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Abstract The external matter stress-tensor supporting charged Vaidya solution
appears to violate weak energy condition in certain region of the spacetime. Moti-
vated by this, a new interpretation of charged Vaidya solution was proposed by Ori
(Class Quant Grav 8:1559, 1991) in which the energy condition continues to be satis-
fied. In this construction, one glues an outgoing Vaidya solution to the original ingoing
Vaidya solution provided the surface where the external stress-tensor vanishes is space-
like. We revisit this study and extend it to higher-dimensions, to AdS settings, and to
higher-derivative f (R) theories. In asymptotically flat space context, we explore in
detail the case when the mass function m(v) is proportional to the charge function
q(v). When the proportionality constant ν = q(v)/m(v) lies in between zero and one,
we show that the surface where the external stress-tensor vanishes is spacelike and
lies in between the inner and outer apparent horizons.
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1 Introduction

Evolution of charged null shells in spherically symmetric settings has been a source
of confusion in the past [2–5]. Despite the simple form of the charged Vaidya solution
and its seemingly simple interpretation, it suffers from a rather serious conceptual
difficulty: it seems to violate the weak (as well as null) energy condition in certain
region of the spacetime. In four-dimensional asymptotically flat context the region
where weak energy condition is violated is,

r < rc(v) = q(v)q̇(v)

ṁ(v)
, (1.1)

where m(v) and q(v) are respectively the mass and charge functions of the ingoing
charged Vaidya solution, andv is the advanced null coordinate. In modern literature this
feature has been argued to be related to the possible violation of strong sub-additivity
of holographic entanglement entropy [6].

For the ingoing charged Vaidya solution, the spherical shells of “charged photons”
all start at infinity and flow inwards. The key physical question is therefore whether
these shells enter the region (1.1) where the energy conditions can be violated. Ori
[1] in 1991 did a systematic and thorough analysis of this question. In this paper we
revisit that study and extend it in a number of ways.

The key confusion in the earlier literature was the assumption that the Lorentz force
does not matter and the charged null fluid flows along the radial null geodesics. In the
Reissner-Nordström geometry the radial null geodesics go all the way from r = ∞
to r = 0. Assuming that the Lorentz force is irrelevant, earlier authors concluded
that nothing can prevent charged null shells from entering the region where energy
conditions are violated. Ori, on the other hand, showed that the assumption that the
Lorentz force can be ignored is incorrect (in fact inconsistent, as we review below).
By properly taking it into account he showed that the weak energy condition continues
to be satisfied.

The most important outcome of this rather intricate analysis was as follows: locally
the Lorentz orbits are tangent to one of the two (ingoing or outgoing) radial null
geodesics, however, at r = rc the tangent direction flips. The null vector ka along the
Lorentz orbit vanishes at r = rc. The physical continuation of the initially ingoing
orbit at r = rc is to switch to the outgoing one.

Intuitive explanation of this result is rather straightforward. Charged particle moving
in charged background looses its kinetic energy due to electromagnetic repulsion at it
falls inwards. At r = rc its kinetic energy is reduced to zero. At this point the particle
starts moving outwards.

Precisely the same intuitive picture applies to the charged Vaidya spacetime. At
r = rc the charged null shells switch from ingoing to outgoing orbits, and there is no
violation of the energy conditions. In this paper, after providing a concise summary
of Ori’s work, we extend the analysis in the following ways:

1. We adapt Ori’s arguments to the AdS and higher-dimensional settings. This exten-
sion brings in some minor technical changes in the details; the physical picture
remains unchanged.
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2. We adapt the same set of arguments to f (R) theories coupled to a Maxwell field.
Again this extension work straightforwardly. It suggests that the picture suggested
by Ori is valid in other settings as well, e.g., Einstein-Gauss-Bonnet gravity coupled
to a Maxwell field.

3. In the asymptotically flat context, we analyse in some detail the case when the
mass function m(v) is proportional to the charge function q(v). For the physically
interesting case where the proportionality constant ν = q(v)/m(v) is in between
zero and one, we show that the surface where the external stress-tensor vanishes is
spacelike and lies in between the inner and the outer apparent horizons. Since this
surface is spacelike, to its future is an outgoing Vaidya solution. We discuss this
gluing construction in some detail.

The rest of the paper is organised as follows. In Sect. 2 we start with a review of
the charged Vaidya solution and its standard interpretation. We review the fact that the
interpretation of charged null fluid as made up of discrete charged massless particles is
inconsistent with the geodesic motion assumption. We highlight how the null Lorentz
force equation appears from such an analysis.

In Sect. 3 we analyse radial orbits of massless charged particles in higher-
dimensional AdS Reissner–Nordström background. In this analysis we focus our
attention on the behaviour of orbits near the vanishing point ka = 0. This probe
analysis already shows how initially ingoing orbits switch to outgoing ones. We also
analyse the behaviour of orbits near a generic vanishing point.

In Sect. 4 we return to the interpretation of the charged Vaidya solution and apply the
results of the former sections. The evolution beyond the hypersurface of the vanishing
points is discussed. f (R)-Maxwell set-up is discussed in Sect. 5. We end with a brief
summary of our results and some speculative discussion in Sect. 6. Power law profiles
for m(v) and q(v) functions in asymptotically flat context are further discussed in
Appendix A.

2 Preliminaries: charged Vaidya solution and the Lorentz force equation

In Sect. 2.1 we start with a brief review of the charged Vaidya solution and its standard
interpretation. Then, following Ori [1], we show in Sect. 2.2 that this interpretation is
inconsistent with the physical picture that the shell is made up of discrete charged null
particles. Consistency of the equations of motion requires us to replace the geodesic
equation used in the standard interpretation with the null Lorentz force equation.

2.1 Charged Vaidya solution

Let us consider the charged Vaidya solution for the following Lagrangian in d space-
time dimensions,

L =
(

1

16πG

)√−g

[
R − 2� − 1

4
FabF

ab
]

+ Lmatter, (2.1)
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where Lmatter is the Lagrangian for the external matter source. The equations of motion
are

Rab − 1

2
Rgab + �gab = 8π

(
T (em)
ab + T (m)

ab

)
. (2.2)

where

T (em)
ab = 1

16π

(
FacFb

c − 1

4
gabFcd F

cd
)

, (2.3)

and T (m)
ab is the stress-tensor of the external matter source. The cosmological constant

parameter � is related to a characteristic length scale l as � = − (d−1)(d−2)

2l2
. The

length scale l is a more convenient quantity to work with. We take the cosmological
constant term to be negative; we are only interested in asymptotically anti-de-Sitter
and flat (obtained by sending l → ∞) settings. The ingoing charged Vaidya metric is
described by the line element

ds2 = − f (r, v)dv2 + 2drdv + r2d�2
d−2, (2.4)

where the metric function f (r, v) is

f (r, v) = 1 − 2m(v)

rd−3 + q2(v)

r2(d−3)
+ r2

l2
, (2.5)

and d�2
d−2 is the line element on the unit round (d−2) sphere. The Maxwell potential

Aa supporting the solution is,

Av = −
√

2(d − 2)

d − 3

q(v)

rd−3 . (2.6)

The external matter stress tensor needed to support this solution is

8πTvv = d − 2

r2d−5

(
rd−3ṁ − qq̇

)
. (2.7)

In particular, it is of the form

Tab = ρkakb, (2.8)

where the vector ka is (ingoing) null vector tangent to the v = constant lines. Normal-
isations of ρ and the null vector ka are not fixed by the form (2.8). Further physical
inputs are required to fix these normalisations. In the standard interpretation, which
has been a source of confusion in the past, the choice

ka = −∂av = −δv
a , (2.9)
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is made. With this choice ka is the null vector generating the ingoing null geodesics.
Therefore, the charged null fluid is thought of as flowing along these null geodesics.
Under this assumption, charged null particles starting from r = ∞ run all the way to
r = 0 along v = constant lines.

Null energy condition: Generators of radial null orbits la = (lv, lr , 0, . . . , 0) that
intersect the null fluid satisfies f (r, v)lv = 2lr . The local energy density K = Tablalb

“experienced” by these trajectories intersecting the charged null fluid simplifies to,

K(v, r) =
(
d − 2

8π

)
1

r2d−5

(
rd−3 − qq̇

ṁ

)
ṁl2r . (2.10)

Clearly, for

rd−3 < rd−3
c := qq̇

ṁ
, (2.11)

K(v, r) becomes negative; the null energy condition is violated.

Weak energy condition: In a similar manner the energy density E = Tabuaub

measured by a timelike observer with normalised velocity ua = (uv, ur , 0, . . . , 0)

simplifies to,

E(v, r) = (d − 2)(d − 3)

16π

q2

r2(d−2)
+

(
d − 2

8π

)
1

r2d−5

(
rd−3 − qq̇

ṁ

)
ṁu2

r . (2.12)

The first term corresponds to the “Maxwellian” energy density due to the presence
of electric charge. The second term is the energy density of the particles constituting
the collapsing charged null shell. Once again, in the region (2.11) the second term
becomes negative. Moreover, for sufficiently large ur this term dominates, and the
total E(v, r) becomes negative; weak energy condition is violated.

2.2 Lorentz force equation

Now we demonstrate that the geodesic motion assumption is inconsistent. Above we
distinguished between the matter and electromagnetic stress tensor. Let us look at the
equation arising from Bianchi identity, i.e., the conservation of the total stress-tensor.
We get

8π∇aT (m)
ab = −1

2
(∇a Fac)Fb

c − 1

2
Fac(∇a Fb

c) + 1

4
Fcd∇bF

cd . (2.13)

This expression upon using the Maxwell equation

∇a Fac = −16π J (e)
c (2.14)
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and the Bianchi identity for the Maxwell field becomes

∇aT (m)
ab = Fbc J (e)

c . (2.15)

Now recalling that the matter stress-tensor is of the form (2.8), Eq. (2.15) becomes,

∇a(ρkakb) = Fbc J (e)
c . (2.16)

We adopt the hydrodynamic point of view and think of the charged null fluid as a
stream of discrete charged massless particles. We associate a conserved null current
associated with the flow

Ja = ρka, ∇a Ja = 0. (2.17)

Similarly J (e)
a := ρeka is thought of as conserved electric current; ρe being the electric

charge density. The ratio e := J (e)
a /Ja = ρe/ρ is the charge per particle. The conser-

vation of e follows, and it reflects the fact that each particle carries its own electric
charge. Using these inputs, Eq. (2.16) becomes

ka∇ak
b = eFb

ck
c. (2.18)

Equation (2.18) is the key equation for the consideration of this paper. It is not the
geodesic equation. It is the massless analog of the Lorentz force equation for a massive
particle; for simplicity we continue to call it the Lorentz force equation. We call the
parameter λ along the orbits satisfying (2.18) the Lorentz parameter. In general, the
Lorentz parameter is different from the affine parameter, however, when Fb

ckc = 0,
it becomes identical to the affine parameter. In that case the Lorentz orbit becomes a
null geodesic.

3 Probe computation

To understand the full implications of the Lorentz force Eq. (2.18), it is instructive to
start with a probe computation. Due to the electromagnetic repulsion the magnitude
of ka for infalling “charged photons” gradually decreases and at some spacetime point
ka vanishes. Our focus in this analysis is on the behaviour of orbits near the vanishing
point ka = 0. In Sect. 3.1 we regard the higher-dimensional AdS Reissner–Nordström
metric and the associated electromagnetic field as a given background, and study the
Lorentz orbits in this background. This probe analysis already shows how initially
ingoing orbits switch to outgoing ones. We analyse the behaviour of orbits near a
generic vanishing point in higher-dimensions in Sect. 3.2. Other studies of the motion
of charged particles in the field of (rotating) charged black holes include [7–10].
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3.1 Vanishing point in the spherically symmetric context

The AdS Reissner–Nordström background in Schwarzschild coordinates in d dimen-
sions is

ds2
d = − f dt2 + f −1dr2 + r2d�2

d−2, (3.1)

where the metric function f is

f (r) = 1 − 2m

rd−3 + q2

r2(d−3)
+ r2

l2
. (3.2)

The only non-vanishing components of field strength tensor are

Frt = −Ftr = √
2(d − 2)(d − 3)

q

rd−2 . (3.3)

To solve the Lorentz force Eq. (2.18) for radial trajectories in this background we
take ka of the form ka = (kt (r), kr (r), 0, . . . , 0). With this ansatz equations can be
readily solved. For ingoing orbits we obtain

kr = f −1kt , kr = kt , (3.4)

kt = −
(

κ −
√

2(d − 2)

d − 3

eq

rd−3

)
. (3.5)

The parameter κ is interpreted as the energy of the infalling particle measured by a
static observer at infinity. The vanishing point is located at

rd−3 = rd−3
c :=

√
2(d − 2)

d − 3

eq

κ
, (3.6)

provided eq > 0, κ > 0.
We can parametrise such an orbit with a real parameter λ such that ka = dxa

dλ
. We

find by direct integration,

λ = − r

κ
− rc

κ
log |r − rc| + c, for d = 4, (3.7)

λ = − r

κ
F

(
1,

1

3 − d
,
d − 4

d − 3
,
rd−3
c

rd−3

)
+ c, for d > 4, (3.8)

where c is an integration constant. It is fixed by the initial conditions; its numerical
value is not important for the arguments below. For simplicity we set c = 0. The
function F is the hypergeometric function. For d = 4 as r approaches rc the Lorentz
parameter λ diverges to +∞. For d > 4 at r = rc, the parameter λ becomes

λ = −rc
κ
F

(
1,

1

3 − d
,
d − 4

d − 3
, 1

)
, (3.9)
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which also diverges to +∞. This can be easily seen by the identity

F (a, b, c, 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
. (3.10)

At the vanishing point the momentum vector ka vanishes. How to continue the
orbit beyond the vanishing point? To answer this question further physical inputs are
required. Mathematically there are two possibilities:

1. Non-bouncing or ingoing continuation This corresponds to kr = kt . To begin with
kt < 0, see Eq. (3.5). Across the vanishing point kt (and hence kr ) changes sign.
Thus, for this case,

dr

dt
= kr

kt
= − f, (3.11)

preserves its sign as the orbit crosses the vanishing point. As a result the orbit
continues along the same (ingoing) null direction. That is why we call it the non-
bouncing or the ingoing continuation.
It is instructive to analyse the non-bouncing continuation in two separate cases
depending on whether the metric function f is positive or negative at the vanishing
point r = rc.
(a) f > 0: In this case dr

dt < 0 to begin with at r = rc. It continues to remain
negative beyond the vanishing point. However, the null vector ka changes
sign—from future directed it becomes past directed—so the Killing energy
carried by the infalling particles changes sign.

(b) f < 0: In this case dr
dt > 0 to begin with at r = rc. That is to say that for

an ingoing particle in between the inner and the outer horizon, both r and t
decrease. Beyond the vanishing point dr

dt does not change sign. However, once
again, the null vector ka changes sign so the Killing energy carried by the
infalling particles changes sign.

Since the null vector ka changes from future directed to past directed, this is our
first hint that this continuation is not the physical one.

2. Bouncing or outgoing continuation This corresponds to taking kr = −kt beyond
the vanishing point. For this case dr

dt changes sign. The Lorentz orbit switches
from ingoing to outgoing. For this reason we call this the bouncing or the outgoing
continuation.
Once again it is instructive to analyse the bouncing continuation in two separate
cases depending on whether the metric function f is positive or negative at the
vanishing point r = rc.
(a) f > 0: To begin with kr = kt < 0, and therefore dr

dt = − f < 0, i.e., r
decreases with time. Beyond the vanishing point,

dr

dt
= kr

kt
= kr

gtt kt
= + f > 0. (3.12)

Therefore, r starts to increase with time. The orbit switches from the ingoing
to outgoing. From Eq. (3.5) we note that kt continues to be negative beyond
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the vanishing point. Hence, ka continues to be future directed null vector; the
Killing energy carried by the particle continues to be positive.

(b) f < 0: In this situation the particle is in between the inner and the outer
horizon. For future directed causal curves in this region the coordinate r always
decreases. To began with dr

dt = − f is positive. Beyond the vanishing point
dr
dt is negative dr

dt = f < 0. To begin with kt < 0. From Eq. (3.5) we note
that beyond the vanishing point, in the present case, kt changes sign, as the
coordinate r being timelike continues to decrease beyond rc. However, kr does
not change sign. As a result ka remains future directed.

Since the null vector ka continues to be future directed, the bouncing continuation
seems to a more physical one.

To see that the bouncing continuation is the physical continuation we introduce a
small conserved angular momentum kφ = L > 0. The introduction of the parameter
L prevents the vanishing of the vector ka and therefore removes the above mentioned
mathematical ambiguity. In the limit L → 0 these orbits converge to bouncing radial
orbits, thus establishing that the bouncing continuation is indeed the physical one [1].

Let us take ka = (kt , kr , 0, . . . , 0, L), and consider Lorentz null orbits in an appro-
priate equatorial plane where gφφ = r2. The null condition gives

(
kr

)2 = (kt )
2 − f

r2 L
2. (3.13)

The Lorentz force Eq. (2.18) can also be written as

dka

dλ
+ �a

bck
bkc = eFa

bk
b, (3.14)

where �a
bc is the Christoffel symbol. Once again the kt equation can be readily inte-

grated with solution exactly the same expression as (3.5). The kr equation can be
written as

dkr

dλ
= 1

2
f −1 f ′(kr )2 − 1

2
f f ′(kt )2 + r f (kφ)2 + √

2(d − 2)(d − 3)
( eq

rd−2

)
f kt .

(3.15)
We are interested in the location of the turning point in the radial coordinate, i.e., the
point where kr vanishes. In that case Eq. (3.15) simplifies to

dkr

dλ
= −1

2
f f ′(kt )2 + r f (kφ)2 + √

2(d − 2)(d − 3)
( eq

rd−2

)
f kt . (3.16)

Substituting kr = 0 in (3.13) gives

(kt )
2 = f L2

r2 . (3.17)

Once again it is useful to analyse f > 0 and f < 0 cases for the location of the
turning point kr = 0 separately.
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1. f > 0: Substituting (3.5) in (3.17) we note that the turning point is located at1 the
solution of the equation

rd−3 = rd−3
c +

√
f L

κ
rd−4. (3.18)

For small values of L , we immediately see that the solution of this equation is at
r > rc. Moreover, for small L , Eq. (3.16) becomes

dkr

dλ
= +√

2(d − 2)(d − 3)
( eq

rd−2

) √
f L

r
+ O(L2) > 0. (3.19)

Therefore, the particle bounces with positive kr . Since the turning point is at r > rc,
kt does not vanish at the turning point. It continues to maintain its sign beyond the
turning point; ka remains future directed.
Taking L → 0 limit in this analysis we conclude that the bouncing continuation
of the radial null orbits is the physical one.

2. f < 0: In this case the particle is in between the inner and outer horizon. For future
directed causal curves in this region the coordinate r always decreases. Therefore
r = rc is reached with negative kr . The null condition (3.13) becomes

(
kr

)2 = (kt )
2 + | f |

r2 L2. (3.20)

From Eq. (3.5) we note that kt vanishes at r = rc and changes sign as r continues
to decrease. From (3.20) we see that kr never vanishes. It continues to be negative
and hence future directed.
Once again, taking L → 0 limit in this analysis we conclude that the bouncing
continuation of the radial null orbits is the physical one.

To summarise: the above probe analysis allows us to conclude that the initially ingoing
radial null Lorentz orbits switch to the outgoing ones.

3.2 Properties of the generic vanishing point

In this section we analyse the local behaviour of null Lorentz orbits near a generic
vanishing point. We perform this study in an infinitesimal small neighbourhood of the
vanishing point; spacetime curvature and variations of the electromagnetic field are
not important [1]. We can obtain relevant properties of vanishing points and behaviour
of orbits near them by working in flat spacetime with constant electromagnetic field.
Equation (3.14) simplifies to the form

dka

dλ
= eFa

bk
b. (3.21)

1 Recall that initially kt < 0.
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In Cartesian coordinates (t, x1, x2, . . . , xd−1) a canonical form of the electromag-
netic field-strength tensor Fab in d dimensions [11] is2

Fab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · E
0 0 B 0 · · · 0
0 −B 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

−E 0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.22)

For ease of writing we use the notation x1 = x, x2 = y and xd−1 = z. The
equations of motion (3.21) are

dkz

dλ
= −eEkt ,

dkt

dλ
= −eEkz (3.23)

dkx

dλ
= +eBky,

dky

dλ
= −eBkx . (3.24)

These equations are identical to the ones analysed by Ori [1]. In the following we
make only brief comments about the solutions to these equations, referring the reader
to that reference for a more detailed discussion.

We are mostly interested in the motion of a massless particle in the (t, z) plane.
The solution for Eq. (3.23) is:

kt = a1e
eEλ + a2e

−eEλ, (3.25)

kz = a1e
eEλ − a2e

−eEλ, (3.26)

where a1 and a2 are integration constants. From this solution we can see that there are
two ways in which a vanishing point can appear,

(i) a1 = 0, and λ → ∞, (3.27)

(i i) a2 = 0, and λ → −∞. (3.28)

Once a vanishing point is reached, the continuation beyond is also determined by these
two cases. Integrating Eqs. (3.25)–(3.26) we get

t (λ) = 1

eE
(a1e

eEλ − a2e
−eEλ) + tc, (3.29)

z(λ) = 1

eE
(a1e

eEλ + a2e
−eEλ) + zc. (3.30)

From these expressions we see that the vanishing point is located at finite spacetime
point with coordinates (t = tc, z = zc).

2 There are also other canonical forms for Fab in higher dimensions [11], however, we restrict our study
to this case only.
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Now we are in position to discuss the motion of the orbit beyond the vanishing point.
For concreteness we assume that the Lorentz parameter increases as the vanishing point
is approached, i.e, case (i) applies. Under this assumption the orbit approaching the
vanishing point (t = tc, z = zc) has parameterisation

t (λ) = − a2

eE
e−qEλ + tc, z(λ) = + a2

eE
e−qEλ + zc. (3.31)

In particular, it has dz
dt = −1, i.e., the z coordinate decreases as the orbit approaches

z = zc. Once the vanishing point is reached either λ decreases from +∞ or it increases
from −∞ depending on whether case (i) or case (ii) is realised. If beyond the vanishing
point case (i) is realised then dz

dt = −1, i.e., it maintains its sign. Therefore case (i) is
the non-bouncing continuation. On the other hand, in case (ii) dz

dt = +1, i.e., it changes
sign across the vanishing point. Therefore case (ii) is the bouncing continuation.

To see which continuation is physical, one can do a perturbative analysis, analogous
to the one performed in the previous section, by introducing a small mass parameter
and studying timelike Lorentz orbits in flat spacetime with constant electromagnetic
field strength. Such an analysis is performed in detail in reference [1]. Indeed, one
finds that the bouncing continuation is the correct continuation beyond the vanishing
point. That analysis applies as it is to the higher-dimensional case.

4 Charged Vaidya solution: bouncing continuation

In this section we apply the results of the previous sections to get a new interpretation
of the charged Vaidya solution.

4.1 Interpretation

Recall that the charged Vaidya solution is supported by the external matter stress tensor
(2.7). The external matter stress tensor is indeed of the form (cf. (2.8)),

T (m)
ab = ρkakb, (4.1)

however, the normalisation of neither ρ nor that of the null vector ka is fixed by
this expression alone. The extra physics input required to fix these normalisations is
provided by the continuity Eq. (2.17). Assuming ka ∝ −∂av, i.e., ka = S(v, r)δar
implies Ja = ρka = ρ(v, r)S(v, r)δar . Conservation of Ja fixes its form to be

Ja = −
√

2(d − 2)(d − 3)

16π

φ(v)

rd−2 δar , (4.2)

where φ(v) is the flux of particles at retarded time v. A convenient numerical factor
is taken out from definition of φ(v) in Eq. (4.2). For the electromagnetic field (2.6),
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Maxwell Eq. (2.14) gives the form of electric current to be

(J (e))a = −
√

2(d − 2)(d − 3)

16π

q̇(v)

rd−2 δar . (4.3)

Comparing (4.2) and (4.3) we find charge per particle,

e(v) = q̇(v)

φ(v)
. (4.4)

In principle there is nothing wrong in taking the charge per particle e(v) also a function
of the retarded time v. However, if one imagines the incoming particles to be of the
same type at all times, then e(v) is simply a constant.

The expressions for the external energy momentum tensor (2.7) and matter current
(4.2) fix both S(v, r) and ρ(v, r),

S(v, r) = −
√

2(d − 2)

d − 3

1

φ(v)

(
ṁ − qq̇

rd−3

)
, (4.5)

ρ(v, r) =
(
d − 3

16π

)
φ2(v)

r(rd−3ṁ − qq̇)
. (4.6)

From the expression of S(v, r) we immediately see that

kr (v, r) = −κ∞
(

1 − rd−3
c

rd−3

)
, (4.7)

where κ∞ is interpreted as the energy of the infalling particle measured by a static
observer at infinity,

κ∞ = − lim
r→∞ kr (v, r) =

√
2(d − 2)

d − 3

(
ṁ(v)e(v)

q̇(v)

)
, (4.8)

and

rd−3
c = q(v)q̇(v)

ṁ(v)
=

√
2(d − 2)

d − 3

(
q(v)e(v)

κ∞

)
. (4.9)

Comparing (1.1), (3.6), and (4.9) we see that the critical surface is precisely at the place
where the vanishing point of the null vector field ka is located. Equation (4.7) tells us
that the kinetic energy of the thin shell at advanced time v vanishes at r = rc(v). The
fact that ρ diverges at r = rc(v) is not of any consequence; it has no direct physical
interpretation3. Moreover, one can easily check that the vector ka is consistent with
the Lorentz force Eq. (2.18). We conclude that the ingoing charged Vaidya solution is
only valid till the surface r = rc(v).

3 Note that the number density of these particles measured by an observer is nob = Jauaob = ρkauaob. This
quantity is finite throughout. Since kv vanishes at r = rc the problematic factor in ρ is cancelled.
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Fig. 1 Ingoing and outgoing
charged Vaidya solutions are
matched on the spacelike surface
r = rc(v). When the surface
r = rc(v) is not spacelike a
simple construction of this type
is not possible. Note the
direction of the u coordinate

r = rc(v)

dr

dv

dr

du

4.2 Gluing construction

In this section we match an ingoing charged Vaidya solution (M−, g−) to an outgo-
ing charged Vaidya solution (M+, g+) on the bouncing surface , at which external
matter stress tensor vanishes and the null fluid switches from ingoing to outgoing.
Note that, this construction is valid only if the surface  is spacelike. If  is a time-
like surface, the ingoing null fluid necessarily intersects the outgoing null fluid near
the bouncing surface . In this case the solution in the overlap region has no simple
metric representation. Gluing construction does not seem to work, as there is no sur-
face that separates (M−, g−) from (M+, g+). On the other hand, if  is spacelike,
then (M−\) and (M+\) are disjoint and thus (M−, g−) and (M+, g+) can be
represented by ingoing and outgoing charged Vaidya solutions respectively. Then the
gluing can be constructed by imposing suitable matching conditions on the bouncing
surface  = M− ∩ M+.

In particular, we are gluing the spacetime M− with metric g− given by ingoing
charged Vaidya solution

ds2 = − f−(v, r)dv2 + 2 dv dr + r2d�2
d−2, (4.10)

and M+ with metric g+ given by outgoing charged Vaidya solution4

4 In this line element, coordinate u is thought of as minus the retarded null coordinate.
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ds2 = − f+(u, r)du2 + 2 du dr + r2d�2
d−2, (4.11)

on the surface , where we have identified radial coordinate r as well as all angular
coordinates across , cf. Fig. 1. The function f− and f+ are given by,

f−(v, r) = 1 − 2m−(v)

rd−3 + q2−(v)

r2(d−3)
+ r2

l2
, (4.12)

and

f+(u, r) = 1 − 2m+(u)

rd−3 + q2+(u)

r2(d−3)
+ r2

l2
, (4.13)

respectively; m− and q− are monotonically increasing positive functions of v. The
bouncing surface  is represented in g− and g+ by,

rd−3 = rd−3
c− (v), (4.14)

rd−3 = rd−3
c+ (u), (4.15)

respectively, where,

rd−3
c± ≡ q± q̇±

ṁ±
. (4.16)

For rc+ the dot denotes derivative with respect to the u coordinate and for rc− it denotes
derivative with respect to the v coordinate.

The preliminary junction condition is then the agreement of the induced metric on
,

[
− f̃−(v) + 2 ṙc−

]
dv2 + r2d�2

d−2 =
[
− f̃+(u) + 2 ṙc+

]
du2 + r2d�2

d−2,

(4.17)

where, f̃−(v) ≡ f−(v, r = rc−(v)) and f̃+(u) ≡ f+(u, r = rc+(u)). Then gluing
amounts to finding a function,

u = ψ(v), (4.18)

defined on the surface , such that the preliminary junction condition (4.17) holds
and the extrinsic curvature remains continuous5,6 across . Identifying

m+(u) = m−(v), q+(u) = q−(v), (4.19)

5 Since  is spacelike, it cannot support matter or charge density.
6 These statements are based on comments in [1]. In view of claims in [12], a more detailed study of this
issue is required. We leave this for future work.
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on  leads to rc+(u) = rc−(v). Inserting this into (4.17) we get,

ψ̇2 − 2 ṙc−
f̃−

ψ̇ + 2 ṙc−
f̃−

− 1 = 0. (4.20)

The solutions are,

ψ̇ = 1, ψ̇ = 2 ṙc−
f̃−

− 1. (4.21)

The first solution, ψ̇ = 1, corresponds to matching to the non-bouncing continuation
and is thus discarded. Choosing ψ(0) = 0 we obtain a unique matching given by,

ψ(v) =
∫ v

0

(
2 ṙc−
f̃−

− 1

)
dv′. (4.22)

From discussion of Sects. 3.1 and 4.1, it follows that after the bounce the null vector
field ka remains future directed, and the null and weak energy conditions are satisfied
[1].

4.3 q(v) = ν m(v)

Let us now consider in asymptotically flat settings, a case in which the mass and the
charge functions are proportional to each other, i.e., charge to mass ratio is constant
as a function of v,

q−(v) = ν m−(v), (4.23)

where ν ∈ [0, 1) is a free parameter. A slightly more general situation is commented
on in Appendix A. With this choice of charge distribution the outer and inner apparent
horizons are at

rd−3± (v) =
(

1 ±
√

1 − ν2
)
m−(v), (4.24)

while the radial-coordinate r on the bouncing surface  depends on v through,

rd−3
c− (v) = ν2 m−(v). (4.25)

Clearly, the bouncing surface lies in between the inner and outer apparent horizon.
The norm of the normal to the surfaces Sλ ≡ rd−3 − rd−3

c− = λ is

(nλ)
a (nλ)a = gab∂a Sλ∂bSλ (4.26)

= gvv Ṡλ
2 + 2gvr ṠλS

′
λ + grr S′

λ
2 (4.27)

= (
2Ṡλ + f S′

λ

)
S′
λ (4.28)
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= (d − 3)
(
−2ν2ṁ−(v) + f (d − 3)rd−4

)
rd−4. (4.29)

We noted above that the surface r = rc−(v) lies in between the inner and outer apparent
horizons. Therefore, the expression in brackets in Eq. (4.29) is negative (assuming
ṁ−(v) > 0), i.e., the normal to the surface r = rc−(v) is timelike,

(nλ)
a (nλ)a

∣∣
λ=0 < 0. (4.30)

We conclude that the bouncing surface is spacelike.
However, since the inner apparent horizon lies in the future of this surface, its

location must be given in terms of the u coordinate. For a simple situation we provide
such an expression now. The matching condition reads,

ψ(v) = −
(

v + 2 ν4

1 − ν2 m−(v)

)
. (4.31)

For concreteness let us consider m−(v) linear in v7

m−(v) = μv, 0 ≤ v ≤ v0, (4.32)

where μ is a parameter and v0 is the width of the shell. Then the ingoing and outgoing
coordinates are related on  by,

u = −
(

1 + 2 ν4 μ

1 − ν2

)
v. (4.33)

The mass function of outgoing null fluid reads,

m+(u) = −μ̃ u, (4.34)

where,

μ̃ = μ

(
1 + 2 ν4 μ

1 − ν2

)−1

≤ μ, (4.35)

and the charge function q+(u) = ν m+(u) remains proportional to mass function by
the same factor ν. The inner apparent horizon is at,

rd−3− (u) = −
(

1 −
√

1 − ν2
)

μ̃ u. (4.36)

7 In four-dimensions this is called the self-similar collapse [13] as there exists a conformal Killing vector
in this situation. See [14] for generalisation to higher-dimensions.
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5 f (R)-Maxwell set-up

One of the most popular higher-curvature extension of general relativity is the so-called
f (R) gravity [15–17]. A general framework regarding spherically symmetric back-
grounds in f (R) theories is well developed [18–20]. A large class of vacuum solutions
are obtained requiring constant Ricci scalar curvature. For non-vacuum solutions, a
requirement to obtain constant Ricci scalar curvature solutions is that the trace of the
external stress-tensor should be zero. Since we are interested in charged Vaidya solu-
tions, the requirement of zero trace of the external stress-tensor forces us to work only
in four-dimensions.

Fortunately, non-static generalisations, in particular, the four-dimensional charged
Vaidya solution with constant Ricci scalar has been worked out [21]. The Lagrangian
for this theory is

L =
(

1

16πG

) √−g

[
R + f (R) − 1

4
F2

]
+ Lmatter. (5.1)

The equation of motion for the metric is [18,19,21]

Rab(1+ f ′(R))− 1

2
(R+ f (R))gab+(gab�−∇a∇b) f ′(R)=8πT (em)

ab +8πT (m)
ab ,

(5.2)

where T (em)
ab is the stress-tensor of the electromagnetic field (2.3) and T (m)

ab is the
stress-tensor of the external matter source. For constant scalar curvature solutions
R = R0 = constant. A charged Vaidya solution with this property takes the form8

ds2 = − f (v, r)dv2 + 2dvdr + r2d�2
2, (5.3)

with

f (v, r) = 1 − 2m(v)

r
+ q(v)2

r2(1 + f ′(R0))
− R0

12
r2. (5.4)

The only non-vanishing components of Fab are

Frv = −Fvr = 2q(v)

r2 . (5.5)

The external matter stress tensor required to support the solution is

Tvv = (1 + f ′(R0))

4πr2

[
ṁ(v) − q(v)q̇(v)

(1 + f ′(R0))r

]
. (5.6)

8 In writing some of the expressions below we have fixed certain typos in [21].
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This stress tensor vanishes at the hypersurface

r = rc(v) := q(v)q̇(v)

ṁ(v)(1 + f ′(R0))
. (5.7)

Following the analysis of Sect. 4.1 it is straightforward to show that in this case
also, the critical surface is the vanishing surface of the null vector field satisfying the
Lorentz force equation. To this end let ka = S(v, r)δv

a . Once again the continuity
equation for the matter and electric current fixes the form of the S(v, r) and ρ(v, r).
We find

Ja = − φ(v)

8πr2 δar , (J (e))a = − q̇(v)

8πr2 δar , e(v) = (J (e))a

Ja
= q̇(v)

φ(v)
. (5.8)

Using these expression we have

S = −2(1 + f ′(R0))

φ(v)

(
ṁ(v) − q(v)q̇(v)

(1 + f ′(R0))r

)
, (5.9)

ρ = φ(v)2

16πr2(1 + f ′(R0))

(
ṁ(v) − q(v)q̇(v)

(1 + f ′(R0))r

)−1

. (5.10)

It can be readily checked that ka satisfies the Lorentz force equation,

ka∇ak
b = e(v)Fb

ck
c. (5.11)

Qualitatively these expressions are very similar to the expressions in Sect. 4.1.
Therefore, similar considerations apply. The f (R) set-up we have worked with is
essentially equivalent to general relativity with a cosmological constant [21]. That is
why the analysis of this section is similar to that of the Sect. 4.1. Nonetheless, we hope
that our analysis is a small step that can be viewed as motivation for a more detailed
analysis into other higher-curvature theories.

6 Discussion

We want to emphasise that in the usual interpretation of the charged Vaidya solu-
tion null geodesics do enter the r < rc region; this was precisely the source of
confusion in the past literature [2–5] (see also [6]) . The pathology that there is a
region in the spacetime where null and weak energy conditions are violated is tied
to the interpretation of the charged Vaidya solution itself. In the correct interpreta-
tion, as first discussed by Ori [1], and further explored in this paper, the pathological
region is not there. In this paper we highlighted the fact that the assumption that
“charged photons” move on null geodesics is inconsistent with the equations of
motion. We showed that at r = rc the Lorentz orbits bounce. The continuation of
the Vaidya solution beyond r = rc surface is unfortunately not a simple matter.
Only in the case when r = rc is a spacelike surface the question can be adequately
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addressed by gluing an outgoing charged Vaidya spacetime in the future of the r = rc
surface. When r = rc surface is timelike the correct interpretation will involve cross-
flowing Vaidya solutions, which to the best of our knowledge has no simple metric
representation.

In AdS/CFT correspondence the importance of null energy condition has been
realised in several situations. In an attempt to sharpen this connection further, refer-
ence [6] explored the strong sub-additivity property of the holographic entanglement
entropy in the context of planar charged Vaidya spacetime; a set-up closely related to
what we discussed above. They worked on the assumption that the vanishing surface
r = rc separates the entire spacetime in two regions: (i) r < rc where null energy
condition is violated, and (ii) r > rc where it is satisfied. They argued that spacelike
minimal surfaces can enter and explore the r < rc region at least for certain choices
of the mass and charge functions. Although intentionally focusing on an unphysical
region of a spacetime is not justified from a General Relativity perspective, it can still
be useful for other reasons. Knowing that the charged Vaidya metric for (0 < r < ∞)

leads to an unphysical region where the null energy condition is violated, reference
[6] argued that spacelike minimal surfaces entering the r < rc region possibly trans-
lates into a violation of strong sub-additivity of entanglement entropy in the dual field
theory.

Kaminaga [5] in 1990 suggested a model for charged black hole evaporation where
a negative energy flux of charged null fluid flows into the black hole. The negative
energy causes the event horizon to shrink to zero size. Kaminaga studied the model
from the classical and semi-classical perspectives. In this model it was found that
the inner structure of geometry is very different from that of the Reissner–Nordström
geometry. In this context, the effect of bouncing continuation of charged null orbits
has been studied by Ori and Levin [22]. They found that the inner structure of black
hole suggested by Kaminaga is further drastically altered when this effect is taken into
account.

In the mass inflation scenario [23], and in particular in the Ori model of mass
inflation [24], the charged Vaidya solution plays a very important role. In that context
we recall that only the mass is taken to be a function of the advanced time v, not
the charge, i.e., q(v) = constant. Therefore, the above details do not alter any of the
discussions there.

In a different context, Frolov and Vilkovisky [25] explored effects of higher cur-
vature corrections, as quantum gravity effects, and argued that these effects cause
an incoming null shell to bounce back. Hayward [26] has explored similar ideas as
a model for formation and evaporation of a non-singular black hole. Implications
of these ideas for information paradox are discussed recently by Frolov [27]. There
are intriguing similarities between our purely classical considerations and ideas put
forward in these papers. It will be interesting to explore this link further.

Acknowledgments We have benefitted from our discussions with Swastik Bhattacharya, Naresh Dadhich,
Arnab Kundu, Amos Ori, Sudipta Mukherji, and Sudipta Sarkar.
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Appendix: Power law m(v) and q(v) functions

In this appendix we make some comments on the location of the bouncing surface in
asymptotically flat context, having in mind power law m(v) and q(v) functions. In
particular, we consider a case where the charge function is related to the mass function
as,

q(v) = ν vs m(v). (6.1)

The inner and outer apparent horizons and critical surface are at,

r±(v)d−3 = (1 ± p)m(v), (6.2)

rc(v)d−3 =
(

1 − p2
)
m(v) θ(v), (6.3)

where,

p(v) =
√

1 − ν2 v2s, θ(v) = 1 + s

v

m(v)

ṁ(v)
. (6.4)

The metric function f̃ on the critical surface reads,

f̃ (v) = (1 − θ)2 − p2θ2(
1 − p2

)
θ2

. (6.5)

Since f̃ ∼ v−2s as v → 0 for s > 0, the metric at the critical surface is singular. On
the other hand for s < 0 there exist a v = vc given by, v

|s|
c = ν below which r± are

not real.
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