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Abstract We investigate black holes in a class of dRGT massive gravity for their quasi
normal modes (QNMs) for neutral and charged ones using Improved Asymptotic Iter-
ation Method and their thermodynamic behavior. The QNMs are studied for different
values of the massive parameter mg for both neutral and charged dRGT black holes
under a massless scalar perturbation. As mg increases, the magnitude of the quasi
normal frequencies are found to be increasing. The results are also compared with
the Schwarzchild de Sitter case. P-V criticallity of the aforesaid black hoels under
massles scalar perturbation in the de Sitter space are also studied in this paper. It is
found that the thermodynamic behavior of a neutral black hole shows no physically
feasible phase transition while a charged black hole shows a definite phase transition.

Keywords Quasi normal modes · DRGT massive gravity · P-V criticallity

1 Introduction

The existence of black holes is an outcome of Einstein’s General Theory of Relativity
(GTR). The question then is how to realize their existence and one natural way to
identify them is to try to perturb and know their responses to the perturbation. Regge
and Wheeler [1] started way back in 1950s studying perturbations of black-hole space
times and later, serious studies were initiated by Zerilli [2]. It was Vishveshwara [3]
who first noticed the existence of quasinormal modes (QNMs) by studying the scat-
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tering of gravitational waves by Schwarzschild black holes. Later, scattering of scalar,
electromagnetic and Fermi fields by different black-hole spacetimes have been studied
by many [4–6] and references cited therein. In the frame work of general relativity,
QNMs arise as perturbations of black hole spacetimes. QNMs are the solutions to per-
turbation equations and they are distinguished from ordinary normal modes because
they decay at certain rates, having complex frequencies. The remarkable property
of the black hole QNMs(“ring down” of black holes) is that their frequencies are
uniquely determined by the mass, angular momentum and charge(if any) of black
holes. Black holes can be detected by observing the QNMs through gravitational
waves. When a star collapses to form a black hole or when two black holes collide or
a black hole and a star collide, Gravitational Waves (GWs) are emitted. The result of
these processes is a black hole with higher mass that absorbs the GWs [8]. Hence the
emitted GWs decay quickly. The decay of oscillations are characterized by complex
frequencies.

The Quasi normal modes were first introduced by Vishveshwara [9,10]. Later,
perturbation calculations have been done by many to get QNM oscillations [11–13]. To
study the black hole QNMs, the solution of the perturbed field equation are separated
for the radial and angular parts, whose radial part is the so called Regge-Wheeler
equation. But this technique is time consuming and complicated that makes it difficult
to survey QNMs for a wide range of parameter values. A semi analytic method has
then been explored [14] that has its own limitations of accuracy. Later, the Continued
Fraction Method (CFM) was proposed by Leaver. This method is a hybrid of analytic
and numerical and can calculate QNM frequencies by making use of analytic infinite
series representation of solution [15]. Another method is WKB approximation which
is very commonly employed and a powerful one too. However all these methods have
their own limitations. In recent years a new approach has been introduced to study
black hole QNMs called Asymptotic Iteration Method (AIM) which is previously used
to solve eigenvalue problems [16]. This method has been shown to be efficient and
accurate for calculating QNMs of black holes [17,18].

The studies of Hawking and Bekenstein made in 1970s [19,20] helped us to view
that black holes are thermal objects possessing temperature and entropy and that laws
of black hole dynamics are analogous to the laws of classical thermodynamics. An
immediate consequence of these studies is that they bring together quantum theory,
gravity and thermodynamics and one can hope for a quantum theory of quantum
gravity. Various methods [21,22] have been developed to study the thermodynamics
of black holes. An important fact is that certain black holes make a transition from a
stable phase to an unstable phase and some are thermodynamically unstable [23]. If
the thermodynamic variables, pressure and volume, are identified, then an equation of
state corresponding to the black hole can be found out and the critical points can be
determined. The P-V isotherms then show their thermodynamic behavior.

GTR helped us to have a model for our universe and the universe can be considered
as a dynamical system and most of the cosmological and astronomical observations
could find meaningful explanations under GTR. But there are some fundamental issues
like quantization of gravity, the initial stages of the evolution of the Universe under Big-
Bang theory and also certain astronomical observations like dark matter and the late
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time accelerating expansion of the universe which lacked proper explanations under
GTR [24,25]. Hence attempts are being made for an alternative theory of gravitation.

From the perspective of the modern particle physics, GTR can be thought of as the
unique theory of a massless spin 2 particle called graviton [26–28]. If the assump-
tion behind the uniqueness theorem is broken, it can lead to alternative theories of
gravity. Theories concerning the breaking of Lorentz invariance and spin have been
explored in depth. Representing gravity as a manifestation of a higher order spin,
thereby maintaining the Lorentz invariance and spin has also been explored largely
[29]. Yet another possibility that has been recently explored is the so called ’Massive
Gravity’(MG) theory [30–32]. In this model gravity is considered to be propagated by
a massive spin 2 particle. The theory gets complicated especially when the massive
spin 2 field interacts with matter. In that case, the theory goes completely non-linear
and consequently non renormalizable. A non self interacting massive graviton model
was first suggested by Fierz and Pauli [33] which is now called as ’linear massive
gravity’. However this model suffers from a pathology [34] thereby ruling out the the-
ory on the basis of solar system tests. Later, Vainshtein [35] proposed that the linear
massive gravity model can be recovered to GTR through ’Vainshtein Mechanism’ at
small scales by including non linear terms in the hypothetical massive gravity theory.
But the Vainshtein mechanism is later found to suffer from the so called ’Boulware-
Deser’(BD) ghost [36]. Recently it is shown by de Rham, Gabadadze and Tolly in their
series of works [37–39] that the BD ghost can be avoided for a sub class of massive
potentials. This is called dRGT massive gravity which includes one dynamical and
one fixed metric. This also holds true for its bi gravity extension [30,34,40].

This paper deals with the study of quasinormal modes coming out of massless scalar
perturbations of a class of dRGT massive gravity around both neutral and charged
black holes. We use the Improved Asymptotic Iteration Method (AIM) to calculate
the QNMs. The P-V criticality condition of such black holes are also verified in the
de Sitter space. Section 2 deals with a review of the Asymptotic Iteration Method. In
Sect. 3, the quasinormal modes of neutral and charged black holes coming under a
class of dRGT massive gravity, proposed by Ghosh et al. [41], are found out. Section 4
deals with the P-V criticality in the extended phase space of black holes described in
Sect. 3. Section 5 concludes the paper.

2 Review of Asymptotic Iteration Method

Asymptotic Iteration Method (AIM) was proposed initially for finding solutions of
the second order differential equations of the form [42],

Y ′′(x) − λ0(x)Y
′(x) − s0(x)Y (x) = 0, (1)

where λ0(x) and s0(x) are coefficients of the differential equation and are well defined
functions and sufficiently differentiable. By differentiating (1) with respect to x ,

Y ′′′(x) − λ1(x)Y
′(x) − s1(x)Y (x) = 0, (2)
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where the new coefficients are λ1(x) = λ′
0 + λ2

0 + s0 and s1(x) = s′
0 + s0λ0. Differ-

entiating (1) twice with respect to x leads to,

Y ′′′′(x) − λ2(x)Y
′(x) − s2(x)Y (x) = 0, (3)

where the new coefficients are λ2(x) = λ′
1 + λ1λ0 + s1 and s2(x) = s′

1 + s0λ1. This
process is continued to get the nth derivative of (1) with respect to x as,

Y (n)(x) − λn−2(x)Y
′(x) − sn−2(x)Y (x) = 0, (4)

where the new coefficients are related to the older ones through the following expres-
sions,

λn(x) = λ′
n−1 + λn−1λ0 + sn−1, (5)

sn(x) = s′
n−1 + s0λn−1, (6)

where n = 1, 2, 3, ...

The ratio of (n+2)th derivative and (n+1)th derivative can be obtained from (4) as,

Y (n+2)(x)

Y (n+1)(x)
= d

dx
(lnY n+1)

= λn[Y ′(x) + sn
λn
Y (x)]

λn−1[Y ′(x) + sn−1
λn−1

Y (x)]

By introducing the asymptotic concept that for sufficiently large values of n,

sn
λn

= sn−1

λn−1
≡ α, (7)

where α is a constant, we get,

d

dx
(ln Yn+1) = λn

λn−1
,

from which a general expression for Y (x) can be found out [7]. From (7) we can write,

λn(x)sn−1(x) − λn−1(x)sn(x) = 0. (8)

The roots of this equation are used to obtain the eigenvalues of (1). The energy eigen-
values will be contained in the coefficients. To get the eigenvalues, each derivative of λ

and s are found out and expressed in terms of the previous iteration. Then by applying
the quantization condition given by (8), a general expression for the eigenvalue can
be arrived at. Cifti et al. [43] first noted that this procedure has a difficulty in that, the
process of taking the derivative of s and λ terms of the previous iteration at each step
can consume time and also affect the numerical precision of calculations. To overcome
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this difficulty, an improved version of AIM has been proposed that bypasses the need
to take derivative at each iteration. This is shown to improve both accuracy and speed
of the method. For that, λn and sn are expanded in a Taylor series around the point at
which AIM is performed, x ′ ,

λn(x
′) =

∞∑

i=0

cin(x − x ′)i , (9)

sn(x
′) =

∞∑

i=0

din(x − x ′)i , (10)

where cin and din are the i th Taylor coefficients of λn(x ′) and sn(x ′) respectively.
Substitution of Eqs. (9) and (10) in (5) and (6) lead to the recursion relation for the
coefficients as,

cin = (i + 1)ci+1
n−1 + din−1 +

i∑

k=0

ck0c
i−k
n−1, (11)

din = (i + 1)di+1
n−1 +

i∑

k=0

dk0c
i−k
n−1, (12)

Applying (11) and (12) in (8), the quantization condition can be rewritten as,

d0
n c

0
n−1 − d0

n−1c
0
n = 0. (13)

This gives a set of recursion relations that do not require any derivatives. The coeffi-
cients given by (11) and (12) can be computed by starting at n = 0 and iterating up to
(n+1) until the desired number of recursions are reached. The quantization condition
given by (13) contains only i = 0 term. So, only the coefficients with i < N −n where
N is the maximum number of iterations to be performed needs to be determined. The
perturbed radial wave equation of a black hole can be written in the form of a second
order differential equation similar to (1) with the coefficients containing their quasi-
normal frequencies. Hence the condition (13) can be employed to extract the QNMs
of a black hole [17,18]. This method is used in this paper to determine the QNMs of
dRGT black hole.

3 Quasinormal modes of black holes in dRGT massive gravity

3.1 Neutral dRGT black hole

In the standard formalism of dRGT massive gravity theory, the Einstein-Hilbert action
is given by Berezhiani et al. [44] and Babichev and Brito [45],

S =
∫

d4x
√−g

1

2κ2

[
R + m2

gU (g, φ)
]
, (14)
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where g is the metric tensor, R is the Ricci scalar, mg represents the graviton mass
and U is the effective potential for the graviton and is given by Kodama and Arraut
[46],

U (g, φ) = U2 + α3U3 + α4U4, (15)

where α3 and α4 are two free parameters. These parameters are redefined by introduc-
ing two new parameters α and β as,

α3 = α − 1

3
, (16)

α4 = β

4
+ 1 − α

12
. (17)

Varying the action given by (14) with respect to the metric leads to the field equation,

Gμν = −m2Xμν, (18)

where,

Xμν = δU

δgμν

− 1

2
Ugμν. (19)

The constraints of this field Eq. (16) can be obtained by using the Bianchi identity,

∇μνXμν = 0. (20)

A spherically symmetric metric has a form given by,

ds2 = gtt (r)dt
2 + 2gtr (r)dtdr + grr (r)dr

2 + h(r)2d	2, (21)

with gtt (r) = −η(r), grr = 1
f (r) and h(r) = h0r where h0 is a constant in terms

of α and β [47–49]. The exact solution for this ansatz is complicated. It is simplified
by choosing specific relations for the parameters. In this paper, we take α = −3β.
Since the fiducial metric acts like a Lagrangian multiplier to eliminate the BD ghost,
to simplify the calculations, we choose the fiducial metric as, [50],

fμν = (0, 0, c2, c2 sin2 θ), (22)

where c is a constant.
In this paper we consider only the diagonal branch of the physical metric for sim-

plicity ie., gtr = 0. Then,

ds2 = −η(r)dt2 + dr2

f (r)
+ r2d	2
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By taking η(r) = f (r) we get,

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d	2

The non-zero components of the Einstein tensor are given by Ghosh et al. [41],

Gt
t = f ′

r
+ f

r2 − 1

r2 , (23)

Gr
r = (r f ′ + f )

r2 − 1

r2 , (24)

Gθ
θ = Gφ

φ, (25)

= f ′
(

f ′

4 f
+ 1

2r

)
+

(
f ′′

2
+ f ′

2r
− ( f ′)2

4 f

)
, (26)

and the Xμν tensor as,

Xt
t =

(
α(3r − c)(r − c)

r2 + 3β(r − c)2

r2 + 3r − 2c

r

)
, (27)

Xr
r = −

(
α(3r − c)(r − c)

r2 + 3β(r − c)2

r2 + 3r − 2c

r

)
, (28)

X θ
θ = Xφ

φ , (29)

= α(2c − 3r)

r
+ 3β(c − r)

r
+ c − 3r

r
, (30)

Solving (18) using these expressions for Gν
μ and Xν

μ gives the form of the metric as,

f (r) = 1 − 2M

r
+ Λ

3
r2 + γ r + ζ, (31)

where,

Λ = 3m2
g (1 + α + β) , (32)

γ = −cm2
g (1 + 2α + 3β) , (33)

ζ = c2m2
g (α + 3β) . (34)

The details of the above calculations are given by Ghosh et al. [41]. When γ = ζ = 0,
α and β will determine the nature of the solution. ie., if (1 + α + β) < 0 we get a
Schwarzschild-de Sitter type solution, if (1+α+β) > 0, we will get a Schwarzschild-
anti de Sitter type solution and when mg → 0 we get a Schwarzchild black hole.

In this paper, we consider a static spherically symmetric space time with vanishing
Energy momentum tensor and hence the field perturbations in such background are
not coupled to the perturbations of the metric and therefore are equivalent to test field
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in black hole background. Consider a massless scalar field that satisfies the Klein–
Gordon equation in curved space-time,

1√−g

∂

∂xa
gab

√−g
∂

∂xb
Φ = 0 (35)

ie.,
1

f (r)

∂2Φ

∂t2 − ∂

∂r
f (r)

∂Φ

∂r
− �θ,φΦ

r2 = 0, (36)

where,

�θ,φ = 1

sin θ

∂

∂θ
(sin θ) + 1

sin2 θ

∂2

∂φ2 (37)

In order to separate out the angular variables we choose the ansatz:

Φ =
∞∑

l=0

l∑

m=0

R(r)

r
e−iωt Yl,m(θ, φ), (38)

where ω gives the frequency of the oscillations corresponding to the black hole per-
turbation, Yl,m(θ, φ) are the spherical harmonics and,

�θ,φYl,m(θ, φ) = −l(l + 1)Yl,m(θ, φ). (39)

Substituting (38) in (36) and using (31) and (39) we get the radial wave equation,

d2R

dr2 + f ′(r)
f (r)

dR

dr
+

[
ω2

f (r)2 − ( 2M
r3 + γ

r + 2Λ
3 + l(l+1)

r2 )

f (r)

]
R = 0. (40)

By using tortoise coordinate x = ∫ dr
f (r) , the above equation can be brought into the

standard form [51],

d2R

dx2 + [ω2 − V (r)]R = 0, (41)

where,

V (r) = f (r)

(
l(l + 1)

r2 + f ′(r)
r

)
. (42)

The SdS black hole has three singularities given by the roots of f (r) = 0, which are the
event horizon, r1, the cosmological horizon, r2 and at r3 = (−r1 + r2). The QNMs are
defined as solutions of the above equation with boundary conditions: R(x) → eiωx

as x → ∞ and R(x) → e−iωx as x → −∞ for an e−iωt time dependence that
corresponds to ingoing waves at the horizon and out going waves at infinity. The
surface gravity κi at these singular points are defined as,

κi = 1

2

∂ f

∂r
|r→ri . (43)
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In the present study we are using improved AIM for finding the QNMs of the dRGT
black hole and hence it is convenient to make a change of variable as ξ = 1/r in (40)
leading to,

d2R

dξ2 + p′

p

dR

dξ
+

[
ω2

p2 −
l(l + 1) + (2Mξ + γ /ξ + 2Λ

3ξ2 )

p

]
R = 0, (44)

where,

p = −2Mξ3 + ξ2(1 + ζ ) + γ ξ + Λ

3
, (45)

p′ = −6Mξ2 + γ + 2ξ(1 + ζ ). (46)

In de Sitter space, the radial equation has got 3 singularities and these are represented

as ξ1 (Event horizon), ξ2 (Cosmological horizon) and ξ3 = −
(

ξ1ξ2
ξ1+ξ2

)
and hence we

can write [17–52],

eiωξ = (ξ − ξ1)
iω

2κ1 (ξ − ξ2)
iω

2κ2 (ξ − ξ3)
iω

2κ3 , (47)

The idea is to scale out the divergent behavior at the cosmological horizon first and then
rescale at the event horizon for a convergent solution. Now to scale out the divergent
behavior at cosmological horizon, we take,

R(ξ) = eiωξu(ξ). (48)

The master equation given by (44) then takes the form,

pu′′ + (p′ − 2iω)u′ −
[
l(l + 1) +

(
2Mξ + γ /ξ + 2Λ

3ξ2

)]
u = 0. (49)

The correct scaling condition of QNM at the event horizon implies,

u(ξ) = (ξ − ξ1)
− iω

2κ1 χ(ξ). (50)

The master equation then can be viewed of the form as,

χ ′′ = λ0(ξ)χ ′ + s0(ξ)χ, (51)

where λ0 and s0 are the coefficients of the second order differential equation. It can
be seen from (49) that the coefficient of u′ includes the frequency ω. Therefore the
quantization condition given by (13) can be used to find out the ω of (49) by iterating
to some n maximum. For calculating the QNMs, we have used the MATHEMATICA
NOTEBOOK given in the reference [53]. Initially the QNMs are calculated for the
SdS by making γ = ζ = 0 and the results are compared with reference [54,55] in
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Table 1 Column 2 shows QNMs calculated for γ = ζ = 0 for different values of Λ shown in column 1

Λ(for dRGT) ωAI M Λ(for SdS) ωWK B

0 0.483644 – 0.0967588 i 0 0.48364 − 0.09677 i

−0.02 0.434585 − 0.0885944 i 0.02 0.43461 − 0.08858 i

−0.04 0.380784 − 0.0787610 i 0.04 0.38078 − 0.07876 i

−0.06 0.320021 − 0.0668449 i 0.06 0.32002 − 0.06685 i

−0.08 0.247470 − 0.0519043 i 0.08 0.24747 − 0.05197 i

−0.09 0.202960 − 0.0425584 i 0.09 0.20296 − 0.04256 i

−0.10 0.146610 − 0.0306869 i 0.10 0.14661 − 0.03069 i

−0.11 0.0461689 − 0.0063134 i 0.11 0.04617 − 0.00963 i

These are compared with the SdS case calculated in [54] shown in column 4. The results are found to agree
quite well

Table 1. It can be seen that the results agree quite well with those found in the existing
literature. We have executed 50 iterations while calculating the QNMs. We have taken
(1 + α + β) < 0 while calculating the QNMs so that the results of the calculations
will correspond to that in de Sitter space.

Table 2 shows the quasi normal frequencies obtained through improved AIM
method. The values of α and β are chosen so that Λ remains negative. We have
chosen the values M = c = 1 in these calculations. The table shows the quasinormal
modes calculated for mg = 0.8 and mg = 1 respectively for the same range of α

and β values. It can be seen that for the same α and β, increasing the value of mg

increases the magnitude of the cosmological constant, which is obvious from 32).
Also as mg increases, the quasinormal frequencies are seen to be increasing in mag-
nitude for both l = 2 and l = 3 modes. As for every mg , both the real and imaginary
parts of the quasinormal frequencies are seen to be continuously increasing in mag-
nitude as Λ increases. Comparing these quasinormal frequencies with Table 1, it can
be seen that the values of the quasinormal frequencies when mg takes a finite value
are higher in magnitude than when mg = 0 which corresponds to a Schwarzschild
case.

3.2 Charged dRGT black hole

Consider a charged black hole from the class of dRGT massive gravity with the metric,

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d	2, (52)

where [41],

f (r) = 1 − 2M

r
+ Q2

r2 + Λ

3
r2 + γ r + ζ, (53)
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Table 2 Quasinormal modes of black hole for massless scalar perturbations calculated by AIM (with 50
iterations) for a class of de- Sitter dRGT massive gravity for l = 2 and l = 3 modes

Λ γ ζ ω(l = 2) ω(l = 3)

mg = 0.8

−0.080 −0.80 1.9840 1.15155 − 0.348046 i 1.62914 − 0.341517 i

−0.088 −0.80 1.9904 1.15615 − 0.350418 i 1.63572 − 0.343749 i

−0.096 −0.80 1.9968 1.16081 − 0.352759 i 1.64237 − 0.346001 i

−0.104 −0.80 2.0032 1.16552 − 0.355121 i 1.64910 − 0.348271 i

−0.112 −0.80 2.0096 1.17030 − 0.357501 i 1.65590 − 0.350560 i

−0.120 −0.80 2.0160 1.17512 − 0.359902 i 1.66278 − 0.352868 i

−0.128 −0.80 2.0224 1.18001 − 0.362322 i 1.66974 − 0.355195 i

mg = 1.0

−0.100 −1.00 3.1000 2.81587 − 1.049800 i 3.90051 − 1.026860 i

−0.110 −1.00 3.1100 2.83013 − 1.057140 i 3.91984 − 1.033950 i

−0.120 −1.00 3.1200 2.84445 − 1.064510 i 3.93924 − 1.041070 i

−0.130 −1.00 3.1300 2.85881 − 1.071910 i 3.95870 − 1.048210 i

−0.140 −1.60 3.1400 2.87322 − 1.079340 i 3.97823 − 1.055380 i

−0.150 −1.75 3.1500 2.88768 − 1.086800 i 3.99781 − 1.062580 i

−0.160 −1.90 3.1600 2.90220 − 1.094280 i 4.10746 − 1.069800 i

The α and β values are kept same while QNMs are calculated by varying the mg values

where Q corresponds to the charge. Proceeding as in Sect. 3.1, the wave equation is
found as,

d2R

dξ2 + p′

p

dR

dξ
+

[
ω2

p2 −
(2Mξ − 2Q2ξ4 + γ /ξ + 2Λ

3ξ2 )

p

]
R = 0, (54)

where,

p = Q2ξ4 − 2Mξ3 + ξ2(1 + ζ ) + γ ξ + Λ

3
, (55)

p′ = 4Q2ξ3 − 6Mξ2 + γ + 2ξ(1 + ζ ). (56)

Scaling out the divergent behavior at the event horizon leads to the master equation,

pu′′ + (p′ − 2iω)u′ −
[
l(l + 1) +

(
2Mξ − 2Q2ξ2 + γ /ξ + 2Λ

3ξ2

)]
u = 0. (57)

Again, the correct scaling condition of QNMs at the event horizon implies,

u(ξ) = (ξ − ξ1)
− iω

2κ1 χ(ξ), (58)
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Table 3 The Quasinormal modes (after 50 iterations) for massless scalar perturbations of a charged black
hole for the charge Q = 0.5 for the l = 2 and l = 3 modes

Λ γ ζ ω(l = 2) ω(l = 3)

m = 0.8

−0.080 −0.80 1.9840 2.43544 − 0.523799 i 1.67618 − 0.168257 i

−0.088 −0.80 1.9904 2.43455 − 0.535763 i 1.67635 − 0.180489 i

−0.096 −0.80 1.9968 2.43252 − 0.547233 i 1.67351 − 0.195613 i

−0.104 −0.80 2.0032 2.42939 − 0.558215 i 1.67069 − 0.209057 i

−0.112 −0.80 2.0096 2.42523 − 0.568718 i 1.66693 − 0.222338 i

−0.120 −0.80 2.0160 2.42021 − 0.578624 i 1.66230 − 0.235427 i

−0.128 −0.80 2.0224 2.41399 − 0.588313 i 1.65677 − 0.248391 i

m = 1.0

−0.10 −1.00 3.1000 0.304084 − 2.99974 i 0.9866449 − 4.93190 i

−0.11 −1.00 3.1100 0.342169 − 3.05263 i 1.0195500 − 5.01834 i

−0.12 −1.00 3.1200 0.378347 − 3.10442 i 1.0531600 − 5.10348 i

−0.13 −1.00 3.1300 0.413140 − 3.15511 i 1.0872800 − 5.18734 i

−0.14 −1.60 3.1400 0.446882 − 3.20472 i 1.1219000 − 5.26998 i

−0.15 −1.75 3.1500 0.479812 − 3.25326 i 1.1570200 − 5.35141 i

−0.16 −1.90 3.1600 0.512100 − 3.30072 i 1.1926600 − 5.43168 i

The α and β values are kept same while QNMs are calculated by varying the mg values

where,

κ1 = 1

2

∂ f

∂r
|r→r1 ,

= Mξ2 − Q2ξ3 + Λ

3
ξ + γ

2
. (59)

The master equation is now in the form of (1) so that the quantization condition given
by (13) can be employed to find out the QNMs.

Table 3 shows the quasinormal modes calculated using the improved AIM method
for different values of α and β. We have chosen the values M = c = 1 and Q = 0.5
in these calculations. The QNMs are studied as in the prevoius section by varying
the mg value while keeping the values of α and β the same. It can be seen that as
mg increases, the real part of the quasi normal frequency deceases while the magni-
tude of the imaginary part increases. For each mg the quasi normal frequency vary
continuously. A black hole is stable only when the imaginary part in its Quasi nor-
mal spectrum is negative [56]. It is noted while calculating the Quasinormal modes
that the roots of the frequency, ω give positive as well as negative imaginary fre-
quencies. Here we are interested in the stable modes and therefore considered only
the negative imaginary parts of ω. 50 iterations have been done for calculating the
QNMs.
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4 P-V Criticality of black holes

4.1 Black holes in dRGT massive gravity

In this section we look into the thermodynamic critical behavior of black holes
described by the metric (31) in the extended phase space. We intend to check whether
the black hole exhibits any phase transition by showing an inflection point in the P−V
indicator diagram. Here, the cosmological constant, Λ is treated as representing a neg-
ative pressure [57] as,

Λ = −8π P. (60)

For γ = ζ = 0 the metric given by (31) would lead to the case of a de Sitter space
provided Λ is negative. Keeping this in mind we take,

Λ = 8π P, (61)

where P is the pressure. The boundary of the black hole is described by the black hole
horizon, rh and is determined by the condition, f (r)|rh = 0. From this condition, the
mass of the black hole can be expressed in terms of rh as,

M = 1

6
rh(3 + 3rhγ + 3ζ + r2

hΛ), (62)

and the black hole mass is considered to be the enthalpy of the system. The thermo-
dynamic volume, V is given by Kstor et al. [58] and Dolan [59]

V = ∂M

∂P
. (63)

Varying (62) partially with respect to the pressure P, we get

V = 4

3
πr3

h . (64)

The temperature of the black hole, described by the metric in (31), given by the
Hawking temperature can be written as [60],

T = 1

4π
f ′(rh),

= 1

4πrh

[
2M

rh
+ γ rh + 2

Λ

3
r2
h

]
.

(65)

Substituting for M from (62) in the above equation and rearranging it we get an
expression for the cosmological constant,

Λ = 4πT − 2γ

rh
− (1 + ζ )

r2
h

. (66)
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But from (61), the cosmological constant can be related to the pressure as Λ = 8π P .
Therefore (66) can be written in terms of P as,

P = Λ

8π
,

=
(
T

2
− γ

4π

)
1

rh
−

(
1

8π
+ ζ

8π

)
1

r2
h

,

(67)

Or,

P = w1

rh
+ w2

rh2 , (68)

where,

w1 =
(
T

2
− γ

4π

)
, (69)

w2 = −
(

1

8π
+ ζ

8π

)
. (70)

From (69), w1 can be treated as a shifted temperature. From 64), thermodynamic
volume V is a monotonic function of the horizon radius rh . and hence rh can be
considered to be corresponding to V . Therefore, (68) can be treated as an equation of
state describing the black hole. The critical point is then determined by the conditions,

∂P

∂rh
|rh=rhc,T=Tc = 0, (71)

and

∂2P

∂2rh
|rh=rhc,T=Tc = 0. (72)

Substituting for P from (68) in the above differential equation it is found that the
conditions given by (71) and (72) are not simultaneously satisfied. The condition,

∂P

∂rh
|rh=rhc,T=Tc = 0, (73)

gives the critical horizon as,

rhc = −2w2

w1
. (74)

Evaluation of ∂2P
∂2rh

|rh=rhc,T=Tc gives a non zero value which can imply either a local
maximum or a local minimum depending on whether the value is greater than or less
than zero. The critical pressure is found out by substituting (74) in (68) which gives,
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Fig. 1 In the first figure p − rh diagram is plotted for the value w2 = 1 which shows critical behavior and
the second figure shows plots for the value w2 = −0.5 which shows an inflection

Pc = − w2
1

4w2
. (75)

This critical point corresponds to a physically feasible one if Pc is positive [61].
From (70) it can be seen that this happens only if w2 is negative irrespective of the
sign of w1. The relation between shifted temperature, w1, critical pressure, Pc and
horizon radius rh can be found out from (74) and 75 as,

Pcrhc
w1

= 1

2
. (76)

This ratio is called the ‘Compressibility Ratio’. The value of compressibility ratio for
a Van der Waal’s gas is 0.375. Hence, the black hole system, with the Compressibility
Ratio given by 76), can be thought of as behaving like a near Van der Waal’s system.
The P − rh diagram plotted for different shifted temperature is shown in Fig. 1. In
the first figure, the curves are plotted for w2 = 1, the curves are seen to show critical
behavior but it likely does not correspond to a physical one because, from (75), for
the above said values of w1 and w2 the critical pressure Pc turns out to be negative for
these curves. The second figure is plotted for w2 = −0.5, they show inflection point
but there is no phase transition.

4.2 Charged dRGT Black Hole

Consider a charged black hole with the metric of the form (56). The Hawking Tem-
perature for this metric can be found out as,

T = 1

4π
f ′(rh),

= 1

4πrh

[
2M

rh
− 2Q2

r2
h

+ γ rh + 2
Λ

3
r2
h

]
.

(77)
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From the above equation, the equation of state can obtained proceeding as described
in Sect. 4.1. The mass, M of the black hole can be written in terms of the horizon
radius rh as,

M = 1

6rh
(3Q2 + 3r2

h (1 + ζ ) + 3r3
hγ + r4

hΛ), (78)

Substituting (78) in (77) we get,

Λ = 4πT − 2γ

rh
− (1 + ζ )

r2
h

+ Q2

r4
h

. (79)

Writing this equation in terms of P ,

P = Λ

8π
,

=
(
T

2
− γ

4π

)
1

rh
−

(
1

8π
+ ζ

8π

)
1

r2
h

+ Q2

8πr4
h

, (80)

Or,

P = w1

rh
+ w2

r2
h

+ w3

r4
h

, (81)

where,

w1 =
(
T

2
− γ

4π

)
, (82)

w2 = −
(

1

8π
+ ζ

8π

)
, (83)

w3 = Q2

8π
. (84)

(81) describes the equation of state. The critical point is then determined by the con-
ditions,

∂P

∂rh
|rh=rhc,T=Tc = 0, (85)

and

∂2P

∂2rh
|rh=rhc,T=Tc = 0. (86)
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Fig. 2 In the first figure p − rh diagram is plotted for the vale w2 = −10 and w3 = 1 which shows a
phase transition and the second figure shows plots for the value w2 = 6 and w3 = 1 which does not show
any phase transition

Unlike in the Sect. 4.1, it is found that (85) and (86) are simultaneously satisfied which
gives the solutions, for critical horizon as,

rhc =
√

−6w4

w2
, (87)

and for the critical temperature as,

w1c = 2

3

√

−2w3
2

w3
. (88)

Using (81), (87) and (88), an expression for the critical pressure can be arrived at as,

Pc = w2
2

12w3
. (89)

The relation connecting shifted temperature w1c, critical pressure, Pc and critical
horizon radius rhc are found as,

Pcrhc
w1c

= 3

8
, (90)

which is exactly the same as in the case for a Van der Waal’s system. The P-V diagram
plotted for different shifted temperature is shown in Fig. 2. In the first figure, the
curves are plotted for w2 = −10 and w3 = 1. The second figure is plotted for w2 = 6
and w3 = 1. The first figure shows an inflection point and a phase transition, but the
second does not, as is obvious due to the sign change of w2.

5 Conclusion

In this paper, the quasinormal modes coming out of massless scalar perturbations in
black hole space-time in a class of dRGT massive gravity, is studied. We have used
the Improved Asymptotic Iteration Method (Improved AIM) to find out the QNMs in
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the de Sitter space. We have done 50 iterations for calculating the QNMs. The Quasi
normal modes are studied by varying the massive parameter, mg . It is found that as
mg increases the magnitude of the quasi normal frequencies increase for neutral black
hole. These QNMs are also higher in magnitude compared to the SdS case. It is also
found that as γ and ζ tend to zero, the results converge to the SdS case. For a charged
black hole, the real part of the quasi normal frequency decreases and the magnitude
of imaginary part increases as mg is increased.

The P − V criticality in the extended phase space of the aforesaid black holes are
also determined. The neutral black holes show a near Van der Waal behavior with
the compressibility ratio of 0.5. But it does not show any physically feasible phase
transition for the de Sitter space. The charged black hole on the other hand exactly
shows a Van der Waal’s behavior and clearly exhibits a phase transition.
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