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Abstract We investigate the effects of a modified dispersion relation proposed by
Majhi and Vagenas on the Reissner–Nordström black hole thermodynamics in a uni-
verse with large extra dimensions. It is shown that entropy, temperature and heat
capacity receive new corrections and charged black holes in this framework have less
degrees of freedom and decay faster compared to black holes in the Hawking picture.
We also study the emission rate of black hole and compare our results with other
quantum gravity approaches. In this regard, the existence of the logarithmic prefactor
and the relation between dimensions and charge are discussed. This procedure is not
only valid for a single horizon spacetime but it is also valid for the spacetimes with
inner and outer horizons.

Keywords Black hole physics · Modified dispersion relations · Reissner–Nordström
black hole

1 Introduction

A common feature of all promising candidates for quantum gravity such as string
theory [1], loop quantum gravity [2], noncommutative geometry [3], and black hole
physics is the existence of a minimum observable length [4,5]. This minimum mea-
surable length gives rise to the modification of Heisenberg uncertainty principle,
nowadays known as Generalized uncertainty principle (GUP) [6]. On the other hand,
in the context of doubly special relativity (DSR) theories [7,8], in order to preserve the
velocity of light and the planck energy as two invariant quantities, the existence of a
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maximal momentum is essentially required. So, it provides several novel and interest-
ing features, some of which are studied in [9–13]. Also, DSR motivates the modified
dispersion relation (MDR)[14,15], by the fact that all approaches to quantum gravity
suggest that standard energy-momentum dispersion relation should be modified near
the Planck energy. This deformation of the energy-momentum relation has been also
suggested by the discreteness of the spacetime [16].

Recently, much attention has been devoted to resolving the quantum corrections
to the black hole entropy. Identifying the microstates is one of the main problems in
studying the entropy of black holes. Leading candidate theories of quantum gravity
such as string theory and loop quantum gravity predict the following entropy [17–20]

S = A

4l2p
+ c0 ln

(
A

4l2p

)
+

∞∑
n=1

cn

(
A

4l2p

)−n

+ const., (1)

where the coefficients cn can be regarded as model dependent parameters. Black holes
are suitable examples of an extreme quantum gravity regime. Thus, study their thermo-
dynamical behavior using MDR and comparing the results with other approaches may
increase our understanding of their properties and structures. Indeed, the exact form
of MDR could essentially lead us to a deeper understanding of the ultimate quantum
gravity proposal.

Studying the thermodynamics of black holes in the presence of extra dimensions
which is an interesting issue is the subject of this work [21–23]. Large extra dimension
models (LED) offer exciting ways to solve the hierarchy problem and to study low scale
quantum gravity effects [24–26]. From a theoretical point of view, one can expect that
the properties of black holes may play an important role in understanding the nature of
gravity in higher dimensions. The black hole and brane production in the LHC is also
studied in Ref. [27]. Thus, it is important to investigate the effects of extra dimensions
on the various properties of black holes.

In this paper, we intend to extend above analysis to the Reissner–Nordström (RN)
black holes and we choose a specific form of MDR proposed by Majhi and Vagenas,
in which both energy and momentum of particles are bounded. The organization
of this work is as follows: In Sect. 2, we introduce briefly the modified dispersion
relation (MDR*) which admits minimal length and maximal momentum. In Sect. 3,
we investigate a charged black hole thermodynamics in universes with large extra
dimensions. In Sects. 4–7, we obtain entropy, temperature and heat capacity of charged
black hole in the presence of (MDR*). Also, we find new corrections in the emission
rate of charged black holes. Finally, we present our conclusions in Sect. 8.

2 The modified dispersion relation (MDR*)

The idea of modified energy-momentum dispersion relation which is known as MDR is
popular among those are interesting in effective approach to quantum gravity problems.
The modified dispersion relations are usually in the form [28,29]

p2 � E2 − μ2 + α1l p E
3 + α2l

2
pE

4 + · · · , (2)
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where μ is the mass parameter and corresponds to the rest energy of the particle. These
modified dispersion relations have been previously used to calculate the black hole
entropy (see Ref. [28] for a brief discussion).

Recently, a new form of MDR [30] (so called MDR*), has been introduced which
implies a minimum measurable length and a maximum measurable momentum.

p0 = k0, pi = ki (1 − αk + 2α2k2), (3)

where k = |k|, pa is the momentum at high energies, and ka is the momentum at low
energies which satisfies the ordinary dispersion relation. The gravitational background
metric can be considered as (g0i = 0)

ds2 = gABdx
Adx B = g00c

2dt2 + gi j dx
i dx j , (4)

and the square of the four-momentum in this background is

pA pA = g00(k
0)2 + gi j k

i k j (1 − αk + 2α2k2)2 . (5)

The energy of a particle can be expressed in terms of high energy momentum as follows
[30]

E2 =
(
−gABξ A pB

)2 = −g00

(
m2c4 + c2 p2(1 + 2αp)

)
, (6)

where ξ A = (1, 0, 0, . . .) is the killing vector. Now, the energy of a particle is E
c =

−gABξ A pB and the energy in the gravitational background with metric (4) is given
as E = −g00cp0. Here, we work in the Minkowski spacetime in which g00 = −1.

Notice that, this procedure is similar to the modification of the Peierls–Landau
relativistic uncertainty relation which is first proposed by Amelino-Camelia et al. [31].
To this end, after simple calculation (neglecting the rest mass), we obtain

dE

dp
� c

√−g00

(
1 + 2αp − 3

2
α2 p2

)
, (7)

to O(α2). Following the heuristic argument of Refs. [28,31,32], based on MDR , and

using p � E
c
√−g00

(
1 − αE

c
√−g00

)
, we have

δE =
(
c
√−g00 + 2Eα + 7E2

2c
√−g00

α2 + O(α3)

)
δp. (8)

Now, taking δE � E and E ≥ 1
δx which is suggested by quantum field theory we

find

Eδx ≥ c
√−g00

(
1 + 2α

c
√−g00δx

− 7α2

2c2g00(δx)2

)
. (9)
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There are two points should be considered here. First, according to Eq. (3) we keep
all terms up to order of α2 such that considering more generalized form of MDR* will
not change these results. Second, if we consider all natural cut offs such as minimal
length and maximal momentum, not only even powers of energy but also odd powers
of energy should be present [21–23]. Notice that, in the absence of quantum gravity
corrections, i.e., α = 0, we obtain the standard dispersion relation E2 = m2c4 +c2k2.
Also, in the following sections we set h̄ = c = kB = 1.

3 Reissner–Nordström (RN) black holes in extra dimensions

The RN black hole is a solution of the Einstein equation coupled to the Maxwell field
[33,34]. Let us now consider the RN black hole thermodynamics in universes with large
extra dimensions. There are many scenarios of LED such as Randall–Sundrum [24] ,
Arkani-Hamed–Dimopoulos–Dvali (ADD) [25] and Dvali–Gabadadze–Porrati [26].

In LED scenario, RN metric can be written as follows [35]

ds2 = −F(r)dt2 + dr2

F(r)
+ r2d�2

D−2, (10)

where

F(r) = 1 − 2M

rD−3 + Q2

r2(D−3)
, (11)

and d�2
D−2 is the line element on the (D−2)-dimensional unit sphere and the volume

of the (D − 2)-dimensional unit sphere is given by �D−2 = 2π
D−1

2

�( D−1
2 )

. The mass and

electric charge of the black hole are given by

M = 8πGD

(D − 2)�D−2
m, Q =

√
8πGD

(D − 2)(D − 3)
q. (12)

Here, GD is gravitational constant in D-dimensional spacetime such that in ADD
model is given by

GD = (2π)D−4

�D−2
M2−D

Pl , (13)

where MPl is the D-dimensional Planck mass and there is an effective 4-dimensional
Newton constant related to MPl by

M2−D
Pl = 4πG4R

D−4, (14)

where R is the size of extra dimensions. It is necessary to note that in this work, the
conventions for definition of the fundamental Planck scale MPl are the same as which
have been used by ADD. The location of the outer and inner horizons, determined by
F(r) = 0, are given by
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r± =
(
M ±

√
M2 − Q2

) 1
D−3

, M2 ≥ Q2, (15)

and the horizon area is given by AD = �D−2r
D−2+ . Moreover, the entropy reads

S = AD
4 .

4 MDR* and the entropy of RN black holes

We are now interested to calculate the microcanonical entropy of RN black hole.
Following heuristic considerations due to Bekenstein, the minimum increase of the
area of a BH absorbing a classical particle of energy E and size R is given by [36,37]
(After correcting the calibration factor)

(�A)min ≥ 4 ln(2)LD−2
Pl E R, (16)

where R ∼ δx ∼ r+ and δx =
(

A
�D−2

) 1
D−2

. If we set (�S)min = ln 2, then we find

dS

d A
� (�S)min

(�A)min
� 1

4LD−2
Pl Eδx

= 1

4LD−2
Pl 	(δx)

, (17)

and

SMDR∗ =
A∫

Ap

d A

4LD−2
pl

(
1 + 2α

(
A

�D−2

) 1
D−2 − 7α2

2

(
A

�D−2

) 2
D−2

) . (18)

The existence of a minimal length and a maximal momentum leads to the presence
of a minimum event horizon area, Ap = �D−2(δx)

D−2
min = �D−2(αLPl)

D−2 [13].
After some calculations, the RN black hole entropy reads

D = 4 → S4 = A

4
− 2α

√
π

√
A + 15

2
α2π ln (A)

+ 88π3/2α3

√
A

− 281π2α4

A
+ const., (19)

D = 5 → S5 = A

4
− 3

4
α

3
√

2π2A2/3 + 45

8
α2

(
2π2

)2/3 3
√
A − 11π2α3 ln (A)

− 843

8
α4 3

√
2π8

A
+ const., (20)

D = 6 → S6 = A

4
− 2

9
α
√

π(6A)3/4 + 5

2
α2π

√
6A − 22

3
α3 4

√
3π6 4

√
512A

+ 281

6
π2α4 ln (A) + const. (21)

There are many discussions concerning logarithmic corrections to the entropy area
relation [22,23,38,39]. The logarithmic corrections to black hole have been also
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Fig. 1 Modified
Reissner–Nordström black
hole’s entropy as a function of
event horizon area for different
numbers of spacetime
dimensions in the presence of
MDR* for α = 1
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obtained in the tunneling formalism [40–45]. The logarithmic prefactor contains some
information about the details of the underlying quantum gravity proposal. Here, the
logarithmic prefactor is given by c0 = 15

2 α2π for the RN black hole with double hori-
zons. Thus, we find that this procedure as mentioned in Ref. [46] is not only valid for
single horizon spacetime but also valid for spacetimes with outer and inner horizons.

Now we easily conclude that the logarithmic prefactor will be appeared for all
number of dimensions. In addition, for positive values of α, the sign of the logarithmic
factor is positive for even number of dimensions but is negative for odd number
of dimensions. This result is the main difference between new form of MDR with
other quantum gravity approaches. In addition, we conclude that the existence of
the logarithmic prefactor is independent of the dimensionality of the spacetime but
depends on the used statistical ensemble.

Figure 1 shows the relation between the event horizon area and the entropy of the
RN black hole. In scenarios with extra dimensions, black hole entropy decreases. The
classical picture breaks down since the degrees of freedom of the black hole are small.
In this situation one can use the semiclassical entropy to measure the validity of the
semiclassical approximation. Also black holes in extra dimensional models have less
entropy than black holes in four dimensions.

Figure 2 displays the black hole entropy versus its mass for 4-dimensional Schwarz-
schild and Reissner–Nordström black holes in the presence and absence of MDR*.
Therefore, higher dimensional black hole remnants have less classical features relative
to their four dimensional counterparts, and the mass of the black hole remnant usu-
ally increases with the spacetime dimension D [38,39]. It is worth mentioning that in
the classical viewpoint, at the end of the evaporation process, the black hole contains
zero remnant mass, zero final entropy and infinite finial temperature. However, as we
will show, we obtain a nonzero remnant mass, nonzero final entropy, and finite final
temperature.

5 MDR* and the temperature of RN black holes

The Hawking temperature for the spherically symmetric black holes has been obtained
in several ways using MDR [28,38,47]. According to the first law of the RN black
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Fig. 2 Entropy of
Schwarzschild (Sch),
Reissner–Nordström (RN ),
modified Schwarzschild (Sch∗),
and modified
Reissner–Nordström (RN∗)

black holes for D = 4
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hole, we have

dM = κ

8π
d A + φdQ = TdS + φdQ. (22)

In more general situations, the entropy of black hole is assumed to be a function of its
area, namely, S = S(M, Q). The temperature is expressed as

TMDR∗ =
(

∂M

∂S

)
Q

= d A

dS
×

(
dM

dA

)
Q

= d A

dS
× κ

8π
. (23)

The surface gravity κ(M, Q) can be obtained in the usual manner as [35,48]

κ = 1

2
|∂r F(r)|r=r+ . (24)

Now, using TBH = h̄κ
2π

, the modified temperature of RN black hole reads

TMDR∗ = (D − 3)

4πr+

(
1 − χ−

χ+

)
	(r+), (25)

where

χ+ = M +
√
M2 − Q2; χ− = M −

√
M2 − Q2. (26)

This relation shows implicitly that the black hole’s temperature increases with the
spacetime’s dimension D. The higher temperature leads to faster decay and less clas-
sical properties of the black hole. As a result, both the temperature and the entropy of
the RN black hole receive important corrections such that the temperature is bounded
from above. Such remnants of black holes may be considered as a candidate for cold
dark matter.
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For D = 4 we have

T4 =
√
m2 − q2

2π(m + √
m2 − q2)

2

(
1 + 2α

m + √
m2 − q2

− 7α2

2(m + √
m2 − q2)

2

)
.

(27)

If we set α = 0, temperature reduces to result that has been reported in Ref. [34].
Also, for α = 0 and q = 0, we obtain the well-known Hawking temperature, i.e.,
TBH = 1

8πm . Indeed, our result contains all limiting cases properly.
As Fig. 3 shows, the black hole radiates until it reaches to the minimum mass.

During this process, its effective temperature reaches a maximum value. However, as
the figure exhibits, when the radiation stops, the temperature goes to zero. We can say
that, when the radiation reaches to its endpoint and the entropy becomes zero, and
the temperature is in its maximum value, there is a remnant of black hole. Note that,
remnants do not need horizon structure [5,39].

Figure 4 shows the comparison between the temperature of the Schwarzschild
black hole, RN black hole and their modified temperature in the presence of MDR*
for D = 4. It shows that the temperature of RN black hole remnant is smaller than
the temperature of Schwarzschild black hole remnant. So, the RN black hole remnant
is colder than the Schwarzschild black hole remnant and the natural cut offs become

Fig. 3 Modified
Reissner–Nordström Black
hole’s temperature as a function
of mass for different numbers of
spacetime dimensions in the
presence of MDR* for α = 1
and q = 1
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Fig. 4 Temperature of
Schwarzschild (Sch),
Reissner–Nordström (RN ),
modified Schwarzschild (Sch∗)

and modified
Reissner–Nordström (RN∗)

black holes for D = 4, α = 1
and q = 1
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Fig. 5 Modified
Reissner–Nordström black
hole’s temperature as a function
of mass for different α

(L pl = 1)
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Fig. 6 Modified
Reissner–Nordström black
hole’s temperature as a function
of mass for different charges.
(q = 1 and L pl = 1)
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more effective for small charges. Also, the temperature of the RN black hole and the
modified RN black hole are distinct.

As another important outcome, according to [49,50] the noncommutative Schwarz-
schild black hole has features very similar to a commutative RN black hole. Indeed,
it is shown that there is a close connection between charge and noncommutativity
[49,50]. Here, using MDR* and comparing evaporation process of the standard and
modified RN black hole, we conclude that there is a nontrivial connection between
charge and the dimensionality of the spacetime near the Planck scale.

Figure 5 shows that when α increases, the minimum mass increases and the
maximum temperature decreases. Figure 6 shows that the modified RN black hole
temperature as a function of mass for different values of charge. As the figure shows,
the final state temperature decreases as the black hole charge increases. We note that
black hole evaporates through the radiation of charged particle-antiparticle pairs until
it reaches a remnant with maximal temperature.

6 MDR* and the heat capacity of the RN black holes

The heat capacity is calculated from the entropy via the relation

C = T

(
∂S

∂T

)
=

(
∂m

∂T

)
. (28)
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Fig. 7 Modified
Reissner–Nordström black
hole’s heat capacity as a function
of mass for different numbers of
spacetime dimensions in the
presence of MDR* for α = 1
and q = 1
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Fig. 8 Heat capacity of
Schwarzschild (Sch),
Reissner–Nordström (RN ),
modified Schwarzschild (Sch∗)

and modified RN (RN∗) black
holes for D = 4, q = 1, and
α = 1
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The high energy corrections may prevent the black hole from total evaporation since
the heat capacity vanishes as the temperature reaches its maximal value. Now, we find
the heat capacity of the RN black hole as a function of its mass. For D = 4 we have

CMDR∗

=
4
√
m2 − q2

(
m + √

m2 − q2
)4

(28α2 − 8αm − 4m2+4q2)
√
m2−q2−4m3−8αm2+(−7α2+6q2)m+12αq2

.

(29)

As it can be seen from Fig. 7, the negative heat capacity shows that the thermody-
namical system is unstable and tends to decay. When heat capacity reaches to zero,
the system goes to stability. Indeed, the black hole cannot radiate further and becomes
an inert remnant, possessing only gravitational interactions.

The heat capacity as a function of mass for D = 4 is represented in Fig. 8. There
is a discontinuity point for the heat capacity in the modified RN black hole so-called
mext that leads to a catastrophic evaporation. When the mass of the RN black hole is
above mext , the heat capacity is positive and it tends to a finite value when mass goes
to infinity. It seems this behavior arises from failure of the standard thermodynamics
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near the Planck scale. So, a solution to this problem will also correct the catastrophic
behavior [38,39,51].

7 MDR* and the emission rate of the RN black holes

The energy radiated per unit time (the emission rate) can be calculated using the
Stefan–Boltzmann law by assuming that the energy loss is dominated by photons.
In ni -dimensional brane, the energy radiated by a black body of temperature T and
surface area A(M, ni , D) is given by [52–56]

dEni

dt
= σni A(M, ni , D)T ni . (30)

We assume that the RN black hole induced area depends on ni , M , and the dimension
of the spacetime D. So, the RN geometric area which is induced on the ni -dimensional
subspace is

Ai (M, ni , D) = �ni−2r
ni−2
c , (31)

where �ni−2 is the area of the unit (ni − 2)-dimensional sphere and rc =( D−1
2

) 1
D−3

(
D−1
D−3

) 1
2
r+ is the radius of the D-dimensional RN black hole of radius

r+. Also, σni is the ni -dimensional Stefan-Boltzmann constant defined as σni =
�ni−3�(ni )ξ(ni )

(ni−2)(2π)ni−1 .

The thermal emission in the bulk of the brane can be neglected and the RN black

hole is supposed to radiate mainly on the brane [53], i.e.,
dE4
dt

dE11
dt

� 1. Thus, the emission

rate on the brane is given by

(
dm

dt

)
MDR∗

∝ −λT 4
MDR∗ , (32)

where λ = �1�2�(4)ξ(4)

2(2π)3

(
D−1
D−3

) ( D−1
2

) 2
D−3 r2+ .

The emission rate of black hole is shown in Fig. 9. This means that the emission rate
of the RN black hole vanishes when the black hole reaches its minimal value. In the
standard framework, the emission rate goes to infinity as the mass of the RN black hole
tends to zero. In the MDR* picture, the modified emission rate of the RN black hole
never diverges, and it just goes to zero when the black hole’s mass reaches its minimal
value. Also, Fig. 10 shows the relation between the emission rate of the Schwarzschild
black hole, RN black hole and their modified temperature in the presence of MDR*
for D = 4.

8 Conclusions

In this paper, we have studied the effects of a recently proposed MDR* on the charged
black holes. We showed that the presence of a minimal length and a maximal momen-
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Fig. 9 Emission rate of
modified Reissner–Nordström
black hole as a function of mass
for different numbers of
spacetime dimensions in the
presence of MDR* for α = 1
and q = 1
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Fig. 10 Emission rate of
Schwarzschild (Sch),
Reissner–Nordström (RN ),
modified Schwarzschild (Sch∗)

and modified RN (RN∗) black
holes for D = 4, q = 1, and
α = 1
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tum results in the modification of RN thermodynamics. Indeed, it leads to faster decay
and less classical behaviors for black holes. We discussed the existence of the loga-
rithmic prefactor and the relation between the dimensionality and the entropy. Also,
we obtained the temperature, heat capacity and emission rate of the RN black hole
in the presence of the extra dimensions and compared our result with the standard
formalism. In addition, we discussed the failure of standard thermodynamics near the
Planck energy scale. We showed that in the modified formalism, the RN black hole
has a remnant. The existence of the remnant has also been predicted in the context of
noncommutative geometry, Rainbow gravity, GUP and MDR in [32,38,49,50,57,58].
Thus, it seems that not only the MDR* but also above approaches of quantum gravity
predict the absence of an effective horizon and the existence of the remnant for all
black holes. This method is valid for both the single horizon spacetimes and symmetric
spacetimes with double horizons (outer and inner horizons) and it offers a new way
for studying the entropy corrections of the complicated spacetimes.
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