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Abstract In this paper we present a statistical description of the cosmological constant
in terms of massless bosons (gravitons). To this purpose, we use our recent results
implying a non vanishing temperature T� for the cosmological constant. In particular,
we found that a non vanishing T� allows us to depict the cosmological constant � as
composed of elementary oscillations of massless bosons of energy h̄ω by means of
the Bose–Einstein distribution. In this context, as happens for photons in a medium,
the effective phase velocity vg of these massless excitations is not given by the speed
of light c but it is suppressed by a factor depending on the number of quanta present
in the universe at the apparent horizon. We found interesting formulas relating the
cosmological constant, the number of quanta N and the mean value λ of the wavelength
of the gravitons. In this context, we study the possibility to look to the gravitons system
so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt
is done to write down the Friedmann flat equations in terms of N and λ.

Keywords Cosmological constant · Gravitons · Apparent horizon · Bose–Einstein
condensation

1 Introduction

The standard concordant cosmological model is obtained by a spatially flat Fried-
mann metric endowed with a cosmological constant � representing about 68 % of the
present universe matter-energy content. Despite the enormous success of this model
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in explaining the main cosmological data, the real nature of this dark energy remains
obscure and a fundamental issue in modern cosmology. Many attempts have been
done in the literature: (see for example [1–19] and references therein) quintessence,
k-essence, phantom models, clock effects, holographic dark energy, Bose–Einstein
condensate (BEC), extended theories of gravity to cite someone of the most relevant.
In particular, the recent detection of gravitational waves [20] (GW150914 event) rep-
resents the born of the gravitational wave astronomy. Gravitational wave astronomy,
as noticed in [19], opens the door to test general relativity against extended theories of
gravity (see [19] and references therein). In these extended theories a possible scalar
component of the gravitational radiation arises than can be verified by the study of
the signal of gravitational waves. Another important issue concerning the cosmolog-
ical constant � is due to its very small value � � 10−52/m2 (where ‘m’ stands
for meters), i.e. 10122 orders smaller than the value expected for vacuum energy in
quantum field theory. Also a thermodynamic description of a Friedmann universe
endowed with a cosmological constant is a complicated and debated task [21–27].
First of all, the universe is a dynamical expanding system out from equilibrium.
Moreover, it is not yet clear how to describe [27] the dynamical degrees of free-
dom related to the expansion of the universe. As a consequence, a physically sound
statistical mechanics description of the cosmological constant in terms of a fluid or
gas is still lacking. The knowledge of a thermodynamic description of the actual
universe (at its ‘thermodynamic radius’, i.e. the apparent horizon [28,29] of our uni-
verse) is an important step for a better physical understanding of the cosmological
constant.

Recently [30–33], we have generalized the Bekenstein–Hawking entropy formula
suitable for black holes embedded in Friedmann universes. In particular, our tech-
nology can be applied to the apparent horizon [31–33] of Friedmann universes.
As a first important consequence [31,32], we have obtained Uh = const. = 0.
This can be interpreted with the fact that, according to an old conjecture [34], the
gravitational degrees of freedom encoded with an expanding universe are included
in our tractation in such a way that the Misner–Sharp energy Msc2 at the appar-
ent horizon is exactly balanced by the negative gravitational expanding energy for
a universe whose spatial sections are flat. Another important consequence of our
setups is that [33] the de Sitter universe, filled only with a non-vanishing positive
cosmological constant �, is the only Friedmann solution that is in thermal equi-
librium with its surrounding. As a result, to a cosmological constant � can be
associated a non-zero temperature given by the one of the apparent horizon. After
introducing [32] the Planck constant h̄, a non vanishing internal energy Uh with
Uh ∼ T� is allowed. All these facts permit us to explore a statistical description
of �.

In Sect. 2 we write down the first law at the apparent horizon for Friedmann space-
times. In Sect. 3 we analyze the cosmological constant as composed of massless bosons
(gravitons), while in Sect. 4 the thermodynamic limit is discussed. Finally, Sect. 5 is
devoted to some conclusions and final remarks.
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2 First law at the apparent horizon for Friedmann spacetimes

A Friedmann spacetime is given in comoving coordinates by

ds2 = −c2dt2 + a2(t)

[
dr2

1 − kr2 + r2d�2
]

, (1)

where k = −1, 0,+1. The spacetimes (1) filled with a matter content satisfying the
weak energy condition are equipped with an apparent horizon at the proper areal radius
Lh given by

Lh = c√
H2 + kc2

a(t)2

. (2)

To the apparent horizon (2) can be associated an holographic temperature (see
for example [11–13,17,18,21,24,25,27–29]) Th , namely the Hawking temperature
Th = ch̄/(2πkB Lh). In this paper we adopt the normalization used in [32,33] and the
holographic temperature at the apparent horizon (2) is

Th = ch̄

4πkB Lh
. (3)

As well known [25], at the apparent horizon the Friedmann equations can be written
in a form similar to the first law of thermodynamic

ThdS = dUh + WhdVh, Wh = p − ρc2

2
, (4)

where Wh is the work term and Uh = c4Lh/(2G) is the Misner–Sharp energy term,
ρ, p respectively the energy density and the pressure, provided that, as happens for
static asymptotically flat black holes, the apparent horizon is equipped with the entropy
Sh = kB Ah

4L2
P

. However, the Friedmann spacetimes are dynamical and non asymptot-

ically flat and we expect, on general physical grounds, a modification for the usual
entropy law S ∼ A/4. Moreover, as stated in [26], we have not a consistent way to
calculate the dynamical degrees of freedom for a non-static gravitational field.

In [30–33], by using suitable theorems for the formation of trapped surfaces in
Friedmann spacetimes, we proposed a new formula for the entropy of black holes
embedded in Friedmann universes given by

Sh = kB Ah

4L2
P

+ 3kB
2cL2

P

VhH − 3kkB
4L2

P

LhVh
a(t)2 , (5)

where Vh = 4πL3
h/3 and H the Hubble constant. In our proposal, thanks to the

holographic principle, the (5) is supposed to be the entropy of the whole universe at
its apparent horizon where the entropy bound [30–33] is saturated as happens for the
event horizon of a static black hole. The new first law at Lh becomes [31–33] the (4)
but with
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dUh = c4

2G
dLh + c3

2G
L2
hdH + kc4

2G

L3
h

a3 da, (6)

Wh = − kc4

4πGa2 + 3c3H

8πGLh
. (7)

A first consequence of (6) is that, according to an old conjecture [34], the internal
energy only for Friedmann flat solutions is vanishing [31–33].1

Moreover [33], our new formulas (5)–(7) imply that the only Friedmann solution
that is in thermal equilibrium with its surrounding is the de Sitter one, i.e. a Fried-
mann flat solution with a non-vanishing cosmological constant. This means that the
temperature of the apparent horizon (3) is nothing else but the temperature of a de
Sitter cosmological universe T�, i.e. Th = T� for a de Sitter universe.2 This is in
contradiction with the usual setups (see [26] and references therein) where a zero tem-
perature is usually attributed to �. A non vanishing T� can be interpreted as a finite
size effect. In fact, the Friedmann universe is thermodynamically a spherical object
of areal radius Lh . The usual results can be seen as the limit for Lh → ∞ where
Th → 0. Obviously, this finite volume effect is negligible for our actual universe, but
also a small but non-vanishing T� is conceptually important. In particular, as stated
in [33], the cosmological constant can be depicted as a fluid satisfying the equality

T 3
h Vh = 1

48π2

(
ch̄

kB

)3

, (8)

that looks like the equation of a reversible adiabatic transformation. Hence, according
to this hypothesis [33], a fluid such that T 3V is less than the second member of (8) is
a phantom fluid.

The first law for the Friedmann flat case can be written as [32]

ThdSh = dUh + c2ρ dVh . (9)

In the following two sections our reasonings do apply to a de Sitter universe
equipped only with a positive non-vanishing cosmological constant � with a(t) =
ect

√
�
3 , k = 0 and without dark matter and electromagnetic radiation. At the conclu-

sions, Sect. 5, we discuss the possible modifications of our results in presence of dark
matter and electromagnetic radiation.

Since a de Sitter expanding universe is in thermal equilibrium with its surrounding,
we must have, for a cosmological constant with densityρ�, c2ρ� = |p�|: the apparent
horizon is stationary (Lh = const) and the work term Wh must reduce to the usual
expression W = p dV . The usual relation p� = −c2ρ�, as noticed in [27], can be
regained by the fact that the first law at the apparent horizon has a different heat-sign
convention with respect to the usual prescription.

1 As shown in [32], when the Planck constant h̄ is introduced, a non vanishing Uh is allowed.
2 This permit us to trace back [33] the thermal history of the universe in terms of Tu − Th , being Tu the
temperature of the matter energy inside Lh where a de Sitter phase emerges when Tu = Th .
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We are now in the position to explore the possible statistical consequences of the
relation (8).

3 Bose–Einstein distribution for the dark energy

In this section we describe the cosmological constant of a de Sitter universe in
terms of the usual Bose–Einstein distribution. To start with, we must evaluate the
internal energy of a de Sitter universe. As stated in [31,33], for all Friedmann flat
spacetimes the internal energy Uh is a constant of motion that for dimensional
arguments (with only the constants �,G, c at our disposal) can be set to zero. In
ordinary thermodynamics, to a vanishing internal energy can be associated a van-
ishing temperature. However, as stated above, thanks to finite size effects at Lh and
introducing the Planck constant h̄, a non vanishing temperature T� [31,32] satisfying
the (8) can be attributed to �. In [32] we have also discussed the possible ultravi-
olet modification to the Friedmann flat equations caused by the introduction of the
Planck constant.

In this paper we consider a de Sitter universe filled with the cosmological constant
� composed of massless gravitons with a quanta of energy ε given by the usual relation
ε = h̄ω. Concerning the chemical potential μ�, we may suppose that gravitons are
interacting. We have a certain number of interacting gravitons in thermal equilibrium
within Lh . The situation is similar to the one of photons emitting a black body radiation
in thermal equilibrium with a surrounding body. Hence, also in such a situation the
number of gravitons is determined by the thermal equilibrium condition for the free
energy F given by dF = 0 and consequently μ� = 0.

In a similar manner to the photons case, we can introduce the wave number k
and the number of oscillations in d3k = 4πk2dk are given by Vh/(2π)34πk2dk.
After introducing the usual relation ω = ck and since for gravitons we have only two
independent polarizations corresponding to physical gravitons, as usual we have for
the number of gravitons Nh within Lh = c/H�

Nh = Vh
π2c3

k3
BT

3
h

h̄3 	(3)ξ(3), (10)

where 	(3) = 2 and ξ(3) � 1.21. It is easy to see that, thanks to (8),
N = 	(3)ξ(3)/(48π4) � 1. This result is reasonable only if we suppose
a BEC of gravitons filling the ground state with ε = 0 at T < Th . Con-
sidering gravitons as massless bosons, condensation cannot happen in ordinary
situations [35].

Nevertheless, note that, thanks to the interactions among photons and the electrons
of a medium, photons propagating in a medium with an effective phase velocity dif-
ferent from c. In fact, in a medium with index of refraction η, the effective phase
velocity of a photon is c/η. In a similar way, we suppose that the interactions among
gravitons physically justifies a slowing down of the gravitons phase velocity. As a
consequence, we may suppose that the following relation holds: ω = γ |k|c, where
the effective phase velocity vg is vg = cγ . The parameter γ must be fixed by the
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overall Bose–Einstein statistics satisfied by gravitons. With the introduction of γ , the
formula (10) changes to

Nh = Vh
π2c3

k3
BT

3
h

γ 3h̄3 	(3)ξ(3). (11)

After using the equality (8) characterizing the dark energy, we obtain for γ :

γ =
(

	(3)ξ(3)

48π4

) 1
3 1

N
1
3
h

. (12)

Formula (12) shows that the effective phase velocity of the gravitons depends only
from the number of gravitons present at the horizon Lh and is always smaller than c,
a reasonable result. This result is a direct consequence of the constraint (8).

To specify the system, we must evaluate the internal energy of the system at the
apparent horizon. As stated in [32], quantum fluctuations do imply a non-vanishing
internal energy Uh . In this paper we consider only positive quantum fluctuations.3 In
that case we can write [32] Uh = |c0|ch̄

√
�, with c0 a dimensionless constant. The

total internal energy can be obtained, as usual, multiplying dNh for h̄ω and integrating
with respect to ω: we obtain

Uh = Vh
c3

k4
BT

4
h

γ 3h̄3

π2

15
. (13)

After using Uh = |c0|ch̄
√

� and Eqs. (8) and (13) we have

Uh = kNhch̄
√

�, k = π3

60
√

3	(3)ξ(3)
, (14)

i.e. |c0| ∼ N . Another interesting quantity is the mean value ω of the frequency ω.
We get

ω = π4kBTh
15	(3)ξ(3)h̄

. (15)

Hence, the following formula holds for Uh :

Uh = Nhh̄ ω, (16)

which is the energy of N oscillators with frequency ω. Note that the mean frequency
results independent on the number of gravitons Nh . However, this does not happens
for the mean proper wavelength λ (denoting with λc the wavelength in comoving coor-

dinates, we have λ = ect
√

�
3 λc). In fact we have λ = 2πγ c/ω and as a consequence

λ = 120

π2 	(3)ξ(3)

[
	(3)ξ(3)

48π4Nh

] 1
3
√

3

�
. (17)

3 For the case of negative quantum fluctuations, a quantum field theory formalism is necessary [36].
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The (17) is an interesting formula relating the mean value for the wavelength of the
gravitons, the cosmological constant and the number of excitations inside Lh . The (17)
can also be written in the form λN 1/3

h /Lh � 2.37. Since � � 10−52/m2, we have

λ � 2.37 × 1026/(N 1/3
h ) m. This formula permits us some numerical investigations.

As an example, for gravitons with λ ∼ 1015 m, we obtain Nh ∼ 1033, while for
λ ∼ 106 m (binaries source) we obtain Nh ∼ 1060.

Concerning the mean frequency ω given by (15), for � ∼ 10−52/m2 we obtain,
thanks to the formula kBTh/h̄ = c/(4π)

√
�/3, ω ∼ 10−18 Hz, i.e. a very low fre-

quency that we expect, for example, in a system near condensation.
In fact, thanks to the large number of gravitons Nh � 1 expected at the apparent

horizon Lh of a de Sitter universe,4 we have that vg � c and for Nh → ∞ we
have vg → 0. In the next sections we explore this possibility by presenting a suitable
thermodynamic limit.

As a final consideration for this section, we study the thermalization of gravitons in
an expanding universe. Gravitons are expected to weakly interact among themselves.
Moreover, the expansion of the universe can take more difficult thermalization. Hence
we expect that thermalization can certainly happen for a sufficiently slow expansion
and for a huge gravitons number Nh . The very low value for � works in such a
direction. To be more quantitative, we introduce the interaction rate 	 representing
the mean interactions frequency. As usual, we can assume that thermalization follows

provided that 	 > H(t) = c
√

�
3 . For 	 we could adopt the usual expression, i.e.

	 = Nh
Vh

σgvg , where σg is the graviton–graviton cross section and vg = cγ . With the
help of (11) and (12) we have:

N
2
3
h >

[
	(3)ξ(3)

48π4

]− 1
3 4π

�σg
. (18)

Since we have not a consolidated quantum gravity theory on a curved spacetime, the
cross section σg in (18) is left unspecified. Nevertheless, the (18) clearly shows that,
also for a very small σg , a sufficiently large Nh makes the job.

4 Dark energy as an ‘almost’ Bose–Einstein condensate

In the section above we have depicted the cosmological constant as composed of Nh

interacting gravitons with phase velocity vg given by vg = cγ , as happens for photons
interacting with a given medium. The dimensional factor γ given by (12) is calculated
by the properties of the system at its thermodynamic radius, i.e. the apparent horizon
Lh = √

3/�. Since � ∼ 10−52/m2 for our actual universe, we expect Nh � 1 and
consequently vg � 0, i.e. the gravitons phase velocity slow down up to a value closed
to zero, as expected for a boson system near the critical temperature. In particular,
thanks to the (8), we have for the temperature T� of �, T� = Th ∼ 10−29 K, i.e. a

4 Practically of the same order of the one predicted by the concordance �CDM model at present cosmo-
logical time.
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very cold temperature that is typical of BEC matter. The mean frequency ω is very
small ω ∼ 10−18 Hz and the mean energy ε of gravitons is of the order of ε ∼ 10−52 J:
this implies that the gravitons are near the ground state with ω � 0. In this regard, the
temperature Th , fixed thanks to the (8), can be seen as a critical temperature. Hence,
the very low value for � can well be a consequence of the fact that the cosmological
constant is composed of gravitons at very low temperatures, namely the ‘critical’
temperature Th . The value of Th and the fact that γ � 1 imply that effectively gravitons
are very near to be in a BEC state. In this regard, thanks to (8) and (12), gravitons at
T� � 0 are practically frozen (ω � 0 and vg � 0). As an example, for Nh ∼ 1060 (a
relatively ‘small’ value), we have vg ∼ c/1020, i.e gravitons employ 1015 seconds to
travel one kilometer. We stress that this almost BEC state of gravitons at T = Th is
due to the fact that vg � 0. Also note that, since for the critical temperature Tc we have
Tc = T� � 0, fluctuations allow to a non-zero fraction of gravitons to fill the state
with T < Th , therefore with exactly ω = 0. As a consequence of these reasonings,
one may expect that gravitons at T = Th can acquire a kind of effective mass mg .
We can estimate this effective mass in the following way. From (15) we see that the
mean energy for graviton ε is given by ε = h̄ω � kBTh . For a particle the relativistic
dispersion relation is given by ε = √

c2 p2 + m2c4. Since gravitons are frozen in a
quasi BEC state we can assume p = 0. Hence we obtain m = ε

c2 � 10−65 g for the
effective mass acquired by gravitons. The same result can be obtained by considering
the effective mass as an effect due to the finiteness of the apparent horizon Lh ∼
1026 m. We obtainmg = h̄/(cLh) ∼ 10−65 g, that is of the same order of the estimation
above. Note that also in [35], thanks to the ‘finite’ dye-filled optical microcavity
where experiment is performed, photons acquire an effective mass near the BEC
ground state.

This phenomenon does not happen for huge values of the cosmological constant,
for example at the primordial inflation tI ∼ 10−37 − 10−35 s, where ω � 0 and
Nh , thanks to the very small dimensions of the universe at the begin of the primor-
dial inflation, is expected to be certainly much more less than the actual expected
value and as a consequence vg at t = tI is not negligible. Obviously, the tracta-
tion of section above is still valid for a finite value of � expected at the primordial
inflation.

In the following we perform the thermodynamic limit. This a subtle issue since a
Friedmann flat solution is spatially infinite. However, we have identified the apparent
horizon Lh with the thermodynamic radius of the system. Hence, according with this
identification, the thermodynamic limit must be performed by sending Nh → ∞
and Lh → ∞ (i.e. � → 0) in such a way that Nh

Vh
= ρg = const. In this way the

cosmological constant � ‘disappears’ in the thermodynamic limit, but the gravitons
density ρg remains finite. This does not means that in the thermodynamic limit we
have a Minkowski spacetime, but merely that a finite � at a finite Lh is spread on an
infinite region. This is a mathematical procedure to eliminate fluctuations depending
on N from the BEC phenomenology.

As a first consequence, in the thermodynamic limit above defined, we have Th =
T� → 0. From (15) we deduce that ω → 0 an also the mean energy for gravitons
Uh/Nh → with obviously Uh → ∞ (spatially infinite system). These features are
typical of the BEC phenomenology. In particular, the mean frequency ω must be
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vanishing in the ground state. Moreover, thanks to (12) we have γ → 0 and as a result
vg → 0. Finally, for λ we have

λ → 1, 47

ρg
1
3

. (19)

The fact that the proper mean wavelength λ is not vanishing in the thermodynamic
limit means that effectively the gravitons are not vanishing in this limit.

Summarizing, in the thermodynamic limit we have frozen (vg = 0) gravitons filling
the ground state with zero mean energy and finite mean wavelength: this implies that
effectively exactly at T� = 0 gravitons are in a BEC state.

The actual very small value of the cosmological constant, thanks to our setups,
is an indication that the identification of the actual � as composed of gravitons in a
state very near to the ground state of a BEC condensate is a reasonable and viable
possibility.

5 Conclusions and final remarks

In this paper, following our recent results [30–33] concerning the thermodynamic
of Friedmann universes, we presented a statistical description of the cosmological
constant. In particular, thanks to the fundamental result (8) that the cosmological
constant has a non-vanishing temperature, we can describe � as composed of Nh

interacting gravitons with energy h̄ω and Th = T�. The supposed interaction between
gravitons justifies the assumption that their phase velocity slow down, as happens
for photons propagating in a medium. The phase velocity vg is now vg = cγ with

γ ∼ 1/N 1/3
h . As a consequence, we can calculate the mean frequency for gravitons

ω and an interesting formula, namely the (17), relating the mean wavelength λ, the
cosmological constant � and the gravitons number Nh at the apparent horizon. Thanks
to the actual very low value for �, we obtain ω ∼ 10−18 Hz. This very low value for
ω, together with the fact that practically vg ∼ c/N 1/3

h � 0 motivates the view that the
present day dominant cosmological constant is constituted by gravitons very near a
BEC state. In practice, the temperature T� = Th is a critical temperature for BEC and
all the gravitons are very near the ground state with ω = 0. The ground state ω = 0
is rigorously obtained in the thermodynamic limit by sending Lh → ∞ (� → 0)
and Nh → ∞ but with Nh/Vh = ρg held fixed. In this limit, {ω, Th, vg} → 0, with
λ finite, motivating our physical interpretation of the actual cosmological constant as
composed of gravitons near the ground state of a BEC.

Gravitons are supposed massless. However, in massive gravity (see for example [37]
and references therein) a very small mass mg (<10−62 g) is allowed. Our tractation
is still substantially valid by taking a small value for mg such that mg ≤ h̄ω/c2. For
� ∼ 10−52/m2, we have mg ≤ 10−65 g.

These results of this paper have been obtained considering a de Sitter universe.
Although our universe is composed by the �68 % of dark energy, dark matter is also
present (�28 %). It is thus interesting to wonder the possible modifications of the
present paper calculations in presence of dark matter or other kinds of matter.
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To this purpose, consider a Friedmann flat universe filled with a positive cosmolog-
ical constant and usual dust matter with density ρm and radiation ρr with temperature
Tr . First of all, it is rather physically reasonable to assume that gravitons decoupled
from radiation during or before primordial inflation (see for example [38] and refer-
ences therein). With the actual � made of gravitons, they are reasonable decoupled
from the CMBR (and also dark matter starting from the recombination era) and as a
consequence gravitons cannot be thermalized with photons. Instead, we can reason-
ably assume that Tg ∼ T� ∼ Th in our universe dominated by � and practically the
results of Sects. 3–4 still hold in our Friedmann flat universe where matter, radiation
and gravitons are decoupled. In particular, gravitons composing � are very near to a
BEC state with {ω, vg} � 0.

As an useful example [33], we could consider ρm and ρ� = �c2/(8πG) as a
mixture at the temperature Tu > Th = T�

5 given by

Tu = ρ�T� + ρmTm + ρr Tr
ρ� + ρm + ρr

. (20)

In this case [33], Tu > Th and Lh,t > 0. Only asymptotically Tu → Th and a pure de
Sitter phase emerges. We can suppose again interacting gravitons with formulas (8),
(12), (13), (15), (16) still hold but with Th = h̄H(t)

4πkB
, where H(t) is the Hubble flow.

Hence, the mean value ω becomes time dependent with ω ∼ H(t). When a de Sitter
phase is reached with H(t) → c

√
�/3 we regain the ‘stationary’ formula (15). Gen-

erally, we also expect that Nh = Nh(t) and λ = λ(t). By considering, for example,
a time independent internal energy Uh , we must have Nh(t) ∼ 1/H(t). Concerning
formula (17), we obtain

λ(t)H(t)N
1
3
h (t) = 2.37c. (21)

Note that, if we associate Nh to the number of gravitons of � at the apparent horizon,
formula (21) holds for Nh 
= 0, i.e. for � 
= 0. However, with the hypothesis that
gravitons are the ‘quanta’ of the gravitational field, we could suppose that formula
includes gravitons constituting � and the ones Ndh related to the intrinsic non static
nature of a Friedmann universe, provided that they are thermalized with �, i.e. Tdh �
T�. In this case formula (21) still holds with Nh → Nh + Ndh = N .

With respect to (21), a de Sitter phase (Tu = Th = T�, Lh,t = 0) arises when

λ(t)N
1
3 (t) � const . Stated in other words, by denoting with ρ the density of the uni-

verse excluded � and with p the pressure with equation of state p = kρc2, Friedmann
equations become

(
λ(t)N

1
3 (t)

)
,t

λ(t)N
1
3 (t)

= λ,t

λ
+ N,t (t)

3N (t)
= 4

√
3πGρ(1 + k)√
8πGρ + �c2

, (22)

λ
2
N

2
3

(
8

3
πGρ + �c2

3

)
= sc2, s � 5.61, (23)

5 It is rather natural to suppose that �, thanks to (8), is thermalized with the apparent horizon.
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where only thermodynamic quantities are included, together with the (21). For ρ = 0
we have obviously the de Sitter solution with the relation (17). Note that for k → −1

a de Sitter phase emerges: in this case we have λ
3
(t) ∼ 1/N (t) but with λ and N ,

differently from the de Sitter universe, time dependent quantities.
As a final consideration, note that Eq. (17) implies that the value of � depends on

the product λ
2
N

2
3
h , i.e. � ∼ 1/(λ

2
N

2
3
h ). Although with the formula (17) we have not

further constraints to obtain the actual very low estimated value for �, it is certainly
true that a very low value is natural in our approach. For example, for wavelengths
λ ≥ 106 m, we have Nh ≤ 1060. In any case, thanks to the expected very large value
for Nh , the issue of a very small � can be certainly alleviated.

Summarizing, the thermodynamic (8), (9) at the apparent horizon Lh together with
the hypothesis that dark energy is made of interacting bosons very near to a BEC state
due to massless gravitons or very light bosons, is a physically viable possibility and
must be certainly further investigated.
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