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Abstract One proposal by Verlinde is that gravity is not a fundamental, but an entropic
force (Verlinde in JHEP 1104:029, 2011. arXiv:hep-th/1001.0785). Based on this new
interpretation of the gravity, Verlinde has provide us with a way to derive the Newton’s
law of gravitation from the Bekenstein–Hawking entropy-area formula. On the other
hand, since it has been demonstrated that this formula is susceptible to quantum gravity
corrections, one may hope that such corrections could be inherited by Newton’s law.
In this sense, the entropic interpretation of Newton’s law could be a prolific way in
order to get verifiable or falsifiable quantum corrections to ordinary gravity in an
observationally accessible regimes. On the other hand, loop quantum gravity is a
theory that provide a scheme to approach the quantum properties of spacetime. From
this theory, emerges a quantum corrected semiclassical black hole solution called loop
quantum black hole or self-dual black hole. Among the interesting features of loop
quantum black holes, is the fact that they give rise to a modified entropy-area relation
where quantum gravity corrections are present. In this work, we obtain a quantum
corrected Newton’s law from the entropy-area relation given by loop quantum black
holes by using the nonrelativistic Verlinde’s approach. Moreover, in order to relate
our results with the recent experimental activity, we consider the quantum mechanical
properties of a huge gravitational atom consisting in a light neutral elementary particle
in the presence of a loop quantum black hole.
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1 Introduction

Since the rising of black hole thermodynamics in the seventies, through the Hawking’s
demonstration that all black holes emit blackbody radiation [1], investigations about
these objects break up the limits of astrophysics. In fact, black holes have been put in
the heart of the debate of the most fascinating issues in theoretical physics. Among
these issues, the search for a better understanding of the quantum nature of gravity,
since the quantum behavior of spacetime must be revealed within the presence of a
black hole strong gravitational field.

Among the most important lessons from black hole thermodynamics, arises the
Bekenstein–Hawking formula which establishes that, in a different way from other
usual thermodynamical systems, the entropy of a black hole is not given as proportional
to its volume, but to its horizon area: S = kBc3A/4�G. A deep intersection between
gravity, quantum mechanics, and thermodynamics could be contained in this formula,
since it gives us one of the few situations in physics where Newton’s gravitational
constant G and the speed of light c meet the Planck constant � and the Boltzmann
constant kB . In fact, it has been shown by string theory and loop quantum gravity that
black-hole thermodynamics must has its origin in the atomic structure of the spacetime
[2–5]. Moreover, in [6–8] it has been argued that a topology change process due to
the dynamics of the quantum spacetime could be the origin of black hole entropy and
the Generalized Second Law of black hole thermodynamics.

In 1995, a surprising result by Jacobson has deepened the significance of the
Bekenstein–Hawking formula. Assuming the proportionality between entropy and
horizon area, Jacobson derived the Einstein’s field equations by using the fundamen-
tal Clausius relation [9]. The procedure behind this result is to require that such relation,
δQ = TdS, associating heat, temperature and entropy, holds for all the local Rindler
causal horizon through each spacetime point, with δQ and T interpreted, respectively,
as the energy flux and Unruh temperature seen by an accelerated observer just inside
the horizon. In this sense, the spacetime could be viewed as a kind of gas whose entropy
is given by the Bekenstein–Hawking formula, and the Einstein’s field equation as an
equation of state describing this gas.

Following Jacobson’s results, several authors, most notably Thanu Padmanabhan,
have addressed the issue of the relation between gravity and thermodynamics (For
a review and a voluminous list of references see [10]). More recently, Verlinde [11]
conjectured that gravity is a non fundamental interaction but would be explained as
an entropic force. In this way, the second law of Newton is obtained when one tie
up the entropic force with the Unruh temperature. On the other hand, Newton’s law
of gravitation is obtained when associating these arguments with the holographic
principle and using the equipartition law of energy. Verlinde’s formalism has been
used in several contexts including cosmological ones [12–16].

Controversially, by using the measurement result of quantum states of ultra-cold
neutron under the Earth’s gravity, Kobakhidze [17] presented an argument in oppo-
sition to Verlinde’s proposal. The problem pointed by Kobakhidze comes from the
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fact that the entropy formula defined by Verlinde’s formalism, in principle, leads to
a quantum neutron mixed state. However, it disagrees with the results from the ultra-
cold neutron experiment. Kobakhidze’s criticism have been questioned in [18] and
one resolution has been suggested by Abreu et al. [19]. This resolution can be found
out by abandoning the implicit assumption in [17] that the entropy on the holographic
screen is additive.

Verlinde’s ideas, in this way, have provide us with a way to derive Newton’s law of
gravitation from Bekenstein–Hawking formula. However, from another standpoint, it
is also known that, in other contexts than Einstein’s gravity, this formula of black hole
entropy may not be held. For example, when higher order curvature term appears in
some gravity theory, the entropy-area formula has to be modified [20]. Modifications to
Bekenstein–Hawking formula also appear when quantum gravity effects are included.
For example, when a Generalized Uncertainty Principle (GUP) is taken into account
[21,22]. In this way, deviations of the entropic force due to corrections imposed on
the area law by quantum effects and extra dimensions have been investigated [23–
31]. Quantum gravity corrections to Bekenstein–Hawking formula also appear in the
context of loop quantum gravity. The most popular form to these corrections appear
as logarithmic corrections which arises due to thermal equilibrium fluctuations and
quantum fluctuations [32–35].

Another way to get quantum corrections to Bekenstein–Hawking formula arises
in the context of loop quantum black holes. Actually, efforts in order to obtain black
hole solutions in the context of Ashtekar’s reformulation of general relativity and
loop quantum gravity have been done since the 1980’s by several authors [36–46].
However, in this work, we shall deal with a loop quantum black hole solution, that
consists in a quantum gravity corrected Schwarzschild black hole that appears from
a simplified model of loop quantum gravity and possess the interesting property of
self-duality [47–52]. This property guarantees the black hole singularity resolution,
since an asymptotic flat region corresponding to a Planck-sized wormhole arises in the
place of the black hole singularity. The wormhole throat, in this scenario, is described
by the Kantowski-Sachs solution.

The thermodynamical properties of loop black holes have been addressed in the
references [48–52]. Moreover, in the reference [53], such thermodynamical properties
were obtained by the use of a tunneling method with the introduction of back-reaction
effects. On the other hand, in the reference [54], the tunneling formalism has been
applied in order to include corrections due to a Generalized Uncertainty Principle to
loop quantum black hole’s thermodynamics. Among the results related with the ther-
modynamics of loop black holes, we have a quantum corrected Bekenstein–Hawking
formula for the entropy of a black hole in which quantum gravity ingredients have
been included. Phenomenological issues related with this scenario have also been
addressed in the literature. In this way, gravitational lenses effects due to this kind of
black holes have been investigated in [55]. On the other hand, loop quantum black
hole’s quasinormal modes have been calculated in [56], [57] and [58]. In the last, axial
gravitational perturbations have been considered.

In the present work, we shall address how the Newton’s law of gravitation would
be modified in the presence of loop quantum black holes, when quantum properties of
spacetime are taken into account. In order to do this, we shall use the Verlinde’s entropic
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approach in the non-relativistic realm [11]. Moreover, motivated by the progress in the
experimental activity (LIGO [59], GEO-600 [60], TAMA-300 [61] and VIRGO [62]),
we shall consider the quantum mechanical system of a non-relativistic gravitational
atom consisting in a light neutral elementary particle in the presence of a loop quantum
black hole. In particular, we apply the Bohr–Sommerfeld formalism to this system,
by the use of the modified Newton’s potential, in order to obtain its energy levels.

2 Loop quantum black holes

The loop quantum black hole (LQBH) scenario that we shall deal in this work appeared
at the first time from a simplified model of Loop Quantum Gravity(LQG) [47]. This
scenario is described by a quantum gravitationally corrected Schwarzschild metric,
which can be written in the form

ds2 = −G(r)dt2 + F−1(r)dr2 + H(r)dΩ2 (1)

with

dΩ2 = dθ2 + sin2 θdφ2, (2)

where, in the Eq. (1), the metric functions are given by

G(r) = (r − r+)(r − r−)(r + r∗)2

r4 + a2
0

, (3)

F(r) = (r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
0)

, (4)

and

H(r) = r2 + a2
0

r2 , (5)

with

r+ = 2mG

c2 ; r− = 2mP2G

c2 .

In this way, two horizons appear in this LQBH’s scenario—an event horizon at r+
and a Cauchy horizon at r−. Furthermore, we have that r∗ = √

r+r− = 2mPG/c2,
where P is the polymeric function given by

P =
√

1 + ε2 − 1√
1 + ε2 + 1

, (6)

and

a0 = Amin

8π
, (7)
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with Amin as the minimal value of area in LQG. Moreover, ε = γ δb, where γ is the
Barbero–Immirzi parameter [5], and δb is the polymeric parameter.

On the other hand, we have that the ADM mass is the mass inferred by an observer
at flat asymptotic infinity; it is determined solely by the metric in this realm. In this
way, in the limit r → ∞,

F(r) → 1 − 2m(1 + P)2

r
, (8)

in a way that we can read off the ADM mass of the system M as

M = m(1 + P)2. (9)

In the metric (1), since gθθ is not just r2, r is only asymptotically the usual radial
coordinate. From the form of the function H(r), one obtains a more physical radial
coordinate given by

R =
√
r2 + a2

0

r2 . (10)

In this way, the proper circumferential distance is measured by R.
The Eq. (10) reveals important aspects of the LQBH’s internal structure. From this

expression, we have that, as r decreases from ∞ to 0, R first decreases from ∞ to√
2a0 at r = √

a0 and then increases again to ∞. The value of R associated with the
event horizon is given by

REH = √
H(r+) =

√(
2mG

c2

)2

+
(
a0c2

2mG

)2

. (11)

A peculiar feature in LQBH’s scenario is the property of self-duality. This property
says that if one introduces the new coordinates r̃ = a0/r and t̃ = tr2∗/a0, with r̃± =
a0/r∓, the metric preserves its form. The dual radius is given by rdual = r̃ = √

a0 and
corresponds to the minimal possible surface element. Moreover, since the equation
(10) can be written as R = √

r2 + r̃2, it is clear that, in the LQBH’s scenario, we
have another asymptotically flat Schwazschild region in the place of the singularity in
the limit r → 0. This new region corresponds to a Planck-sized wormhole. Figure (1)
shows the Carter–Penrose diagram for the LQBH.

The derivation of the black hole’s thermodynamical properties from the metric (1)
proceeds in the usual way. The Bekenstein–Hawking temperature TBH can be obtained
by the calculation of the surface gravity κ by TBH = �κ/2πckB , with

κ2 = −gμνgρσ ∇μχρ∇νχ
σ = −1

2
gμνgρσ Γ

ρ
μ0Γ

σ
ν0, (12)

where χμ = (1, 0, 0, 0) is a timelike Killing vector and Γ
μ
σρ are the connections

coefficients.
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Fig. 1 Carter–Penrose diagram
for the LQBH’s metric. The
diagram shows two asymptotic
flat regions, one localized at
infinity and the other near the
origin, which can not be reached
by an observer in a finite time

By connecting with the metric, one obtains that the LQBH’s temperature is given
by

TH = �c3

GkB

(2m)3(1 − P2)

4π
[
(2m)4 + a2

0

] . (13)

It is easy to see that one can recover the usual Hawking’s temperature in the limit
of large masses. However, differently from the Hawking’s case, the temperature (13)
goes to zero for m → 0, as have been shown in the Fig. (2). In this point, we remind
that the black hole’s ADM mass M = m(1 + P)2 ≈ m, since P 	 1.

The black hole’s entropy can be found out by making use of the thermodynamical
relation SBH = ∫

dm/T (m),

S = 4π(1 + P)2

(1 − P2)

kBG

c�

[
16m4 − a2

0

16m2

]
, (14)

which can be expressed in terms of the black hole horizon area as [52]

S = ±kB

√
A2 − A2

min

4L2
P

(1 + P)

(1 − P)
, (15)

where we have set the possible additional constant to zero, and LP = √
G�/c3 is the

Planck length. S is positive for m >
√
a0/2 and negative otherwise.
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Fig. 2 The LQBH’s temperature (solid line) in contrast with the Schwarzschild black hole temperature
(dashed line)

The double possibility in the signal of the LQBH’s entropy is related with the
two possible physical situations that arise from its structure [51]. In the first of these
possibilities, the event horizon stays outside the wormhole throat. In order to have
this situation, the condition r+ >

√
a0 is necessary, which implies that m >

√
a0/2.

In this case, the bounce takes place after the black hole forms for a super-Planckian
LQBH and the exterior is similar, in a qualitative way, to that would be produced by a
Schwarzschild black hole with the same mass. In this way, outside the event horizon,
the LQBH’s scenario is different from the Schwarzschild’s one only by Planck-scale
corrections. On the other hand, in the sub-Planckian regime, we have a more instigating
situation. In this case, the event horizon becomes the other side of the wormhole
throat. Moreover, the deviations from the Schwarzschild metric are very expressive
and the bounce takes place before the event horizon forms. Consequently, even large
event horizons (what would happen for m 	 mP ), it will be invisible to observers at
r >

√
a0.

The LQBH’s solution (1) could be conceived, in an alternative way, as having
been generated by an effective matter fluid that simulates the loop quantum gravity
corrections (in analogy with [63,64]). In this case, the effective gravity-matter system
satisfies by definition the Einstein equationsG = 8πT , where T is the effective energy
tensor. However, for the LQBH’s case, T 
= 0 contrarily to the classical Schwarzschild
solution [48].

The thermodynamics properties of LQBHs has also been obtained through the
Hamilton–Jacobi version of the tunneling formalism [53]. By the use of this formalism,
back-reaction effects could be included. Moreover, extensions of the LQBH solution
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to scenarios where charge and angular momentum are preset can be found in [65].
The issue of information loss has been also addressed in the context of loop black
holes. In this case, it has been pointed that the problem of information loss by black
holes could be relieved in this framework [50,53,66]. This result may be related with
the absence of a singularity in the loop black hole interior, and consists in a forceful
result in benefit of this approach. Another interesting result in the realm of LQBHs
is the fact that, as have been demonstrated in [67], it can been seen as the building
blocks of loop quantum cosmology (LQC), in the sense that, starting from the LQBH’s
entropy expression, LQC equations can been obtained through the use of Jacobson’s
formalism to obtain the Einstein’s gravitational equations.

In the next section, following the formalism developed by Verlinde [11], we shall
derive the quantum corrected Newton’s law from the modified entropy-area relation
given by the Eq. (15).

3 Quantum corrected Newton’s law from loop quantum black holes

In this section, we shall derive the quantum corrected Newton’s gravitational law of
gravitation which arises in the presence of LQBHs. In order to do this, we shall use
the nonrelativistic Verlinde’s entropic force formalism.

In this point, an explanation about the choice of this method is suitable. In fact,
since we have the LQBH’s metric on our hands, one could derive straightforwardly a
quantum corrected form to the Newtonian potential by taking into account the point of
view of an observer located at infinity (weak field approximation). However, by the use
of this method, in the case of LQBH, only the quantum correction that depends on the
polymeric function P are revealed, while the high energy corrections which depend
on the minimal area a0 become hidden. In the nonrelativistic regime, for example, the
weak field approximation would imply, only the redefinition of the ADM mass by a
factor (1 + P)2(see Eq. 8). Actually, one can verify that, in the relativistic regime,
a similar result will be obtained. It is due to the fact that, in the case of LQBHs, the
quantum correction which depends on the minimal area occurs in the H(r) function,
which differs from r2 only for short distances. On the other hand, the Verlinde’s
method is based on the entropy functional, where the minimal area corrections are
present independently from the distance range. In this way, one hopes to find out,
even for large distances, additional contributions to Newton’s gravitational law, which
depends on the minimal area, by applying the Verlinde’s formalism in the LQBH’s
case.

In this way, we have that Verlinde has conjectured that gravity is not fundamental
but can be explained as an entropic force. In this section, following the Verlinde’s
entropic force approach to gravity, we shall derive a quantum corrected Newton’s law
of gravitation from LQBH’s entropy-area relation (15).

We have that in thermodynamics, if the number of states depends on position Δx ,
an entropic force F arises as the thermodynamical conjugate of Δx . In this case, the
first law of thermodynamics can be written as

FΔx = TΔS. (16)

123



Entropic corrected Newton’s law of gravitation and the. . . Page 9 of 17 83

Based on the Bekenstein’s entropy bound, Verlinde postulated that when a test
particle moves approaching a holographic screen, the change of entropy on this screen
is proportional to the mass m of the particle, and the distance Δx between the test
particle and the screen

ΔS = 2πkB
mc

�
Δx . (17)

In order to make use of the entropic force hypothesis, (17) should hold at least when
Δx is smaller than or comparable with the Compton wave-length of the particle.

The temperature that appears in (16) can be understood in two ways: one can relate
temperature and acceleration using Unruh’s rule

kBT = 1

2π

�a

c
, (18)

or relate temperature, energy and the number of used degrees of freedom using the
equipartition rule

E = 1

2
NkBT . (19)

It is necessary to point that the temperature T in Eqs. (18) and (19) have different
meaning. In the first equation, the temperature is defined in the bulk. However, in
the second, the temperature is defined on the holographic screen. To admit these two
temperatures to be equal is a further supposition in Verlinde’s paper. In despite of this,
one can get two important results. The first one is obtained from the Eqs. (16), (17)
and (18) and corresponds to the second Newton’s law of motion F = ma. The second
result corresponds to the Newton’s law of gravitation.

In this point, we reach a core question in this paper. In order to obtain the Newton’s
law of gravitation, one must have a way to relate the number of bits on the holographic
screen with the black hole horizon area. Following the Shannon’s definition of entropy
[68], we have that the number of bits on the screen is proportional to the horizon
entropy. In this way, in the Verlinde’s treatment to a classical black hole, where the
black hole’s entropy is proportional to its horizon area, it has been assumed that the
number of bits is proportional to the black hole event horizon area [11]. However, in
the present case, quantum gravity corrections must adjust the number of bits encoded
on the black hole horizon [29–31]. In this way, from the Eq. (15), we shall write

N = (1 + P)

(1 − P)

√
A2 − A2

min

L2
P

. (20)

Putting it together with the Eqs. (16), (19) and E = Mc2, we get, for R >
√

2a0,

F = −GMm

R2

(1 + P)

(1 − P)
× 1√

1 − A2
min/16π2R4

. (21)
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Moreover, for the gravitational potential V (r) = − ∫
F(R)dR, we obtain

V (r) = −GMm

R

(1 + P)

(1 − P)

(
1 − A2

min

160π2R4 − A4
min

18432π4R8 + · · ·
)

. (22)

In this way, corrections to Newton’s gravitational law can be obtained from LQBH’s
entropy-area relation. As we can see, the deviations on the Newton’s law depend on
the value of minimal area Amin in LQG, as well as on the polymeric parameter P . As
a consequence, the corrections found out are important in the case of submilimeter
distances, even though it could be realized in the context of large distances through the
dependence on the P parameter, as well as a0, since the Barbero–Immirzi parameter
does not suffer with the problem of mass suppression, as have been pointed in [55].

Moreover, note that the leading term in the gravitational potential found out in this
work no longer depends on a0 ∼ l2P as in other models for quantum corrections to
Newton’s law of gravitation as perturbation quantum gravity [69] and GUP approaches
[29–31], but on a2

0 ∼ l4P .
In the next section, the quantum corrections to Newton’s law of gravitation found

out here will pave the way to the study of a system composed by a LQBH with a
particle orbiting it, which could be a suitable candidate to dark matter.

4 The loop quantum black hole atom

In the seventies, Hawking introduced the possibility that a free charged particle could
be capture by a primordial charged black hole forming neutral and non-relativistic
ultra-heavy black hole atoms [70]. After, the term gravitational atom was coined by
Flambaum and Berengut in [71] for a gravitationally bound neutral black hole and a
charged particle.

An interesting fact about gravitational atoms is that they have been pointed as an
important constituent of dark matter. In fact, primordial black hole remnants left after
the Hawking evaporation have been considered as a source of dark matter by several
authors for more than two decades [72–81] (for a review see [82–84]). However, a
central question is whether some remnants could leave after the Hawking evaporation,
forming a stable nucleus for the gravitational atom. In other words, in order to have
a gravitational atom system as a suitable candidate to describe dark matter, it would
be necessary that, at some point of its evolution, the black hole nucleus establish a
thermal stable equilibrium with its neighborhood.

In the Schwarzschild scenario, this kind of situation is possible for a black hole to be
in equilibrium with the Cosmic Microwave Background (CMB) for a black hole mass
of 4.50×1022 kg. However, this equilibrium is not stable because, for a Schwarzschild
black hole, the temperature always increases as its mass decreases and vice versa [(see
the dashed line in the Fig. (2)]. On the other hand, a new phenomenon emerges in
the LQBH’s scenario. From Eq. (13), all light enough LQBHs would radiate, and
their temperature cools, until the point they would be in thermal equilibrium with the
CMB. In fact, a stable thermal equilibrium occurs for a black hole mass given by
mstable ≈ 10−19 kg. Based on this feature of LQBHs, Modesto et al have yet pointed
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to the possibility that these objects could be an important component of dark matter
[48]. In this way, one could think about the possibility of gravitational atoms, where
a LQBH could appear as the atomic nucleus.

In order to give a first glance on these kind of system, let us use the expression for
the gravitational force between a LQBH and a neutral particle orbiting it, which will
be given by the Eq. (21):

F = GMm

R2

(1 + P)

(1 − P)
× 1√

1 − A2
min/16π2R4

= mv2

R
, (23)

where v is the particle velocity in the orbit.
In this way, we shall have:

v =
[
(1 + P)

(1 − P)

GM

R

] 1
2 ×

(
1 − A2

min/16π2R4
)− 1

4
. (24)

Now, using the Bohr–Sommerfeld quantization method, mvR = j�, we shall get
the following equation

R6 − (1 − P)

(1 + P)

( j�)4

(GMm2)2 R
4 + (1 − P)

(1 + P)

( j�)4A2
min

(GMm2)2 = 0, (25)

whose only real solution is given by

R j =
⎡
⎣ �

4 j4(P − 1)

3m4G2M2(P + 1)

+
⎛
⎝�

4 j4Amin(P − 1)

√
27m8A2

minG
4M4(P + 1)2 − 4h8 j8(P − 1)2

2(33/2)m8G4M4(P + 1)2

+�
4 j4(1 − P)[2�

8 j8(1 − P)2 − 27m8A2
minG

4M4(P + 1)2]
54m12G6M6(P + 1)3

)1/3

+ �
12 j12(P − 1)3

9m8G4M4(P + 1)2 ×
⎛
⎝

√
27m8A2

minG
4M4(P + 1)2 − 4h8 j8(P − 1)2

2(33/2)m8G4M4(P + 1)2

−2�
8 j8(P − 1)2 − 27m8A2

minG
4M4(P + 1)2

54m12G6M6(P + 1)3

)1/3
⎤
⎦

1/2

,
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which can be expanded as

R j =
√

(P + 1)(1 − P)�2 j2

m2GM(P + 1)
−

√
(P + 1)(1 − P)m6G3M3(P + 1)

2�6 j6(P − 1)2 A2
min

+ · · · (26)

where the first term corresponds to the usual gravitational atomic radius, unless the P
parameter factors.

The energy levels E j of the LQBH gravitational atom are obtained from the expres-
sions (22), (24) and (26),

E j = 1

2
mv2 + V

= −m3G2M2(P + 1)3/2

2�2 j2(1 − P)3/2 + m11G6M6(P + 1)7/2

64�10 j10π2(1 − P)7/2 Amin

+m11G6M6(P + 1)7/2
[
15m8G4M4(P + 1)2 − (5120π2 − 128)�8 j8π2(1 − P)2

]
20480�18 j18π4(1 − P)11/2 A2

min

+ · · · . (27)

The first therm in the expression above corresponds to the usual expression to the
gravitational atom energy levels (unless the dependence on the polymeric function),
which can be obtained in the limit where the quantum gravity corrections goes to zero.

In order to measure the deviation from the classical results, let us calculate the
relation

ν j

νclassj

= δE j

δEclass
j

, (28)

between the frequencies emitted by a gravitational atom in the quantum ( ν j ) and
classical (νclassj ) cases for the j → j − 1 transition. If we consider the case of a
gravitational atom composed by a LQBH in the nucleus and a particle with mass of
order of neutron’s mass orbiting it, the values shown in the Table (1) are obtained. As
we can see from the table, the deviation from the classical values in the energy levels
assumes values for which the experimental devices could be sensible, approaching
16 % for P ≈ 0.05.

5 Conclusions and remarks

We have derived quantum corrected Newton’s gravitation law from the LQBH’s
entropy-area relation using the Verlinde’s entropic force interpretation to gravity. Our
results point to some quantum deviation from classical Newton’s law that must have
an important rule in sub-millimeter distances where Newton’s gravitation theory has
not been tested yet, even though these deviations could be perceived in the realm of
large distances through the dependence on the parameter P . Such dependence on the
P parameter, by the quantum corrections to Newton’s gravitation law that appear in
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the LQBH’s framework, offers some advantages under the experimental point of view
front others scenarios. It is because the P parameter, as well as a0, which are defined
in terms of the Barbero–Immirzi parameter [5], does not suffer with the problem of
mass suppression as occurs with the parameters of other quantum gravity theories like
superstring theory or noncommutative theory, as has been pointed in [55].

On the other hand, due to its self-duality property, LQBHs can have a mass lower
than the Planck one. Particularly, for mstable ≈ 10−19 kg, a LQBH would assume
a stable thermal equilibrium with the CMB, which makes possible that this kind of
black holes can be seen as a good candidate for dark matter. In this way, impelled by
the current experimental activity, we have investigated the energy spectrum of a huge
gravitational atom composed by a neutral particle orbiting a LQBH, by the use of the
Bohr–Sommerfeld formalism. As have been demonstrated, the energy levels depend
on the quantum gravitational corrections inherited from the LQBH’s metric. By the
way, if one takes a particle with mass of order of neutron’s mass, the deviation from
the classical frequencies assumes values that approach 16 % for P = 0.05, which
could be captured by experiments.

The leading term in the gravitational potential found out in this work no longer
depends on a0 ∼ l2P as in other models for quantum corrections to Newton’s law of
gravitation as perturbation quantum gravity [69] and GUP approaches [29–31], but on
a2

0 ∼ l4P . It is due to the fact that, as one can obtain by expand the LQBH’s entropy
in terms of a0, the leading quantum correction on the entropy depends on a2

0 . In this
way, further investigations could be done by consideration of LQBH’s entropy lower
order corrections in lP . These kind of corrections have been found out in [54] and
could reconcile the results found out in the present work with the other approaches.
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