
Gen Relativ Gravit (2016) 48:65
DOI 10.1007/s10714-016-2062-1

RESEARCH ARTICLE

Solutions for uniform acceleration in general relativity

Tzvi Scarr1 · Yaakov Friedman1,2

Received: 8 February 2016 / Accepted: 14 April 2016 / Published online: 28 April 2016
© Springer Science+Business Media New York 2016

Abstract We explore two methods for obtaining solutions for uniformly accelerated
motion in general curved spacetime. We provide an example in Schwarzschild space-
time.

Keywords Uniform acceleration · Schwarzschild spacetime · Frenet frame · Parallel
transport

1 Introduction

Uniformly accelerated systems have been studied in [1] and, more recently, in [2,3].
In this paper, we present two methods for finding solutions for uniformly accelerated
motion in a general curved spacetime. This extends the results of [4], where explicit
solutions are computed for flat spacetime only.

We represent arbitrary curved spacetime by a time-orientable four-dimensional
semi-Riemannian manifold M endowed with a locally smooth metric gμν of signature
(+,−,−,−). A worldline is a smooth future-pointing timelike curve γ : I → M ,
where I is an interval of R containing 0. In a local coordinate system xμ, we write

γ (s) = xμ(s), (1)
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where the parameter s is the arclength along the curve, that is

ds2 = gμνdx
μdxν . (2)

At each point γ (s), the four-velocity uμ(s), defined by

uμ(s) = dxμ(s)

ds
, (3)

has unit length:
u2 = gμνu

μuν = 1. (4)

The goal of this paper is to find solutions u(s) for uniformly accelerated motion
in curved spacetime. In flat spacetime (gμν = ημν = diag(1,−1,−1,−1)), this
goal has already been achieved. It is shown in [4,5] that, in flat spacetime, γ (s)
represents uniformly accelerated motion if and only if there is a constant, rank (0, 2)

antisymmetric tensor Aμν such that

duμ(s)

ds
= Aμ

ν u
ν(s). (5)

Equation (5) can be extended to accommodate an orthonormal basis Λ(s) of the tangent
space at γ (s), and we have

dΛ(s)

ds
= AΛ(s). (6)

The solution to (6) is
Λ(s) = exp(As)Λ(0). (7)

Explicit solutions to Eq. (6) are given in [6].
The plan of the paper is as follows. In Sect. 2, we construct a system of first-order

ordinary differential equations for uniformly accelerated motion. We show that this
system extends the geodesic equation. We provide an example in Sect. 3. Here we
consider motion in the radial direction in Schwarzschild spacetime. We solve this
system numerically and show that there are no bounded orbits. In Sect. 4, we explore
an alternative method for finding solutions for uniformly accelerated motion. This
method may also be used to find solutions for parallel transport. Directions for further
research appear in Sect. 5. Throughout the paper, we use units in which c = 1.

2 Equations for uniform acceleration

In this section, we construct a first-order system of ordinary differential equations for
uniform acceleration. The covariant derivative of a vector Z along a curve γ (s) is
defined by (see [7, 3.13]):

DZμ

ds
= dZμ

ds
+ Γ μ

σρ Z
σuρ, (8)
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where

Γ μ
σρ = 1

2
gβμ

(
gβσ,ρ + gβρ,σ − gσρ,β

)
. (9)

In [4], we showed how to construct the orthonormal Frenet basis {λ(0)(s) =
u(s), λ(1)(s), λ(2)(s), λ(3)(s)} of the tangent space Tγ (s)M at the point γ (s). The basis
vectors λ(α)(s) satisfy the Frenet equations

Dλ(0)(s)

ds
= κ(s)λ(1)(s)

Dλ(1)(s)

ds
= κ(s)λ(0)(s) + τ1(s)λ(2)(s)

Dλ(2)(s)

ds
= −τ1(s)λ(1)(s) + τ2(s)λ(3)(s)

Dλ(3)(s)

ds
= −τ2(s)λ(2)(s),

where the scalar function κ(s) is called the curvature of the curve γ , and τ1(s) and
τ2(s) are known as the first and second torsion, respectively, of γ . The Frenet equations
may be written compactly as

Dλ(α)(s)

ds
= λ(β)(s)A(s)(β)

(α), (10)

where

A(s) = A(s)(β)

(α) =

⎛

⎜
⎜
⎝

0 κ(s) 0 0
κ(s) 0 −τ1(s) 0

0 τ1(s) 0 −τ2(s)
0 0 τ2(s) 0

⎞

⎟
⎟
⎠ . (11)

Note that A(s) is not a tensor, since it remains the same under a coordinate transfor-
mation. Thus, its two indices are coordinate-free, so we place them in parentheses. It
is a 4 × 4 matrix of scalar functions which we call the acceleration matrix.

Recall from [4] that a worldline represents uniformly accelerated motion if the
acceleration matrix A(s) is constant along γ , that is, if d A

ds = 0. Let γ (s) be a uniformly
accelerated worldline, with acceleration matrix A. Using (8), we can write (10) as

dλ
μ

(α)(s)

ds
+ Γ μ

σρλσ
(α)(s)λ

ρ

(0)(s) = λ
μ

(β)(s)A
(β)

(α). (12)

The Christoffel symbols Γ
μ
σρ are smooth functions of the coordinates xμ. Thus, in order

to have a complete system of differential equations, we need equations for dxμ

ds . Using
λ(0)(s) = u(s), we arrive at the following first-order system of ordinary differential
equations: {

dλ
μ
(α)

(s)

ds = −Γ
μ
σρλσ

(α)(s)λ
ρ

(0)(s) + λ
μ

(β)(s)A
(β)

(α)
dxμ(s)
ds = λ

μ

(0)(s)

}

. (13)
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It is easily checked that this system satisfies the condition for existence and uniqueness
of solutions. The solutions are exactly the uniformly accelerated motions.

Note that (12) is a generalization of the geodesic equation. Along a geodesic, there
is zero acceleration, so A = 0. Thus, (12) becomes

dλ
μ

(α)(s)

ds
+ Γ μ

σρλσ
(α)(s)λ

ρ

(0)(s) = 0. (14)

Setting α = 0 and using λ(0)(s) = u(s), we obtain

duμ(s)

ds
+ Γ μ

σρu
σ (s)uρ(s) = 0,

which is the geodesic equation.

3 Schwarzschild metric

In this section, we provide an example of uniform acceleration in the Schwarzschild
metric

ds2 =
(

1 − rs
r

)
dt2 −

(
1 − rs

r

)−1
dr2 − r2dΩ2, (15)

where rs is the Schwarzschild radius and dΩ2 = dθ2 + sin2θdϕ2. Here θ is the
colatitude (= the angle from north) and ϕ is longitude. The known (see [8,9]) nonzero
Christoffel symbols, computed from (9), are

Γ 0
01 = rs

2r(r − rs)
, Γ 1

00 = rs
2r2

(
1 − rs

r

)
, Γ 1

11 = −rs
2r(r − rs)

Γ 1
22 = rs − r, Γ 1

33 = (rs − r) sin2 θ, Γ 2
12 = 1

r

Γ 2
33 = − sin θ cos θ, Γ 3

13 = 1

r
, Γ 3

23 = cos θ

sin θ
. (16)

For our example, we consider motion in the (t, r) plane and set θ = π
2 , ϕ = 0.

Then

Γ 1
33 = rs − r, Γ 2

33 = Γ 3
23 = 0.

Let the acceleration matrix A =

⎛

⎜⎜
⎝

0 κ 0 0
κ 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠. The upper equation of system

(13), with α = 2, μ = 0 is

dλ2
(0)

ds
+ 2

r
λ1

(0)λ
2
(0) = κλ2

(1).
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Since θ = π
2 , we have λ2

(0) = dθ
ds = 0. Thus, λ2

(1) = 0. Similarly, since ϕ = 0, we

have λ3
(0) = λ3

(1) = 0.
Using the orthonormality conditions

(
1 − rs

r

)
λ0

(0)λ
0
(1) −

(
1 − rs

r

)−1
λ1

(0)λ
1
(1) = 0, (17)

(
1 − rs

r

) (
λ0

(0)

)2 −
(

1 − rs
r

)−1 (
λ1

(0)

)2 = 1, (18)
(

1 − rs
r

) (
λ0

(1)

)2 −
(

1 − rs
r

)−1 (
λ1

(1)

)2 = −1, (19)

we can write λ0
(0), λ

0
(1), λ

1
(1) in terms of λ1

(0).
From (18), we get

λ0
(0) =

√(
r

r − rs

) (
1 + r

r − rs

(
λ1

(0)

)2
)

. (20)

From (19), we get

λ0
(1) =

√(
r

r − rs

)(
−1 + r

r − rs

(
λ1

(1)

)2
)

. (21)

Substituting (20) and (21) into (17), we get

λ1
(1) =

√

1 − rs
r

+
(
λ1

(0)

)2
. (22)

Substituting (22) into (21) yields

λ0
(1) = r

r − rs
λ1

(0). (23)

The equation for λ1
(0) from the system (13) is

dλ1
(0)

ds
+ rs

2r2

(
1 − rs

r

) (
λ0

(0)

)2 − rs
2r(r − rs)

(
λ1

(0)

)2 = κλ1
(1). (24)

Substituting (20) and (22) into this equation, the system (13) reduces to

⎧
⎨

⎩

dλ1
(0)

ds + rs
2r2 − κ

√

1 − rs
r +

(
λ1

(0)

)2 = 0
dr
ds = λ1

(0)

⎫
⎬

⎭
, (25)
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or, equivalently,

d2r

ds2 + rs
2r2 − κ

√

1 − rs
r

+
(
dr

ds

)2

= 0. (26)

In the particular case κ = 0, then, writing ṙ for dr
ds and r̈ for d2r

ds2 , Eq. (26) becomes

r̈ + rs
2r2 = 0. (27)

Multiplying by 2ṙ , we obtain

2ṙ r̈ + ṙrs
r2 = 0. (28)

Integrating, we obtain

ṙ2 − rs
r

= constant. (29)

Hence, the total energy is conserved, as expected along a geodesic.
We consider now the general case of Eq. (26) (κ �= 0). Define

E = ṙ2 − rs
r

. (30)

The quantity E is the total dimensionless energy. It is the total energy divided by the
maximal kinetic energy mc2

2 . Then

Ė = 2ṙ r̈ + ṙrs
r2 . (31)

Dividing by 2ṙ and using (26), we obtain

Ė

2ṙ
= κ

√
1 + E . (32)

Separating variables and integrating, we have

√
1 + E = κr + C, (33)

where C is a constant of integration. Squaring and using (30), we obtain

ṙ2 = r(κr + C)2 + rs − r

r
. (34)

We now show that there are no bounded orbits. Define

f (r) = r(κr + C)2 + rs − r. (35)

To have a bounded orbit, say between r1 and r2, with 0 < r1 < r2, we must have
f (r1) = f (r2) = 0 and f (r) > 0 for r1 < r < r2. However, f (r) is a cubic
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Fig. 1 Solutions for r(s) starting at 5000 Schwarzschild radii, for (a) κ = 0, (b) κ = 0.3 compared to flat
spacetime solution (d), (c) κ = −0.3 compared to flat spacetime solution (e)

polynomial, f (0) > 0 and limr→∞ f (r) = +∞. This implies that f has at most two
zeroes for r > 0 and between these two zeroes, f (r) < 0. Hence, there are no bounded
orbits. See Fig. 1 for examples of solutions r(s), compared to the corresponding
solutions in flat spacetime.

4 Solutions via parallel transport

In this section, we explore an alternate method of obtaining solutions for uniform
acceleration. For this, we need parallel transport and some additional properties of
the covariant derivative.

Let γ : I → M be a worldline. For s1, s2 ∈ I , let Ps2
s1 : Tγ (s1)M → Tγ (s2)M denote

parallel transport from the tangent space at γ (s1) to the tangent space at γ (s2). Then,
for z ∈ Tγ (s1)M , we have

D

ds

(
Ps
s1

(z)
) = 0. (36)

We will also need the following properties of D
ds .

Theorem 1 ([7, 3.18])

(1) D
ds (aZ1 + bZ2) = a DZ1

ds + b DZ2
ds , for a, b ∈ R

(2) D
ds ( f Z) = d f

ds Z + f DZ
ds , for f ∈ F(I )

Note that use of (1) and (2) implies that the Liebniz rule holds in the form

D

ds

(
Σn

i=1 fi Zi
) = Σn

i=1

(
d fi
ds

Zi + fi
DZi

ds

)
. (37)

Let γ (s), s ∈ I be a uniformly accelerated worldline, with acceleration matrix
A. We seek the orthonormal basis vectors λ(α)(s) which solve Eq. (10). For each s,
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there is an additional basis B(s) consisting of the initial basis vectors λ(α)(0) parallel
transported along γ from s = 0 to s. To this end, we define

v(α)(s) = Ps
0 λ(α)(0), s ∈ I. (38)

Note that v(α)(0) = λ(α)(0). Since parallel transport is a linear isometry, the basis
B(s) is also orthonormal.

In this notation, the solution of Eq. (10) is

λ(α)(s) = v(β)(s)(exp(As))(β)

(α). (39)

We check now that this is, in fact, a solution of (10). First, by (37), we have

Dλ(α)(s)

ds
= D

ds
(v(β)(s))(exp(As))(β)

(α) + v(β)(s)
d

ds
(exp(As))(β)

(α). (40)

By parallel transport (36), we have

D

ds
(v(β)(s)) = 0. (41)

By the assumption of uniform acceleration
( d A
ds = 0

)
, we have

d

ds
exp(As) = exp(As)A. (42)

Hence, using (41) and (42) in Eq. (40), we have

Dλ(α)(s)

ds
= v(β)(s)(exp(As))(β)

(ν) A
(ν)
(α) = λ(ν)(s)A

(ν)
(α),

and (10) holds.
In particular, the four-velocity of a uniformly accelerated observer is

u(s) = λ(0)(s) = v(β)(s)(exp(As))(β)

(0) . (43)

The solutions (39) gives the basis vectors λ(α) in terms of the B(s) basis vectors
v(β). In order to compute the v(β), we now derive a system of differential equations
which they satisfy.

By (8) and parallel transport, we have

Dv
μ

(α)(s)

ds
= dv

μ

(α)(s)

ds
+ Γ μ

σρvσ
(α)(s)u

ρ(s) = 0. (44)
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From (43), we have

dxρ(s)

ds
= uρ(s) = v

ρ

(β)(s)(exp(As))(β)

(0) . (45)

Substituting this last equation into (44), we obtain the following first-order system:

⎧
⎨

⎩

dv
μ
(α)

(s)

ds = −Γ
μ
σρvσ

(α)(s)v
ρ

(β)(s)(exp(As))(β)

(0)
dxρ(s)
ds = v

ρ

(β)(s)(exp(As))(β)

(0)

⎫
⎬

⎭
. (46)

It is easily checked that this system satisfies the condition for existence and uniqueness
of solutions. The solutions v(β) are then substituted into (39) to yield a solution to (10).

5 Directions for further research

We plan to extend the example in Schwarzschild spacetime to include planetary
motion. One may consider the gravitational pull of, say, Jupiter, on the Earth to be
uniform acceleration. A solution of our equations would then predict the perturbation
on the Earth’s orbit caused by Jupiter. Alternatively, one could predict the perturbation
of the Moon’s orbit around the Earth caused by the Sun.

In [4,6], working in flat spacetime, we derived spacetime transformations, veloc-
ity transformations, and acceleration transformations from a uniformly accelerated
system to an inertial frame. Given the results obtained in the current paper in curved
spacetime, the next step is to derive spacetime, velocity, and acceleration transforma-
tions between uniformly accelerated systems in a general curved spacetime. We want
to determine whether the spacetime transformations between uniformly accelerated
systems form a group. If yes, we want to characterize this group, which will be an
extension of the Lorentz group.

We also propose to compute the time dilation between clocks located at different
positions in a uniformly accelerated system. We hypothesize that a system is uniformly
accelerated if and only if all of the clocks in the system may be synchronized to each
other.
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