one in Newtonian gravity or the
weak field limit of GR) to resist the gravitational collapse [18,72]. We consider that
this might be potentially used to distinguish f (T ) theory from GR observationally.

It is interesting to consider the case of α → 0, namely fT |0 → ∞. For instance,
the typical form of f (T ) in Eq. (9) which has been extensively considered in the
literature, can satisfy not only f (T = 0) = 0 (required by the adiabatic approximation
as mentioned in Sect. 2.2), but also fT |0 = fT (T = 0) → ∞. In the case of α → 0
(namely fT |0 → ∞), noting Eqs. (62) and (67), it is easy to see that ω2 > 0 holds
unconditionally, and hence the disks are always stable. This can also be found by
considering the local stability criteria (64) and (70), which are satisfied unconditionally
if α → 0. Therefore, the disks are unconditionally stable in e.g. the f (T ) theory given
in Eq. (9). Similarly, the same arguments also hold in the case of α < 0, namely
fT |0 < 0. For instance, f (T ) = T + c1(1 − exp (c2T )) can satisfy f (T = 0) = 0
(required by the adiabatic approximation), and fT |0 < 0 if the model parameters
satisfy c1c2 > 1. The disks are also unconditionally stable. So, the kinds of f (T )

theories with α ≤ 0 might be observationally tested on (or below) the galactic scales.
Note that in our analysis, we restrict ourselves to the adiabatic approximation, and

hence the Minkowski metric can be taken as the background metric. It means that
the evolution of the universe is very slow in comparison with local dynamics, and
the physics of gravitationally bound systems (such as galaxies, clusters, or planetary
systems) which are small compared to the radius of curvature of the cosmological
background is essentially unaffected by the expansion of the universe. The adiabatic
approximation has been supported by many quantitative studies (e.g. [2,6,23,32,38,
58,79]) since 1945 at least. However, it has been challenged recently, and the debate
is not completely settled by now. On the other hand, as mentioned in Sect. 2.2, f (T =
0) = 0 is required by the adiabatic approximation. However, not all f (T ) theories
satisfy this requirement in fact. Based on the above two arguments, it is also plausible to
give up the adiabatic approximation, and choose e.g. the FRW metric as the background
metric. In this case, the requirement f (T = 0) = 0 is not necessary. However, as
mentioned in e.g. [29], another constraint fT T |0 = fT T (T = 0) = 0 can be imposed
by the requirement of no anisotropic stress (of course, this constraint can also be given
up, by allowing anisotropic stress). On the other hand, since the background metric is
chosen to be e.g. the FRW metric or the interpolating metric [58,86] in this case, all
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the derivations in this work will become fairly complicated, and hence the modified
local stability criteria should also become complicated accordingly. We also stress
that the tetrad selection and the perturbative treatment could become significantly
cumbersome. We leave this issue as an open question.

Another important assumption used in this work is the WKB approximation (namely
the tight-winding approximation). As mentioned above, a natural criterion for the
validity of the WKB approximation for axisymmetric waves is |kR| � 1, which
actually corresponds to λ/R � 2π . In fact, most of the numerical experiments require
λ/R � 2 for the accuracy of the WKB results. So, the WKB approximation is valid in
the solar neighborhood at least, and can be used in many galactic disks. However, the
WKB approximation cannot be applied to the loose wound spiral structures. In this
case, there are no analytic methods to determine the stability of a given disk to small
perturbations, and the numerical methods should be used instead.
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