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Abstract We present here the general expressions for the acceleration of massive test
particles along the symmetry axis of the Kerr metric, and then study the main properties
of this acceleration in different regions of the spacetime. In particular, we show that
there exists a region near the black hole in which the gravitational field is repulsive.
We provide possible physical interpretations about the role of this effect in terms of
the different conserved parameters. The studies of these geodesics are important not
only to understand better the structure of the Kerr spacetime but also to its use as a
possible mechanism for the production of extragalactic jets. Our results are obtained
with the help of expressing the geodesics of the Kerr spacetime in terms of the Weyl
coordinates.
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1 Introduction

In this paper, we study timelike geodesics of the Kerr space–time that follow its axis of
symmetry. These geodesics revealed great importance to build a possible mechanism to
explain the production of very high energy particles and of extragalactic jets stemming
from the centre of galaxies [1–8]. It is widely accepted that the centre of galaxies
encloses a Kerr black hole and particles, from the accretion disk, can fall into it by
crossing the ergosphere. Inside the ergosphere they may undergo a Penrose process
producing new particles that can be ejected with high energies [2,3,9]. These particles
can follow collimated geodesics near the axis of symmetry of the black hole, and thus
form the extragalactic jets. In particular, it was showed the possibility of an almost
perfect collimation of geodesics along the axis of symmetry of the Kerr spacetime by
using Weyl coordinates and producing specific asymptotic jet radii [5], and among
these geodesics there exist observable particles with very high energies (theoretically
infinite) [6].

In [7] this jet production mechanism has been used to compare its predictions con-
cerning the profile of the jet to recent observed data from the galaxy Messier 87, and
found in good agreement with the observations [10]. It has been also shown in [7],
among its results, that by assuming that the angular momentum per unit length a takes
the value that maximizes the ergospheric volume, there is a remarkable compatibil-
ity with the recent data obtained from Messier 87 [11]. In [8] it was demonstrated
that the Penrose process can produce with great efficiency particles with very high
energies.

In order to have a better visibility of the geodesics in the Kerr space–time, specially
of the ones moving along the symmetry axis, in this paper we study them by trans-
forming the geodesic equations usually presented in the spheroidal Boyer–Lindquist
coordinates into the cylindrical Weyl coordinates. In this system of coordinates, it
becomes very clear that the intriguing repulsive effect, already noted in cylindrical
systems for both static and stationary spacetimes [12,13], is also present in station-
ary axial symmetric spacetimes. The advantage of the cylindrical Weyl coordinates
in such studies was already taken to highlight a quasi-perfect collimation, i.e., par-
allel to the symmetry axis, for a class of geodesics in the Kerr space–time [5]. In
particular, it was argued that astrophysical jet collimation may arise from the geom-
etry of rotating black holes and the presence of high-energy particles resulting from
a Penrose process, without the help of magnetic fields. This is very attractive and
provides a special mechanism for formation of jets with the participation of neutral
particles.

In this paper, we shall focus our attention on particle acceleration along the symme-
try axis near the ergosphere, and show explicitly how the potential energy is converted
into kinetic energy that allows the escape of energetic particles. The rest of the paper
is organized in the following way. In Sect. 2 we briefly review the Kerr geodesics in
the Weyl coordinates, while in Sect. 3 we study the acceleration of particles along the
axis z. This acceleration on the ergosphere surface is further investigated in Sect. 4.
Particles moving along the axis z and attaining large z distances are investigated in
Sects. 5 and 6. The paper finishes with a brief conclusion in Sect. 7.
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2 Geodesics in Kerr spacetime

In this section, to initiate our studies we shall provide a brief review over the main
results of the timelike geodesics of the Kerr space–time in both of the Boyer–Lindquist
[14] and Weyl systems of coordinates [5]. For more details, we refer readers to [5,14].

The Kerr metric given in the Boyer–Lindquist spheroidal coordinates r̄ , θ and φ

reads

ds2 = −
(
r̄2 − 2Mr̄ + a2

r̄2 + a2 cos2 θ

)
(dt − a sin2 θ dφ)2

+ sin2 θ

r̄2 + a2 cos θ2

[
a dt − (r̄2 + a2) dφ

]2

+ (r̄2 + a2 cos2 θ)

(
dr̄2

r̄2 − 2Mr̄ + a2 + dθ2
)

, (1)

where M and aM are, respectively, the mass and the angular momentum of the source.
In this paper, we shall choose units such that c = G = 1, whereG is Newton’s constant
of gravitation. Rescaling the r̄ coordinate as r = r̄/M , two of the timelike geodesics
equations take the forms,

ṙ2 = a4r4 + a3r3 + a2r2 + a1r + a0

M2
[
r2 + ( a

M

)2 cos2 θ
]2 , (2)

θ̇2 = b4 cos4 θ + b2 cos2 θ + b0

M2
(
1 − cos2 θ

) [
r2 + ( a

M

)2 cos2 θ
]2 , (3)

where the dot stands for differentiation with respect to an affine parameter, and the
coefficients ai ’s and b j ’s are defined by

a0 = −a2Q

M4 = −
( a

M

)2
b0, (4)

a1 = 2

M2

[
(aE − Lz)

2 + Q
]
, (5)

a2 = 1

M2

[
a2(E2 − 1) − L2

z − Q
]
, (6)

a3 = 2, (7)

a4 = E2 − 1, (8)

and

b0 = Q

M2 , (9)

b2 = 1

M2

[
a2(E2 − 1) − L2

z − Q
]

= a2, (10)
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b4 = −
( a

M

)2
(E2 − 1) = −

( a

M

)2
a4, (11)

where E , Lz and Q are integration constants. The other two geodesics equations are

M φ̇ =
{

2
a

M
Er +

[
r2 − 2r +

( a

M

)2
cos2 θ

]
Lz

M sin2 θ

}[
r2 − 2r +

( a

M

)2
]−1

[
r2 +

( a

M

)2
cos2 θ

]−1

, (12)

ṫ =
[{[

r2 +
( a

M

)2
]2

−
( a

M

)2
[
r2 − 2r +

( a

M

)2
]

sin2 θ

}
E − 2

aLz

M2 r

]

×
[
r2 − 2r +

( a

M

)2
]−1 [

r2 +
( a

M

)2
cos2 θ

]−1

. (13)

Here Chandrasekhar’s δ1 has been set equal to one (see p. 327 of [14]), as in this paper
we consider only the timelike geodesics. Assuming that the affine parameter is the
proper time τ along the geodesics, then these equations imply that a unit mass for the
test particle is assumed, so that E and Lz have the usual significance of total energy
and angular momentum about the z-axis, and Q is the corresponding Carter constant.
In this paper we consider only particles on unbound geodesics with E ≥ 1 [14].

In order to understand better the physical meaning of the Kerr geodesics, as men-
tioned previously, in the following we shall use the Weyl cylindrical coordinates ρ,
z and φ, which are more revealing and, in a way, quite natural for axially symmetric
spacetimes. The dimensionless Weyl cylindrical coordinates, in multiples of geomet-
rical units of mass M , are given by [5]

ρ =
[
(r − 1)2 − A

]1/2
sin θ, z = (r − 1) cos θ, (14)

where

A = 1 −
( a

M

)2
. (15)

Inversely, we have

r = α + 1, (16)

sin θ = ρ

(α2 − A)1/2 , cos θ = z

α
, (17)

z =
(

1 − ρ2

α2 − A

)1/2

α, (18)

with

α = 1

2

{[
ρ2 + (z + √

A)2
]1/2 +

[
ρ2 + (z − √

A)2
]1/2

}
. (19)
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Here we have assumed A ≥ 0, and taken the root of the second degree equation
obtained from (18) for the function α(ρ, z) that allows the extreme black hole limit
A = 0. The other root in this limit is α = 0.

From (19) it can be shown that the curves of constant α (constant r ) are ellipses
with semi-major axis α and eccentricity e = √

A/α in the (ρ, z) plane, which implies
that for large α these approach to circles. Note that ρ = 0 consists of the rotation axis
θ = 0 or π together with the ergosphere surface.

Now, with the help of Eqs. (16) and (18) we can rewrite the geodesics equations
(2) and (3) in terms of ρ and z coordinates as

M ρ̇ = 1

U

[
Pα3ρ

α2 − A
+ S(α2 − A)z

αρ

]
, (20)

Mż = 1

U
(Pz − S)α, (21)

M φ̇ =
{

2
a

M
E(α + 1) + [U − 2α2(α + 1)] Lz

M(α2 − z2)

}
α2

U (α2 − A)
, (22)

ṫ =
{
E

[
(α + 1)2 +

( a

M

)2
]2

− 2
aLz

M2 (α + 1)

}
α2

U (α2 − A)

−
( a

M

)2 E

U
(α2 − z2), (23)

where

P =
[
a4(α + 1)4 + a3(α + 1)3 + a2(α + 1)2

+a1(α + 1) + a0

]1/2
, (24)

S = −(b4z
4 + b2α

2z2 + b0α
4)1/2, (25)

U = (α + 1)2α2 +
( a

M

)2
z2, (26)

with the sign being chosen to indicate outgoing particle geodesics. Instead of the ρ

geodesics, we can express it in terms of α. Using (19), (20) and (21) we find

M α̇ = Pα2

U
. (27)

3 Acceleration along the symmetry axis

In order to study the acceleration of a test massive particle along the z axis, taking the
second proper time derivative of (21), we find
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MU 2 z̈ = U (Ṗz − Ṡ)α +
[
U P − 2

( a

M

)2
(Pz − S)z

]
αż

+ (Pz − S)
[
U − 2α2(α + 1)(2α + 1)

]
α̇. (28)

From (7), (24) and (25) we have

MU (Ṗz − Ṡ) = 1

2

[
4a4(α + 1)3 + 3a3(α + 1)2 + 2a2(α + 1) + a1

]
α2z

− 2PSα + (2b4z
2 + b2α

2)αz. (29)

Substituting (21), (27) and (29) into (28) we obtain

M2U 3

α2 z̈ = U

2

[
4a4(α + 1)3 + 3a3(α + 1)2 + 2a2(α + 1) + a1

]
αz

+U
[
(2b4z

2 + b2α
2)z − 2PS

]
+ 2(Pz − S)

[
UP −

( a

M

)2
(Pz − S)z

]

− 2(Pz − S)Pα2(α + 1)(2α + 1), (30)

or

M2U 3

α2 z̈ = U

2

[
4a4(α + 1)3 + 3a3(α + 1)2 + 2a2(α + 1) + a1

]
αz

+U (2b4z
2 + b2α

2)z − 2P2α3(α + 1)z

− 2
( a

M

)2
S2z − 2PSα2(α + 1). (31)

Substituting (24), (25) and (26) into (30) we obtain

M2U 3

α2 z̈ = −1

2

[
a3(α + 1)3 + 2a2(α + 1)2 + 3a1(α + 1) + 4a0

]
α3(α + 1)z

+ 1

2

( a

M

)2 [
4a4(α + 1)3 + 3a3(α + 1)2 + 2a2(α + 1) + a1

]
αz3

+ (2b4z
2 + b2α

2)α2(α + 1)2z −
( a

M

)2
(b2z

2 + 2b0α
2)α2z

− 2PSα2(α + 1). (32)

Now, considering (4), (7), (10) and (11) and substituting into (32) we have

M2U 3

α3 z̈ = −
[
(α + 1)4 +

(
a2 + 3

2
a1

)
(α + 1)2 + 2a0

]
α2z

+
( a

M

)2
[
(2a4 + 3)(α + 1)2 + a2 + 1

2
a1

]
z3

− 2PSα(α + 1). (33)
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Writing (25) with the help of (18) we obtain

S = −
[
b0 + b2 + b4 − (b2 + 2b4)

ρ2

α2 − A

+ b4
ρ4

(α2 − A)2

]1/2

α2, (34)

where, with (9), (10) and (11), we have

b0 + b2 + b4 = −
(
Lz

M

)2

≤ 0, (35)

b2 + 2b4 = − 1

M2

[
a2(E2 − 1) + L2

z + Q
]
. (36)

4 Test particles being ejected from ergosphere surface

The ergosphere has outer surface given in the Boyer–Lindquist coordinates (1) by

r = 1 +
[

1 −
( a

M

)2
cos2 θ

]1/2

. (37)

Transforming it into the Weyl coordinates (16–18), we find that it can be cast in the
form,

z2 =
[

1 − ρ2
e

(
1 − ρ

ρe

)] (
1 − ρ

ρe

)
, (38)

where ρe = a/M is the value of ρ for which the ergosphere cuts the equatorial plane
z = 0, and ρ = (0, ρe).

Now we calculate the acceleration along the z axis given by Eq. (33) for particles
leaving the ergosphere in the two limits ρ = 0 and ρ = ρe. For ρ = 0 we have from
(19) and (37)

α = z = √
A, (39)

producing from (25)
S = −(b4 + b2 + b0)

1/2A, (40)

and by (35) we see that only geodesics with Lz = 0 can exist leaving the ergosphere
at ρ = 0. From (33) and (39) we have

2(
√
A + 1)2M2 z̈ = −√

A

[√
A + 1 + ρ2

e (E
2 − 1) + Q

M2

]
. (41)

From (41) we have that for ρ = 0 on the ergosphere surface the field along z is always
attractive if the Carter constant is positive, Q > 0, or, being negative, Q < 0, if

|Q|
M2 <

√
A + 1 + ρ2

e (E
2 − 1). (42)
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In the extreme Kerr black hole, ρe = 1 or A = 0, we have from (41) z̈ = 0.
For ρ = ρe on the ergosphere outer surface (38), we have

z = 0, α = 1, (43)

and from (25) we find

S = −
√
Q

M
. (44)

From (44) we see that in order to exist geodesics leaving (43) we must have Q > 0
and from (33) we obtain

z̈ =
[

16M2 + 4ρ2
e (2E

2 − 1) − 8ρeE
Lz

M
− ρ2

e
Q

M2

]1/2

×
√
Q

16M3 , (45)

with the condition

8ρeE
Lz

M
+ ρ2

e
Q

M2 < 16E2 + 4ρ2
e (2E

2 − 1). (46)

Hence, the field given by (45) is repulsive where the Carter constant plays a funda-
mental role. On one hand it increases the repulsive field z̈ > 0, while on the other hand
the term ρ2

e Q/M2 decreases its repulsive character. To find out which value of Q/M2

shall produce the highest repulsive field with respect to given ρe, E and Lz/M , we
calculate the extremum of (45)

d(16M2 z̈)2

d(Q/M2)
= 16M2 + 4ρ2

e (2E
2 − 1) − 8ρeE

Lz

M

− 2ρ2
e
Q

M2 = 0. (47)

When Q/M2 satisfies the above equation, it can be shown that such a value of Q/M2

will produce a maximum of z̈, which is given by

z̈max = 1

4
√

2M2ρe

[
4M2 + ρ2

e (2E
2 − 1) − 2ρeE

Lz

M

]3/2

. (48)

In the neighbourhood of ρ = ρe we have ρ = ρe − ε, where 0 < ε � 1, and the
condition to be located on the ergosphere is z = (ε/ρe)

1/2, as one can see from (38).
With the help of (33) we see that the first term in the right hand side is of the order√

ε, and the second one is of the order ε3/2, which can be neglected. On the other
hand, from (19) we have α = 1 − ερe, so the third term in the right hand side of (33)
has two sub-terms, one is positive and of zeroth-order of ε, while the other is of order
ε. Hence, in the neighbourhood of ρ = ρe on the ergosphere surface the field is still
repulsive, z̈ > 0, along the symmetry z.
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Since along the outer ergosphere surface at ρ = ρe and in its neighbourhood we
have z̈ > 0, while on the axis we have z̈ < 0, then z̈ must change its sign at least once
on the outer ergosphere surface.

5 Particles moving near the equatorial plane

On the equatorial plane, z = 0, the acceleration of a test particle along z is

z̈ = −2PSα4(α + 1)

M2U 3 . (49)

Its velocity along ρ- and z-directions are given by Eqs. (20) and (21), which can be
cast in the forms,

ρ̇ = Pα3ρ

MU (α2 − A)
, ż = − Sα

MU
. (50)

Substituting (50) into (49) we obtain

z̈ = 2ρρ̇ ż

[(ρ2 + A)1/2 + 1](α2 + A)
. (51)

First, let us note that (51) is also valid in the neighbourhood of z-axis, since the terms
including z �= 0 are of order higher than those given in (51). From (51) we can see
that, if the particle is approaching the source, ρ̇ < 0, then z̈ < 0, which means that
there is a force that diminishes its speed along z; while if the particle is distancing
the source, ρ̇ > 0, then z̈ > 0 and there is a force that increases its speed along z.
This result is valid not only for the Kerr spacetime, but also for the Schwarzschild one
(a = 0). We notice that the presence of a enhances this effect.

A similar result has been obtained for the Levi-Civita and Lewis spacetimes [12],
which describe the gravitational fields produced by an infinite static or stationary line
mass. In these two cases the stationarity did not intervene, which is not the case in
(51). A further similar result has also been obtained for the van Stockum spacetime
[13], describing an infinite rotating dust cylinder.

Lots of works in axial symmetric spacetimes use the Weyl coordinates [15]. Of
course, in principle, any admissible coordinates, such as the Kerr–Schild cylindrical
ones introduced in [1], could be used, although it is well-known that the proper choice
of coordinates for a specific problem can make the task significantly simplified. In
particular, the complicated differential nature of the transformations of the Boyer–
Lindquist coordinates into the cylindrical Kerr–Schild ones (see equations (29–33) in
[1]) does not furnish an immediate link between these two systems of coordinates.
This in turn prevents us from finding the equivalence in the Kerr–Schild coordinates
of our ρ1 asymptotes [see (61) below]. Nevertheless, the results obtained in [1] about
the collimation and the repulsive character for high energy geodesics especially for
naked singularities are consistent with ours.
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6 Test particles attaining large z distances

In order to have geodesics attaining large distances along the axis, z � ρ, from (34),
(35) and (36) we find that for S real we must assume

Lz = 0, (52)

− (b2 + 2b4) = ρ2
e (E

2 − 1) + Q

M2 > 0. (53)

Combining (20), (21), (33), (18) and (52), we obtain

M ρ̇ = α

U

{
Pα2ρ

α2 − A
−

[
b4ρ

2 − (b2 + 2b4)(α
2 − A)

]1/2
z

}
, (54)

Mż = α

U

{
Pz +

[
b4

ρ2

α2 − A
− (b2 − 2b4)

]1/2
ρα2

(α2 − A)1/2

}
, (55)

M2U 3

α6 z̈ = −
[
(α + 1)4 +

(
a2 + 3

2
a1

)
(α + 1)2 + 2a0

](
1 − ρ2

α2 − A

)1/2

+ ρ2
e

[
(2a4 + 3)(α + 1)2 + a2 + 1

2
a1

] (
1 − ρ2

α2 − A

)3/2

+ 2P(α + 1)

[
b4

ρ2

α2 − A
− (b2 + 2b4)

]1/2
ρ

(α2 − A)1/2 . (56)

For z � ρ and z � √
A, we find that Eqs.(54)–(56) become,

M ρ̇ ≈ −
[
ρ2
e (E

2 − 1) + Q

M2

]1/2 1

z
, (57)

Mż ≈ (E2 − 1)1/2, (58)

M2 z̈ ≈ − 1

z2 , (59)

where (57) and (58) are identical to (39) and (47) found in [5]. From (57) we find that
the speed of the particle in the ρ-direction decreases as 1/z, while its speed ż along
the axial direction also decreases and approaches a constant.

7 Test particles moving along the axis with ρ = 0

The geodesics along the z axis with ρ = 0 requires that Lz = 0, as it can be seen from
(34), while from (54) we find that b2 + 2b4 = 0 or equivalently

ρ2
e (E

2 − 1) = − Q

M2 , (60)
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which in turn imposes Q < 0, since here we have E2 > 0. This result corresponds to
ρ1 = 0, where

ρ1 = ρe

[
1 + Q

a2(E2 − 1)

]1/2

, (61)

for unbound geodesics with Lz = 0 studied in [5]. The acceleration given by (56)
along the symmetry axis ρ = 0 then becomes

M2 z̈ = −
[
(z + 1)2 − ρ2

e

] [
(z + 1)2 + ρ2

e

]−2
. (62)

Since (z + 1)2 ≥ ρ2
e we have from (62) that z̈ ≤ 0, which means that the field is

attractive along the axis. However, it should be noted that a diminishes the strength of
its attractive character, as compared to the Newtonian limit, when ρe = 0 and Q = 0,
producing

M2 z̈ = − 1

(z + 1)2 . (63)

8 Conclusion

We have calculated explicitly the acceleration z̈ along the axis of symmetry for the
Kerr spacetime following its unbound geodesics and investigated the dependence of
the nature of the acceleration on the parameters a, E , Lz and Q. In particular, we have
shown that at the limiting points of the ergosphere (ρ = ρe, z = 0) and (ρ = 0, z =√
A) the signs of z̈ changes, showing that there must exist at least one turning-point on

the ergosphere outer surface, across which z̈ changes its signs. Repulsive forces near
the symmetry axis have also been found in other axisymmetric space–times [12,13].
In the Kerr space–time, to produce such repulsive forces, we have found the special
role played by the spin a (via the position ρe of the ergosphere) and the Carter constant
Q (via the asymptotical direction ρ1 of unbound geodesics).

The presence of such a repulsive force along the axis and very near the ergosphere
reinforces the idea that the early launching of jets could be initiated by the gravitational
field of the rotating black hole. This is strongly supported by the recent observations of
M87, which showed that the basis of the jet is very near to the ergosphere size [10,16].
Other evidences include a quasi-perfect collimation [5] along z with big energies [6],
the possibility of a Penrose process [2,3,9], and/or a BSW effect [17]. Besides, this
repulsive force can also be the source of cosmic rays of high energy, specially of
neutrinos.
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