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Abstract In this paper, we study the dynamical instability of gaseous sphere under
radial oscillations approaching the Reissner–Nordström limit. For this purpose, we
derive linearized perturbed equation of motion following the Eulerian and Lagrangian
approaches. We formulate perturbed pressure in terms of adiabatic index by employing
the conservation of baryon numbers. A variational principle is established to evalu-
ate characteristic frequencies of oscillations which lead to the criteria for dynamical
stability. The dynamical instability of homogeneous sphere as well as relativistic poly-
tropes with different values of charge in Newtonian and post-Newtonian regimes is
explored. We also find their radii of instability in terms of the Reissner–Nordstörm
radius. We conclude that dynamical instability occurs if the gaseous sphere contracts
to the Reissner–Nordstörm radius for different values of charge.

Keywords Gravitational collapse · Instability · Electromagnetic field · Relativistic
fluids

1 Introduction

It is a well-known fact that any relativistic model will be physically interesting if it is
stable under fluctuations. The stability/instability of celestial objects has significant
importance in general relativity (GR). This study is closely related to the evolution
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and structure formation of self-gravitating objects. Initially, any stable gaseous mass
remains in state of hydrostatic equilibrium for which the gravitational force is counter
balanced by the internal pressure of the body acting in the opposite direction. The
effect of gravity over the internal pressure causes the matter to collapse and the star
contracts to a point under its own gravitational force forming compact stars.

The dynamics of massive stars can be discussed in weak as well as strong-field
regimes. The idea of weak-field approximation [Newtonian and post-Newtonian
approximations (pN)] [1], [2] has remarkable importance in the context of relativistic
hydrodynamics. The analysis of dynamical instability in strong-field regimes becomes
complicated due to non-linear terms, so the weak-field approximation schemes are used
as an effective tool. Chandrasekhar [3] was the pioneer who studied the dynamical
instability of Newtonian perfect fluid sphere approaching the Schwarzschild limit in
terms of adiabatic index. He used Eulerian approach for hydrodynamic equations and
developed a variational principle to find characteristic frequencies applicable to the
radial oscillations at Newtonian and pN limits. He concluded that the system would
be dynamically stable or unstable according to the numerical value of adiabatic index,
i.e., � > 4

3 or � < 4
3 , respectively. The same author [4] also investigated the stability

of gaseous sphere under radial and non-radial oscillations at pN limit.
The dynamical instability of self-gravitating spherical objects has been studied by

using various techniques. Herrera et al. [5] explored dynamical instability of spherical
collapsing system for non-adiabatic fluid using perturbation scheme. They showed
that heat conduction increases the instability range in Newtonian limit but decreases
in pN limit. Later, many researchers [6], [7], [8] discussed the role of various physical
factors on the dynamical instability of spherical systems using perturbation scheme
and found interesting results.

The stability of self-gravitating objects in the presence of electromagnetic field
has a primordial history starting with Rosseland [9]. There is a general consensus
that astrophysical objects do not have charge in large amount [10] but there are some
mechanisms which induce large amount of electric charge in collapsing stars. Stettner
[11] showed that presence of net surface charge enhances the stability of sphere with
uniform density. Glazer [12] investigated the dynamical stability of perfect fluid sphere
pulsating radially with electric charge. Ghezzi [13] studied stability of neutron stars
and found that the stars having a charge greater than the extreme value would explode.
Sharif and collaborators [14], [15] discussed the role of electric charge in dynamical
instability at Newtonian and pN regimes.

Polytropes are useful self-gravitating objects as they provide simplified models
for internal structures of stellar objects. The polytropic equation of state deals with
various fundamental astrophysical issues [16]. Tooper [17] studied the internal struc-
ture of gaseous sphere obeying polytropic equation of state and obtained Newtonian
polytropes using numerical solution of the Lane-Emden equation. The effect of elec-
tromagnetic field on the dynamics of polytropic compact stars has also been studied
[18], [19]. Herrera and Barreto [20] analyzed both Newtonian as well as relativistic
polytropes in spherical symmetry. Recently, Breysse et al. [21] have discussed the
dynamical instability of cylindrical polytropic fluid systems under radial and non-
radial modes of oscillations.
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In this paper, we study the dynamical instability of spherically symmetric gaseous
systems following Chandrasekhar’s approach [3] in the vicinity of electromagnetic
field. The paper is organized as follows. The next section deals with matter distribu-
tion and the Einstein–Maxwell field equations. In Sect. 3, we discuss motion of the
system under radial oscillations following the Eulerian approach. Section 4 provides
the formulation of perturbed pressure and adiabatic index in terms of Lagrangian dis-
placement using conservation of baryon number. In Sect. 5, we develop conditions for
dynamical instability of homogeneous sphere and relativistic polytropes. Finally, we
conclude our results in the last section.

2 Field equations and matter configuration

We consider a spherically symmetric system in the interior region given by

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2), (1)

where ν = ν(t, r) and λ = λ(t, r) are the gravitational potentials. The corresponding
Einstein field equations can be written as

− 8πG

c4 T 0
0 = 1

r2 − 1

r2

∂

∂r
(re−λ), (2)

−8πG

c4 T 1
1 = 1

r2 − e−λ(
1

r2 + 1

r

∂ν

∂r
), (3)

8πG

c4 T 1
0 = λ̇

e−λ

r
, (4)

where dot denotes derivative w.r.t t. We assume the energy–momentum tensor corre-
sponding to charged perfect fluid in the form

T i
j = (σ + p)uiu j + pδij + 1

4π

[
Fjk F

ik − 1

4
δij Fkl F

kl
]

, (5)

where ui = dxi
ds is the four-velocity, p is the pressure and σ is the energy density.

The electromagnetic field tensor Fi j can be defined in terms of four potential, Fi j =
� j;i − �i; j , which satisfies the Maxwell field equations as

Fi j
; j = 4π J i , F[i j,k] = 0,

where J i = ρui is the four current. The only non-vanishing radial component of
electromagnetic field tensor (F01 = −F10) implies that

d
(
r2e(λ+ν)/2F01

)
dr

= 4πr2eλ/2ρ,
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whose integration yields

F01 = e−(λ+ν)/2Q(t, r)

r2 ,

where Q(t, r) = 4π
∫ r

0 r2ρeλ/2dr is the total amount of charge within the sphere.

The energy-momentum tensor follows the conservation identity T i j
; j = 0, which

governs hydrodynamics of the fluid and leads to the following relations

∂T 0
0

∂t
+ ∂T 0

1

∂r
+ 1

2

(
4

r
+ ∂

∂r
(λ + ν)

)
T 1

0 + 1

2

(
T 0

0 − T 1
1

) ∂λ

∂t
= 0, (6)

∂T 0
1

∂t
+ ∂T 1

1

∂r
+ 1

2

(
T 1

1 − T 0
0

) ∂ν

∂r
− 2

r

(
p − T 1

1

)
+ 1

2
T 0

1
∂

∂t
(λ + ν) = 0, (7)

where T 1
0 = −eν−λT 0

1 . The non-zero components of energy–momentum tensor are

T 0
0 = −σ − Q2

8πr4 , T 1
1 = p − Q2

8πr4 , T 2
2 = T 3

3 = p + Q2

8πr4 .

All the quantities governing the motion remain independent of time during the state of
hydrostatic equilibrium. The surface stresses describing equilibrium state are denoted
by zero subscript. In this context, Eqs. (2), (3) and (7) take the form

d

dr
(re−λ0) = 1 − 8πGr2

c4 σ0 − GQ2

c4r2 , (8)

1

r
e−λ0

dν0

dr
= 1

r2 (1 − e−λ0) + 8πGp0

c4 − GQ2

c4r4 , (9)

dp0

dr
= 1

2

dν0

dr
(p0 + σ0) + 1

8π

d

dr

(
Q2

r4

)
+ Q2

4πr5
. (10)

Following Eqs. (2) and (3), we also have a useful relation

e−λ0

r

d

dr
(λ0 + ν0) = (p0 + σ0)

8πG

c4 . (11)

We take the Reissner–Nordström (RN) spacetime in the exterior region as

ds2 = −
(

1 − 2GM

rc2 + GQ2

r2c4

)
dt2 +

(
1 − 2GM

rc2 + GQ2

r2c4

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (12)

where M corresponds to the total mass of the sphere. The hydrostatic equilibrium
describes the state of fluid in which pressure gradient force is balanced by the gravita-
tional force. When one of these forces overcome the other, the stability of the system
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is disturbed leading to an unstable system. The equation describing hydrostatic equi-
librium is obtained by eliminating ν0 from Eqs.(9) and (10) as

(
1 − 2GMr

rc2 + GQ2

r2c4

)
dp0

dr
= − 1

c2

(
GMr

r2 − GQ2

r3c2 + 4πG

c2 pr

)

×(p0 + σ0) + 1

4π

(
1 − 2GMr

rc2 + GQ2

r2c4

) (
Q2

r5
+ 1

2

d

dr

(
Q2

r5

))
, (13)

where the left and right hand sides correspond to pressure gradient and gravitational
terms, respectively and

Mr = 4πG

c4

∫ r

0
σ0r

2dr + G

2c4

∫ r

0

Q2

r2 dr, (14)

is the Misner–Sharp mass function.

3 Equations governing radial oscillations

Here we discuss the motion of gaseous masses undergoing radial oscillations. The
non-zero components of four-velocity are given by

u0 = e− ν0
2 , u0 = −e

ν0
2 , u1 = ve− ν0

2 , u1 = ve
λ0−ν0

2 , (15)

where v = dr
dt is the radial velocity component. These components can be calculated

with respect to spacetime coordinates by ui = dxi
ds . The stability of any gaseous mass

under perturbation ultimately gives rise to the dynamical evolution of gravitating
system. We assume that an equilibrium configuration is perturbed such that it does
not affect the spherical symmetry. We consider only linear terms so that the respective
values in the perturbed state become

λ=λ0 + δλ, ν = ν0 + δν, p = p0 + δp, σ = σ0 + δσ, Q = Q0 + δQ. (16)

We follow the Eulerian approach [4] for perturbations such that the corresponding
linearized forms (governing the radial perturbations) through Eqs. (8) and (9) are

∂

∂r
(re−λ0δλ) = 2G

c4

(
4πr2δσ − Q0δQ

r2

)
, (17)

e−λ0

r

[
∂

∂r
δν − δλ

dν0

dr

]
= 1

r2 e
−λ0δλ + 8πG

c4 δp − 2GQ0δQ

c4r4 , (18)

here δλ, δν, δσ , δp and δQ represent the Eulerian changes. Equations (4) and (7) can
be written appropriately in linearized forms as
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e−λ0

r

∂

∂t
δλ = −4πG

c4

(
2(p0 + σ0)v − Q0δQ

r4

)
, (19)

(p0 + σ0)e
λ0−ν0

∂v

∂t
+ ∂

∂r
δp + 1

2
(p0 + σ0)

∂

∂r
δν

+1

2
(δp + δσ )

dν0

dr
+ 1

8π

Q0δQ

r4 − 1

4π

∂

∂r

[
Q0δQ

r4

]
= 0. (20)

Let us introduce a Lagrangian displacement “η” such that v = ∂η
∂t . Integration of

Eq. (19) leads to

e−λ0

r
δλ = −8πG

c4 (p0 + σ0)η + 4πGQ0

c4r4

∫
δQdt. (21)

Using Eq. (11), this equation takes the form

δλ = − d

dr
(λ0 + ν0)η + 4πGQ0eλ0

c4r3

∫
δQdt. (22)

Solving Eq. (17) and (21), it follows that

δσ = 1

r2

∂

∂r

[
−r2(σ0 + p0)η + Q2

2r4

∫
δQdt

]
+ Q0

4πr4 δQ, (23)

which yields

δσ = −η
dp0

dr
− η

dσ0

dr
− 1

r2 (p0 + σ0)
∂

∂r
(ηr2) + 1

r2

∂

∂r

[
Q0

2r4

∫
δQdt

]

+ Q0

4πr4 δQ. (24)

Using Eq. (10), it follows that

δσ = −η
dσ0

dr
− eν0/2

r2 (p0 + σ0)
∂

∂r

[
ηr2e−ν0/2

]
− η

8π

d

dr

[
Q2

r4

]

+ 1

r2

∂

∂r

[
Q0

2r4

∫
δQdt

]
+ Q0

4πr4 δQ. (25)

Substituting δλ from Eq. (21) in (18), we obtain

e−λ0

r

∂

∂r
δν =

[
(p0 + σ0)

(
1

r
+ dν0

dr

)
η + δp

]
8πG

c4

+4πGQ0

c4r4

[
dν0

dr
− η

r

] ∫
δQdt − 2GQ0

c4r4 δQ, (26)
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which in accordance of Eq. (11) leads to

(p0 + σ0)
∂

∂r
δν = d

dr
(λ0 + ν0)

{[
δp − (p0 + σ0)

(
1

r
+ dν0

dr

)
η

]

+ Q0

2r4

[
dν0

dr
− η

r

] ∫
δQdt − Q0

4πr4 δQ

}
. (27)

Now we assume time dependent perturbations in the form of Lagrangian displacement,
i.e., ηeiωt , where ω is the characteristic frequency to be evaluated. The Lagrangian
displacement η connects the fluids elements in equilibrium with corresponding one in
the perturbed configuration. Since the equations have natural modes of oscillations,
so they will depend on time. Considering δλ, δν, δp, δσ and δQ as time dependent
amplitudes of the respective quantities, Eq. (20) with (27) can be rewritten as

ω2eλ0−ν0(p0 + σ0)η = δp
d

dr

(
ν0 + 1

2
λ0

)
+ d

dr
δp + 1

2
δσ

dν0

dr
− 1

2
(p0 + σ0)

×
(
dν0

dr
+ dλ0

dr

) (
1

r
+ dν0

dr

)
η + Q0

8πr4

d

dr
(λ0 + ν0)

×
{

2π

(
dν0

dr
− η

r

)∫
δQdt − δQ

}
+ 1

4π

{
Q0δQ

2r4

− d

dr

(
Q0δQ

r4

)}
. (28)

4 The conservation of Baryon number

In order to discuss the perturbed state of pressure in terms of Lagrangian displace-
ment η, an additional assumption is required which can relate physical aspects of
relativistic theory with the gaseous mass undergoing adiabatic radial oscillations. In
this context, the required supplementary condition can be satisfied by conservation of
baryon number in the framework of GR as (Nu j ); j = 0, or

∂

∂x j
(Nu j ) + Nu j ∂

∂x j
ln

√−g = 0, (29)

where N is the baryon number per unit volume. The conservation of baryon number
plays a vital role in collecting different models of the universe. According to this law,
the number of particles may vary but their total number will remain conserved during
the fluid flow. This change occurs due to loss or gain of net fluxes. Here we consider
fluid obeying this identity. Equation (29) through (15) leads to

∂

∂t
(Ne−ν0/2) + ∂

∂r
(Nve−ν0/2) + Nve−ν0/2 ∂

∂r

(
2

r
+ 1

2
[ν + λ]

)

+N

2
e−ν0/2 ∂

∂t
(ν + λ) = 0. (30)
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We assume the perturbation

N = N0(r) + δN (r, t), (31)

keeping only the linear terms in v, Eq. (30) takes the form

1

r2

∂

∂r
(N0r

2ve−ν0/2) + e−ν0/2 ∂

∂t
δN + 1

2
N0e

−ν0/2 d

dr
(ν0 + λ0)

+1

2
N0e

−ν0/2 ∂

∂t
δλ = 0, (32)

whose integration in terms of Lagrangian displacement η leads to

δN + N0

2

[
η
d

dr
(ν0 + λ0) + δλ

]
+ 1

r2 e
ν0/2 ∂

∂r

(
N0r

2ηe−ν0/2
)

= 0. (33)

Using Eq. (22), it follows that

δN = −η
dN0

dr
− N0

r2 eν0/2 ∂

∂r

(
r2ηe−ν0/2

)
+ 2πGN0Q0

c4r3 eλ0

∫
δQdt. (34)

We consider an equation of state in the form

N = N (σ, p), (35)

so that Eqs.(25) and (34) together give

δp = −η
dp0

dr
− p0�

eν0/2

r2

∂

∂r

(
r2ηe−ν0/2

)
+ αQ0

r3

∫
δQdt, (36)

where

α = 1

∂N/∂p

{
2πGN0

c4 eλ0 − 1

2r

dN

dσ

}
, (37)

and � is the adiabatic index (ratio of specific heats) defined by

� = 1

p∂N/∂p

{
N − (σ + p)

∂N

∂σ

}
. (38)

This relates the pressure and density fluctuations and measures the stiffness of the
fluid.

5 Pulsation equation and variational principle

The linear pulsation corresponds to the oscillation frequencies and different modes
of small perturbations applied to equilibrium spherical configuration. Inserting the
values of δσ and δp from Eqs. (23) and (36) in (28), it follows that
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ω2eλ0−ν0(p0 + σ0)η = −η

(
dν0

dr
+ 1

2

dλ0

dr

)
dp0

dr
− d

dr

(
η
dp0

dr

)
− 1

2

{
2

r

× (p0 + σ0)η + d

dr
[(p0 + σ0)η]

}
− 1

2
η(p0 + σ0)

(
dν0

dr
+ dλ0

dr

) (
1

r
+ dν0

dr

)

−e−(ν0+ λ0
2 ) d

dr

{
e(ν0+ λ0

2 )�p0
eν0/2

r2

d

dr
(r2ηe−ν0/2)

}
+ e−λ0/2 d

dr

{
βQ0

r3

× eλ0/2
∫

δQdt

}
+ Q0

r3

dν0

dr

∫
δQdt

{
β + 1

4r
+ 1

4πr

(
dν0

dr
− η

r

)}

+ Q0

4πr4

dλ0

dr

{
dν0

dr
− η

r

∫
δQdt − δQ

2

}
+ Q0

8πr4 δQ + eν0/2

4π

d

dr

{
Q0eν0/2δQ

r4

}
.

(39)

Substituting dp0
dr from Eq. (10) in the above equation, we have

ω2eλ0−ν0(p0 + σ0)η = 1

2
(p0 + σ0)η

{
d2ν0

dr2 − 3

r

dν0

dr
− 1

r

dλ0

dr
− 1

2

dλ0

dr

dν0

dr

}

− 5

2π

Q2

r6 − 1

8πr4

d2

dr2 (Q2) + e−λ0
d

dr

{
βQ0

r3 e−λ0/2 Q̃

}
+ Q0 Q̃

r3

dν0

dr

{
β + 1

4π

+ 1

4πr

(
dν0

dr
− η

r

)}
+ Q0

4πr4

dλ0

dr

{(
dν0

dr
− η

r

)
Q̃ − δQ

2

}
+ Q0δQ

8πr4

+eν0/2

4π

d

dr

{
Q0e−ν0/2δQ

r4

}
, (40)

where
∫

δQdt = Q̃. Under the equilibrium condition, Eq. (4) yields

{
16πGp0

c4 + 2GQ2
0

c4r4

}
eλ0 = d2ν0

dr2 + 1

r

d

dr
(ν0 − λ0) + 1

2

(
dν0

dr

)2

− 1

2

dλ0

dr

dν0

dr
.

(41)

Using this expression and Eq. (10), Eq. (40) takes the form

ω2eλ0−ν0(p0 + σ0)η = 4

r

dp0

dr
η − 1

p0 + σ0

(
dp0

dr

)2

η + 8πGp0

c4 eλ0

×(p0 + σ0)η + d

dr

[
eλ0+3ν0/2 p0�

r2

d

dr

(
r2ηe−ν0/2

)]
e−(ν0+λ0/2)

+ 1

p0 + σ0

dp0

dr
η

(
1

4πr4

d(Q2)

dr
− Q2

πr5

)
+ dQ2

dr

η

2πr5

[
1

p0 + σ0

Q2

4πr4 − 1

]

− η

p0 + σ0

1

(2πr4)2

[
Q4

r2 + 1

16

(
dQ2

dr

)2
]

− 5Q2

2πr6 − 1

8πr4

d2

dr2 (Q2)
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+GQ2
0

c4r4 (p0 + σ0)ηe
λ0 + e−λ0

d

dr

(
βQ0 Q̃

r3 eλ0/2
)

+ Q0 Q̃

r3

dν0

dr

[
β + 1

4π

+ 1

4πr

(
dν0

dr
− η

r

)]
+ Q0δQ

8πr4

(
1 − dλ0

dr

)
+ eν0/2

4π

d

dr

(
Q0δQ

r4 e−ν0/2
)

.

(42)

This is the required pulsation equation which satisfies the boundary conditions, i.e.,
η = 0 at r = 0 and δp = 0 at r = R. This constitutes a characteristic value problem
for ω2 obtained by multiplying the equation with ηr2e(λ0+ν0)/2 and integrating over
values of r as

ω2
∫ R

0
e(3λ−ν)/2r2η2(p + σ)dr =

∫ R

0
e(λ+3ν)/2 p�

r2

[
d

dr

(
r2ηe−ν/2

)]2

dr

+8πG

c4

∫ R

0
e(3λ+ν)/2 pr2η2(p + σ)dr −

∫ R

0

r2η2

p + σ
e(λ+ν)/2

(
dp

dr

)2

dr

+4
∫ R

0
rη2e(λ+ν)/2 dp

dr
dr +

∫ R

0

η2

p + σ
e(λ+ν)/2 dp

dr

(
1

4π

dQ2

dr
− Q2

πr3

)
dr

+
∫ R

0

η2

2πr3 e
(λ+ν)/2 dQ

2

dr

(
1

p + σ

Q2

4πr4 − 1

)
dr − 5

2π

∫ R

0

ηQ2

r4 e(λ+ν)/2dr

−
∫ R

0

η2

p + σ

e(λ+ν)/2

(
2πr3

)2

[(
Q2

r

)2

+ 1

16

(
dQ2

dr

)2
]
dr +

∫ R

0

GQ2
0η

2

c4r4

×(p + σ)e(3λ+ν)/2dr −
∫ R

0

ηe(λ+ν)

8πr2

d2

dr2

(
Q2

)
dr +

∫ R

0
r2ηe(ν−λ)/2

× d

dr

(
βQ0 Q̃

r3 eλ0/2
)
dr +

∫ R

0

ηQ0δQ

8πr2 e(ν+λ)/2
(

1 − dλ0

dr

)
dr

+
∫ R

0

ηQ0 Q̃

r
e(ν+λ)/2 dν0

dr

[
β + 1

4π
+ 1

4πr

(
dν0

dr
− η

r

)]
dr

+
∫ R

0

ηr2

4π
e(ν+λ)/2 d

dr

(
Q0δQ

r4 e−ν0/2
)
dr. (43)

The corresponding orthogonality condition is defined as

∫ R

0
e(3λ−ν)/2r2(p + σ)η(i)η( j) = 0, (i �= j), (44)

where η(i) and η( j) give proper solutions associated with different characteristic values
of ω2. To investigate dynamical instability of spherical star, the right-hand side of
Eq. (43) should vanish by choosing a trial function ξ satisfying the given boundary
conditions. In the following, we discuss the conditions for dynamical instability by
taking two special models.
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5.1 The homogeneous model of sphere

First we consider the homogeneous sphere with constant energy density σ and study
the conditions for its dynamical instability. Equations (13) and (14) governing the
hydrostatic equilibrium allow the integration [3] such that we can write

x2 = 1 − r2

a2 + b2

r2 , x2
1 = 1 − R2

a2 + b2

R2 , (45)

where a2 = 3c4

8πGσ
and b2 = 2GQ2

c4 . The solutions of the relevant physical quantities
can be determined in terms of x and x1 as

p = σ
x − x1

3x1 − x
, eν = 1

4
[3x1 − x]2, eλ = 1

x2 . (46)

The necessary condition for the positivity of pressure yields 3x1 > 1 which leads to

R2

a2 − b2

R2 <
8

9
.

Using the inertial mass, this takes the form

R >
9

8

(
2GM

c2 − GQ2

Rc4

)
= 9

8
RN , (47)

where RN is RN radius. Inserting the physical quantities in Eq. (43), it follows that

4a2ω2x1

∫ ξ1

0

ξ2η2

x3(3x1 − x)2 dξ = x1

∫ ξ1

0

2x2 − 9x2
1 − 1

x3(3x1 − x)2 ξ2η2dξ

+�

8

∫ ξ1

0
(x − x1)(3x1 − x)2 1

xξ

[
d

dξ
(ηξ2e−ν/2)

]2

dξ + 1

16πa3x1

×
∫ ξ1

0

η2

xξ2

dp

dξ

(
dQ2

dξ
− 4Q2

ξ

)
dξ − 5

4πa3

∫ ξ1

0

Q2η

ξ4

3x1 − x

x
dξ

+ 1

4πa3

∫ ξ1

0

η2(3x1 − x)

xξ2

[
Q2(3x1 − x)

8πa4x1ξ4 − 1

]
dξ − 1

16πax1

×
∫ ξ1

0

η2(3x1 − x)2

x(2πa3ξ3)2

(
dQ2

dξ
− 4Q2

ξ

)
dξ + Gx1

c4

∫ ξ1

0

η2Q2
0

x3ξ2 dξ

− 1

32πa3

∫ ξ1

0

η(3x1 − x)2

x2ξ2

d2

dη2 (Q2)dξ + 1

2a

∫ ξ1

0
x(3x1 − x)ηξ2

× d

dξ

[
βQ0 Q̃

ξ3 e−λ/2
]
dξ + 1

2a2

∫ ξ1

0

ηQ0 Q̃

ξ

3x1 − x

x

dν0

dξ

[
β + 1

4πξ
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×
(
dν0

dξ
− η

ξ

)]
dξ + 1

16πa2

∫ ξ1

0

ηQ0δQ

ξ2

3x1 − x

x

(
1 − 1

a

dλ0

dξ

)
dξ

+ 1

4πa2

∫ ξ1

0

ηξ2(3x1 − x)

x

d

dξ

(
Q0δQ

ξ4(3x1 − x)

)
dξ, (48)

where ξ = r
a , ξ1 = R

a − b
R and � is assumed to be constant.

We take the trial function as

η = ξeν/2 = 1

2
ξ(x1 − x), (49)

for which Eq. (48) becomes

(aω)2x1

∫ ξ1

0

ξ4

x3 dξ = 1

4
x1

∫ ξ1

0
(2x2 − 1 − 9x2

1 )
ξ4

x3 dξ + 9

8

∫ ξ1

0
(x − x1)

×(3x1 − x)2 ξ2

x
dξ + 1

4a3xx1

∫ ξ1

0
(3x1 − x)4

(
−Q2

πξ

)
d

dξ

(
x − x1

3x1 − x

)
dξ

− 1

(4πa3)2x1

∫ ξ1

0

(3x1 − x)2

x

(
Q2

ξ

)2

dξ + Gx1

4c4

∫ ξ1

0
Q2

0
(3x1 − x)2

ξ x3 dξ

− 5

8πa3

∫ ξ1

0

Q2(3x1 − x)2

xξ3 dξ + 1

4a

∫ ξ1

0
xξ3(3x1 − x)

d

dξ

(
3Q0 Q̃

xξ3

)
dξ

+ 1

32πa2

∫ ξ1

0

Q0δQ

xξ
(3x1 − x)2dξ + 1

8πa2

∫ ξ1

0

ξ3

x
(3x1 − x)2

× d

dξ

(
Q0δQ

(3x1 − x)ξ4

)
dξ. (50)

Substituting x = cos θ and ξ = sin θ in the above equation, we obtain

(aω)2 cos θ1

∫ θ1

0

sin4 θ

cos2 θ
dθ = cos θ1

4

∫ θ1

0
(2 cos2 θ − 1 − 9 cos2 θ1)

sin4 θ

cos2 θ
dθ

+9

8
�

∫ θ1

0
(cos θ − cos θ1)(3 cos θ1 − cos θ)2 sin2 θdθ − 1

4a3 cos θ1

×
∫ θ1

0

(3 cos θ1 − cos θ)3

cos θ

Q2

π sin θ

d

dθ

(
cos θ − cos θ1

3 cos θ1 − cos θ

)
dθ − 1

a(4πa3)2 cos θ1

×
∫ θ1

0
(3 cos θ1 − cos θ)2

(
Q2

sin θ

)2

dθ + G cos θ1

4c4

∫ θ1

0
(3 cos θ1 − cos θ)2

× Q2
0

sin θ cos2 θ
dθ − 5Q2

8πa3

∫ θ1

0

(3 cos θ1 − cos θ)2

sin3 θ
dθ, (51)

where θ1 = sin−1
( R
a − b

R

)
. Solving the integrals and setting ω2 = 0, we obtain exact

condition for marginal stability. The values of �c for any assigned value of θ are found
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Table 1 Adiabatic index and
radii for dynamical stability of
homogeneous sphere

θ1 R/RN �c for Q = 0.2 �c for Q = 0.6

0o ∞ −0.0182 −0.1622

10o 33.163 0.1127 0.1776

20o 8.549 0.1275 0.2278

25o 5.598 0.1319 0.3192

30o 4.000 0.3766 1.2643

35o 3.0396 3246.43 1970.41

40o 2.4203 5918.49 2527.00

50o 1.704 6594.94 4352.86

60o 1.333 6822.02 5631.08

such that γ should be less than certain �c for the existence of dynamical instability.

In Newtonian limit, � takes finite values for marginal stability, i.e., � > 4
3 + 8Q2

21 .
We calculate the radii of marginal stability and � for homogeneous model of gaseous
sphere by taking different values of charge which show finite values of �. We observe
that radius R

RN
→ ∞ for � < 0 which leads to the expansion while R

RN
remains

positive for � > 0 showing marginal stability of gaseous model. The corresponding
results are given in Table 1.

When ω2 < 0, the perturbation diverges exponentially either by expansion or con-
traction which yields stellar dynamical instability. In the limit θ1 → 0, the condition
for dynamical instability is

� − 4

21

(
4Q2 + 7

)
<

14

43
θ2

1 = 14

43

[
R2

a2 − b2

R2

]
. (52)

In terms of inertial mass, this takes the form

R <
14

43
[
� − 4

21

(
4Q2 + 7

)]
[

2GM

c2 − GQ2

Rc4

]
, (53)

which can be written as
R

RN
<

K[
� − 4

21

(
4Q2 + 7

)] , (54)

where K = 14
43 for the homogeneous sphere. This means that if � exceeds 4

3 + 8Q2

21 by
a small amount, the dynamical instability can be prevented till the mass contracts to
the RN radius. If the radius of gaseous mass is greater than RN , it remains stable. The
ranges for instability of homogeneous spherical system are shown in Fig. 1. Since the
radius of stability is a factor of the RN radius, so the ratio R

RN
should be greater than or

equal to zero for physical results. We consider different values of charge and find that
0.1 < Q < 0.4 and � > 1.5 provide valid radii ranges for the stability of sphere. For
� < 1.5, we only have unstable radii along with un-physical region corresponding
to Q > 0.4. Also, we observe that the gaseous sphere becomes unstable forever with
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Fig. 1 Plots of R
RN

for dynamical stability/instability of homogeneous sphere corresponding to different
values of Q

larger values of charge, i.e., Q > 1.2. It is obvious from the graph that the radius of

stability is greater than RN for � > 4
3 + 8Q2

21 .

5.2 Relativistic polytropic model

In relativistic polytropic models, pressure and energy density can be expressed in terms
of a single function � as [17]

p = p0�
n+1, σ = σ0�

n, (55)

where p0 and σ0 represent respective values at center and n denotes the polytropic
index. The polytropic models are the generalized form of the classical Lane-Emden
equation which can be obtained from the equations of hydrostatic equilibrium. Let

ξ = r

a
, (56)

where a =
(
q(n+1)c4

4πGσ0

) 1
2

and q = p0
σ0

. We can reduce Eqs.(13) and (14) to the pair of

equations which express � as a function of ξ

(
ξ2

1 + q�
− c2Q2q(n + 1)

32πGσc

) (
1 − 2Vq(n + 1)

ξ
+ Q2Vq(n + 1)

ξM

)
d�

dξ

+V − Q2V

M
+ q�

dV

dξ
= 0, (57)
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dV

dξ
= ξ�n . (58)

We assume pN approximation of the form

� = θ + q�, (59)

where � is an arbitrary function, θ represents classical Lane–Emden function and
q is treated as a small constant. Using Eqs.(57) and (58), the classical Lane-Emden
equation becomes

d2θ

dξ2 + 2

ξ

dθ

dξ
+

(
1 − Q2

M

)
θn = c2Q2

32πGσc
. (60)

Equation (43) in terms of � and ξ takes the form

(aω)2

q

∫ ξ1

0
�n(1 + q�)ξ2η2e(3λ−ν)/2dξ = 2(n + 1)q

∫ ξ1

0
�(2n+1)(1 + q�)

×ξ2η2e(3λ+ν)/2dξ + 4(n + 1)

∫ ξ1

0
�nξη2e(λ+ν)/2

(
1 − qξ(n + 1)

4(1 + q�)

)
dξ

+�

∫ ξ1

0

�n+1

ξ2 e(λ+3ν)/2
(

d

dξ

[
ηξ2e−ν/2

])2

dξ +
(

1

2πa3

)2 ∫ ξ1

0

e(λ+ν)/2

�n(1 + q�)

×
(

ηQ

ξ4

)2 [
ξ

2a
− Q2

]
dξ − 1

2πa3

∫ ξ1

0

η2

ξ3 e
(λ+ν)/2

[
1 + q(n + 1)Q2

1 + q�

d�

dξ

−GQ2
0

ξ4

]
dξ + 1

4π

∫ ξ1

0

η2

1 + q�
e(λ+ν)/2 dQ

2

dξ

⎡
⎣q

d�

dξ
− 1

�n
(
a3ξ3

) dQ2

dξ

⎤
⎦ dξ

− 1

8πa3

∫ ξ1

0

η

ξ2 e
(λ+ν) d2

dr2

(
Q2

)
dξ +

∫ ξ1

0
ξ2ηe(ν−λ)/2 d

dξ

[
βQ0 Q̃eλ0

aξ3

]
dξ

+ 1

4πa2

∫ ξ1

0
ξ2ηe(ν+λ)/2 d

dξ

(
Q0δQe−ν/2

ξ4

)
dξ. (61)

The pN approximation treats the effects of GR as first order corrections. We can
write

�c − 4

21
(4Q2 + 7) = Cq, (62)

Rc = K

�c − 4
21 (4Q2 + 7)

[
2GM

c2 − GQ2

Rc4

]
, (63)

whereC andK are constants depending on density distribution. The pN approximation
yields
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Table 2 Adiabatic index with different values of charge for dynamical instability of polytropes with index
3

q �c for Q = 0.2 �c for Q = 0.4 �c for Q = 0.6

0.015 1.3500 1.3593 1.4715

0.040 1.3527 1.3983 1.4744

0.1 1.3586 1.4043 1.4805

0.2 1.3686 1.4143 1.4905

0.5 1.3953 1.4440 1.5204

e−λ = 1 + 2q(1 + n)ξ
dθ

dξ
− GQ2(1 + n)q

M

dθ

dξ
, (64)

eν = 1 − 2q(1 + n)[θ + ξ1|θ̃1|] + Q2(1 + n)q|θ̃1|
M

, (65)

where |θ̃1| = − (dθ/dξ)ξ=ξ1
. Using the relations of pc and σc for polytropes in terms

of M, Q and R, it follows that

q = 1

2(n + 1)ξ1|θ̃1|
[

2GM

Rc2 − GQ2

R2c4

]
. (66)

We calculate � with different values of Q for the emergence of dynamical instability.
The numerical values of � for the polytropes of index 3 are given in Table 2. Similarly,
the constants C and K for polytropes are given by the relation

K = C

2(n + 1)ξ1|θ̃1|
. (67)

In order to determine the radii from Eq. (63), we need to calculate K whose value
depends upon the polytropic index, Lane-Emden function and charge. Different poly-
tropic indices lead to different stellar structures such that the configurations with n < 5
are considered to be realistic stars [22]. For n = 0, we solve the Lane-Emden equation
analytically corresponding to different values of Q and find the values of θ but we
solve this equation numerically for n = 2, 3, 4 as shown in Figs. 2 and 3. The values
of constants C and K for n = 0 are given in Table 3. We see that the values of K
decrease gradually by increasing the value of charge.

Inserting the values of eν and e−λ in Eq. (61) and neglecting second as well as
higher order terms in q, we obtain

(aω)2

q

{∫ ξ1

0
θnξ2η2dξ +

∫ ξ1

0
H(ξ)θn−1ξ2η2dξ

}
= �q(n + 1)

∫ ξ1

0

θn+1

ξ2

×
{(

GQ2

2M
− ξ

)
+ 3|θ̃1|

(
Q2

2M
− ξ1

)
− 3θ

} [
d

dξ
(ξ2η)

]2

dξ + �

∫ ξ1

0
H(ξ)
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Fig. 2 Plots of classical Lane–Emden function for polytropes of index n = 1, 2 corresponding to different
values of charge

Fig. 3 Plots of classical
Lane–Emden function for n = 3
corresponding to different values
of charge

Table 3 Values of constants C and K with different values of charge for polytropes of index 0

C K for Q = 0.2 K for Q = 0.4 K for Q = 0.6

0.243 0.6458 0.6372 0.576

0.826 2.1953 2.1662 1.9608

1.205 3.2034 3.161 2.8612

1.8095 4.809 4.745 4.296

×θn+1

ξ2

{
d

dξ

(
ξ2η

)}2

dξ + q(n + 1)

∫ ξ1

0
I (ξ)θn−1ξη2dξ + q(n + 1)

∫ ξ1

0

dθ

dξ

×
[(

GQ2

2M
− ξ

)
+ |θ̃1|

(
Q2

2M
− ξ1

)
− θ

]
Y (ξ)dξ + q(n + 1)

∫ ξ1

0
θn+1ξ2η2

×Z(ξ)dξ + 1

(2π)2

∫ ξ1

0

η2Q2

(a3ξ2)3

[
ξ

2a
− Q2

]
dξ − 1

8π

∫ ξ1

0

η

a3ξ2

d2

dξ2 (Q2)dξ

− 1

2π

∫ ξ1

0

GQ2

a3ξ4 dξ +
∫ ξ1

0
ξ2η

d

dξ

(
βQ0 Q̃

aξ3

)
dξ, (68)
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where

H(ξ) = 2θ2(n + 2) + 3(n + 1)

(
GQ2

2M
− ξ

)
dθ

dξ
+

(
2ξ1 − Q2

2M

)

× (n + 1)|θ̃1|, (69)

I (ξ) = −4θ(n + 1)
dθ

dξ

[
−ξ

dθ

dξ
− θ − ξ |θ̃1| + Q2

2M

(
G
dθ

dξ
+ |θ̃1|

)]
, (70)

Y (ξ) = η2Q2

2π2(a3ξ2)2

(
ξ

2a
− Q2

)
− η2

2πa3ξ3 + GQ2
0

2πa3ξ4 − η

4πa3ξ2

× d2

dξ2 (Q2) + ξ2η
d

dξ

{
βQ0 Q̃

aξ3 + ηξ2 d

dξ

(
Q0δQ

ξ4

)}
, (71)

Z(ξ) = 3θ

(
Q2

2M
− ξ

)
dθ

dξ
+ θ |θ̃1|

(
Q2

2M
− 2ξ1

)
− 2θ2. (72)

In pN approximation, we are interested to find the condition for marginal stability of
polytropic configuration by taking η = ξ and ω2 = 0 so that Eq. (68) takes the form

9

(
� − 4

3
− 8Q2

21

) ∫ ξ1

0
θn+1ξ2dξ + q(n + 1)

[
3
∫ ξ1

0
θnY (ξ)Ỹ (ξ)dξ

+
∫ ξ1

0
θn−1 I (ξ)ξ3dξ +

∫ ξ1

0
θn+1ξ4Z(ξ)dξ

]
+ 1

8π

∫ ξ1

0

Z̃(ξ)

a3ξ3 dξ

+
∫ ξ1

0
ξ3 d

dξ

(
βQQ̃

aξ3

)
dξ = 0, (73)

with

Ỹ (ξ) =
(

3�ξ2θ + θ−n
){

dθ

dξ

(
GQ2

2M
− ξ

)
+ 3|θ̃1|

(
Q2

2M
− ξ1

)
− 3θ

}
, (74)

Z̃(ξ) = 4Q2
(
G + ξ

2M
− Q2

)
− ξ3

(
1 + d2

dξ2 (Q2)

)
. (75)

In pN limit, the dynamical stability will require that � > �c = 4
3 + 8Q2

21 + ε,
where ε is a small quantity depending on q. To check the conditions for marginal
stability as well as dynamical instability, we calculate values of K and plot different
radii corresponding to polytropic indices n = 1, 2, 3 as shown in Fig. 4, 5 and 6.
It is found that K attains negative values for n = 1, 2, 3, so we take both positive
and negative values of � to obtain physically viable values of radii. Figures 4 and

5 show viable radii for � > 4
3 + 8Q2

21 corresponding to n = 1, 2. For n = 1, we
find that radii of stability along with non-physical region appear for Q = 0.6 and
positive values of � while negative values of � show the emergence of instability. The
region of instability gets larger by increasing Q for both positive and negative values
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Fig. 4 Plots for radii of stability/instability corresponding to n = 1 and different values of charge
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Fig. 5 Plots for radii of stability/instability corresponding to n = 2 and different values of charge

of � and the radii of marginal stability vanishes for Q = 2. We observe that the the
corresponding polytropic model becomes unstable for Q > 2.4 (Fig. 4).

For n = 2, we analyze stable radii for 1.5 < � < 2 and unstable radii for small
values of � (both positive and negative) corresponding to Q < 1. The stability radius
tends to decrease which leads to unstable region for Q = 1. We find that the non-
physical region disappears and the polytropic model will remain unstable forever with
Q ≥ 1.4 (Fig. 5). For n = 3, we have viable ranges for radii with 0 < � < 2, i.e., �
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Fig. 6 Plots for radii of stability/instability corresponding to n = 3 and different values of charge

can be less than 4
3 + 8Q2

21 for stable stellar structures (Fig. 6). We find both stable and
unstable radii for polytropic model with 0.1 < Q < 2 which changes to unstable radii
for Q ≥ 2. The dynamical instability occurs when gaseous mass contracts to RN .

6 Conclusions

This paper is devoted to investigate the role of electric charge on dynamical stability of
spherical gaseous masses under radial oscillations. We have perturbed the system using
Eulerian and Lagrangian radial perturbations to obtain linearized dynamical equations
as well as perturbed pressure. This perturbed pressure in terms of adiabatic index is
found using conservation of baryon number. The variational principle has been applied
to the perturbed dynamical equations to formulate conditions of dynamical instability.
We have also discussed conditions for dynamical instability of homogeneous sphere
and relativistic polytropes in Newtonian as well as pN regimes.

We have found the values of adiabatic index � as well as radii for marginal stability
of homogeneous sphere (Table 1). It turns out that � takes finite positive values less

or greater than 4
3 + 8Q2

21 corresponding to different values of charge at Newtonian
limit. The radius R

RN
approaches to infinity for � < 0 which leads to expansion rather

than collapse. In pN limit, the dynamical instability occurs if � exceeds 4
3 + 8Q2

21 by
a small quantity and the gaseous mass is contracted to RN radius. We have found that
0.1 < Q < 0.4 and � > 1.5 provide valid radii ranges for stability of sphere. It turns
out that only unstable radii exist corresponding to Q > 1.2.

We have also discussed the stability/instability conditions for relativistic polytropic
models of indices 0, 1, 2 and 3. For n = 3, we have evaluated different values of �
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for dynamical instability of polytropes and found that � > 4
3 + 8Q2

21 (Table 2). In
order to discuss realistic models, we have evaluated radius of instability for different
polytropic structures. We have also calculated the values of C and K for n = 0 (Table
3), which show that K decreases gradually by increasing the values of charge. For

n = 1, 2, we have viable radii corresponding to � > 4
3 + 8Q2

21 . For n = 1, we have
found that radii of stability along with non-physical region exist for Q = 0.6 and
� > 0 while negative values of � show the emergence of instability. The region of
instability increases by increasing Q for both positive and negative values of � and
we find only unstable radii for Q > 2.4. For n = 2, we have found both stable and
unstable radii for 1.5 < � < 2. The stability radius tends to decrease gradually which

leads to unstable region for Q = 1.4. It is seen that � can be less than 4
3 + 8Q2

21 for
n = 3. We have analyzed both stable and unstable radii for polytropic model with
0.1 < Q < 2 which changes to unstable radii for Q ≥ 2.

It is found that the dynamical instability occurs when the mass of polytropic con-
figuration approaches to the RN radius limit. We observe that inclusion of charge in
the gaseous sphere has significant effects as compared to the analysis [3]. For charged
homogeneous sphere, the system becomes stable for both negative as well a as positive
values of adiabatic index, while it remains stable for � > 4

3 without charge system
[3]. For the charged polytropes with n = 1, 2, 3, � can take both positive as well as
negative values while K becomes negative. We also see that the radius of instability of
polytropes (n = 3) for RN case is greater than that of the Schwarzschild limit showing
that RN polytropes for n = 3 are more stable. Finally, we conclude that the presence
of charge has substantial role in the emergence of instability of gaseous sphere.
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