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Abstract Instead of the scalar “dilaton” field that is usually adopted to construct
conformally invariant Lagrangians for gravitation, we here propose a hybrid construc-
tion, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with
Weyl’s original concept of a non-Riemannian conformal geometry with a transport
law for length and time intervals, for which this gauge vector is required. Such a
hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term
(the ghost problem) that afflicts the usual construction. The introduction of a Weyl
gauge-vector and its interaction with the dilaton also has the collateral benefit of pro-
viding an explicit mechanism for spontaneous breaking of the conformal symmetry,
whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than
mP by the Coleman–Weinberg mechanism. Conformal symmetry breaking is assumed
to precede inflation, which occurs later by a separate GUT or electroweak symmetry
breaking, as in inflationary models based on the Higgs boson.

Keywords Quantum gravity · Conformal invariance · Spontaneous symmetry
breaking · Weyl length transport

1 Introduction

Modifications of Einstein’s gravitational theory that incorporate local conformal
symmetry—that is, invariance under the transformation gμν(x) → e2α(x)gμν(x),
where α(x) is an arbitrary real function—have been exploited in attempts at the solu-
tion of various of theoretical problems, such as renormalization of the stress tensor,
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renormalization of quantum gravity, quantum mechanics of black holes, analytic solu-
tions and geodesic completeness in the early universe, and the dynamics that lead to
inflation by symmetry breaking.

The conventional Einstein theory, with the Lagrangian (m2
P/16π)

√−gR, lacks
conformal symmetry. To endow this theory with a pedigree that includes conformal
symmetry, we need to regard it as an effective field theory derived from a conformally
symmetric precursor theory by spontaneous symmetry breaking. Such conformal sym-
metry breaking can arise in several ways: It can be collateral damage of the spontaneous
breaking of the GUT and/or electroweak gauge symmetries, when the precursor zero-
mass fermions and gauge bosons acquire masses and thereby spoil the conformal
symmetry [1–6]. Or else it can be implemented independently by a separate mechanism
that directly breaks the conformal symmetry but leaves the GUT and/or electroweak
gauge symmetries untouched [7–10]. The conformal symmetry breaking may or may
not be accompanied by inflation—if it is not, then inflation will have to occur later, in
connection with the breaking of GUT or electroweak symmetry.

Conformal symmetry breaking by an independent mechanism is usually thought to
arise from a scalar field φ(x), called the dilaton, which in the conformally symmetric
regime has zero mass and a symmetric vacuum state but at lower temperatures and
lower energies spontaneously settles into a nonsymmetric state, with a nonzero vacuum
expectation value and a nonzero mass. The evolution of this dilaton scalar field toward
its nonsymmetric state is governed by an effective potential, and there is an abundance
(and overabundance) of models that achieve spontaneous symmetry breaking with the
properties fancied by theorists.

The symmetry breaking that causes inflation is, likewise, thought to arise from
a scalar field, called the inflaton. In principle, inflation could arise from breaking
of the conformal symmetry (so inflaton = dilaton), and breaking of the GUT and
electroweak symmetries could come later. However, in view of the experimental con-
firmation of the existence of the Higgs boson (with mH = 125 GeV), it is tempting
to identify this Higgs boson as the cause of inflation, as proposed in the neat model
of Bezrukov and Shaposhnikov [11] in which inflation is treated as a consequence
of electroweak spontaneous symmetry breaking and therefore occurs much later and
separately from conformal symmetry breaking. According to this scenario, confor-
mal symmetry breaking is not associated with inflation and does not affect the good
agreement of the Bezrukov–Shaposhnikov model with the WMAP and Planck data
[12].

As pointed out by Bars et al. [9], even if inflation is caused by the Higgs and
is not coeval with conformal symmetry breaking, it is still desirable that the “full”
theory should have as precursor a Lagrangian with conformal invariance, and this
imposes restrictions on the form that the Lagrangian can take in the conformally
broken regime. Bars et al. have contrived a general prescription for transforming
(“lifting”) Lagrangians that are not conformally invariant into precursor Lagrangians
that are invariant. This provides a “conformalization” prescription for the selection of
Lagrangians that are endowed with conformally invariant pedigrees (or “an underly-
ing hidden conformal symmetry”), so with insertion of correction factors consisting
of functions of the inflaton field φ(x) they can achieve conformal invariance. For
instance, Bars et al. show how the Bezrukov–Shaposhnikov model emerges from a
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conformally invariant precursor Lagrangian, by breaking of the conformal symme-
try.

Unfortunately, the construction of such precursor Lagrangians by insertion of
a scalar field φ(x) faces a serious obstacle in that the appropriate kinetic term
1
2 g

μν∂μφ∂νφ (which, with the signature + − −− adopted here, contributes a pos-
itive energy density) must appear in the Lagrangian in the invariant combination

± √−g

(
1

12
φ2R − 1

2
gμν∂μφ∂νφ

)
. (1)

Symmetry breaking fixes the vacuum expectation value of φ, so φ2 attains a positive
value 〈φ〉2, and to obtain the standard Einstein Lagrangian in the broken symmetry
regime we need to select the + sign in the expression (1). This inflicts on our theory
a kinetic term of the wrong sign, which implies a ghost and a disastrous instability
of the φ field in the pre-symmetry breaking regime. For the Feynman propagator of
the φ field, the wrong sign of the kinetic term implies a wrong sign for the residue
at the pole, and a violation of unitarity. This notorious sign problem of the kinetic
term afflicts a multitude of models that seek to implement conformal invariance by
insertion of scalar fields in the Lagrangian [2,7,13–17].

The usual attitude is to ignore this problem, by the specious argument that the wrong
sign of the kinetic term is irrelevant because the entire term is eliminated when we
assign to the scalar field a fixed value. This fixing is often characterized as a mere choice
of gauge. But that is a misconception, because by fixing the scalar field at a constant
value we not only make a choice of gauge, but we also break the conformal symmetry,
and we rob the scalar field of all its dynamics (as other authors have commented, the
scalar field “ceases to be a degree of freedom altogether” and is reduced to a “gauge
artifact” [9]; or we “put one degree of freedom to zero, such as to get rid of the ghost”
[17]).

In essence, this way of dealing with the wrong sign of the kinetic term is an argument
against conformal symmetry, because it says that to avoid the wrong sign we need to
break and remove the conformal symmetry. And, concomitantly, by setting the value
of the scalar field equal to a constant of dimension ∝ mass, we introduce a dimensional
constant into the Lagrangian, spoiling any hope for renormalizability of the theory.

As an alternative to this gauge fixing, Jackiw and Pi [18] recently proposed removal
of the scalar field by means of a change of variables from what is called the “Jordan
frame” to the “Einstein frame.” They designate the metric tensor in the Lagrangian
(1) by gJ

μν(x), and they introduce a new metric tensor by a change of variables
gEμν(x) ≡ φ2(x)gJ

μν(x).
1 By this change of variables, they give the Jordan Lagrangian

(1) the form of the standard Einstein Lagrangian
√−gE 1

2 R(gEμν). They then claim
that this Einstein Lagrangian “clearly lacks local conformal symmetry.” But this claim
is fallacious: under conformal transformations, gJ

μν → e2αgJ
μν and φ → e−αφ, and

1 The preservation of the dimension of the metric tensor requires a dimensional factor 1/(mass)2 on the
right side of this transformation equation, to compensate the dimension of φ2. This dimensional factor is of
crucial importance in investigations of renormalizability. For the sake of simplicity, I here imitate Jackiw
and Pi in omitting this factor.
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therefore gEμν = φ2gJ
μν → (e−αφ)2(e2αgJ

μν) = gEμν , which means gEμν is invariant
under conformal transformations, and so is the Einstein Lagrangian constructed with
gEμν . The same is true for all other terms that might occur in a general Lagrangian
endowed with conformal invariance, including terms that involve fermions, bosons,
and their gauge fields—the change of variables from Jordan to Einstein changes the
form of these terms, but not their invariance. This persistence of conformal invariance
is no surprise, because a mere change of variables cannot change the overall invari-
ance properties of a given Lagrangian, if the symmetry transformations of the changed
variables are properly taken into account.

Jackiw and Pi’s characterization of the conformal invariance as a “fake gauge invari-
ance,” contrived by “introducing a spurion field and dressing up a model to appear
gauge invariant,” is a misconception arising from their failure to recognize that the
conformal invariance survives, even when the change of variables hides the scalar
field within another field. It may be fair to characterize the scalar field as spurious,
because it is merely a marker, or an “order parameter,” that reveals how the confor-
mal symmetries in the Jordan and Einstein versions of the Lagrangian are related,
but the underlying symmetry does not depend on this marker—and it is not a fake
symmetry. For a clearer appreciation of the meaning of conformal symmetry, it is
instructive to compare the conformally symmetric Lagrangian (1) with an example of
a nonsymmetric Lagrangian consisting of (1) plus a mass term −√−gm2φ2 . Such a
mass term is not invariant under the conformal transformation, and furthermore the
scalar field in this term cannot be hidden by a change of variables from Jordan to
Einstein.

In the Jordan frame used for Eq. (1), resolution of the ghost problem by choice of
gauge is incompatible with preservation of explicit conformal symmetry. If we want
to exploit conformal symmetry for the purposes of quantum field theory, we have to
ensure that this symmetry is explicit at high temperatures or high energies, and that
it is not infested with fundamental inconsistencies, such as unacceptable ghosts. This
makes it imperative to repair the wrong sign of the kinetic term and thereby exorcise the
ghost. Furthermore, if we can repair this wrong sign and endow the field with viable,
consistent dynamics, then we can attempt to add suitable interactions of the scalar
field with itself and with other fields, so that the scalar field will adopt a fixed value
at low energies, by the Brout–Englert–Higgs mechanism of spontaneous symmetry
breaking [19,20].

The model presented in Sects. 2 and 3 shows how this exorcism can be achieved
by introducing a Weyl gauge-vector ϕμ(x) in conjunction with the dilaton scalar. The
Weyl vector not only solves the problem of the wrong sign of the kinetic term and gives
us an explicit dynamic mechanism for conformal symmetry breaking, but it also plays
a crucial role in the structure of the spacetime geometry in the symmetric regime.

At present, the geometry of our universe is Riemannian, but before conformal
symmetry breaking, our geometry was a Weyl geometry, devoid of well-defined
absolute proper-time intervals. The geodesics in such a geometry are determined
by the affine structure, that is, parallel transport of vectors tangential to the
geodesic, and not by a condition of extremal proper time. According to Ehlers
et al. [21], fundamental axioms and propositions of differential geometry demand
the existence of a Weyl vector for construction of the affine connection of this

123



Weyl gauge-vector and complex dilaton scalar for conformal... Page 5 of 17 25

geometry, because this vector ensures that—despite the gauge dependence of the
metric tensor—the geodesics are conformally invariant, as they must be, on phys-
ical grounds. After conformal symmetry breaking, the Weyl vector vanishes, and
this gives us a Riemannian geometry, with a well-defined metric tensor and absolute
proper-time intervals, and with geodesics determined by extremal proper time. Concur-
rently, some of the precursor massless fundamental particles acquire masses, which
gives us the physical standards of length and time needed for the measurement of
these proper-time intervals. Thus, conformal symmetry breaking leads to a wealth
of new physics—and we cannot pretend that this symmetry breaking is merely a
cavalier adoption of one conformal gauge choice over another, by fiat. The con-
formal gauge choice that emerges from the dynamics of spontaneous symmetry
breaking is a symptom of drastic changes in the physics and geometry of space-
time.

My model also adopts the additional assumption that the dilaton scalar is a complex
field χ(x). This avoids the singular behavior of the conformal Brans–Dicke equa-
tion for a real scalar field φ, where the parameter value ω = −3/2 appropriate for
conformal symmetry collapses the field equation to a condition of zero trace for the
energy-momentum tensor, while leaving the field completely undetermined [22]. In
contrast, with a complex scalar field χ , the field equation leaves the magnitude χχ∗
undetermined but fully determines the evolution of the phase of the field. The phase
of the scalar field is conformally invariant, whereas the freedom of choice of the mag-
nitude of the field represents the conformal gauge symmetry. This sharp separation
of the scalar field into a gauge component and a conformally invariant component
makes the physics of the scalar field more transparent and reveals the close analogy
between the behavior of this gauge field and other known multi-component gauge
fields.

Furthermore, the adoption of a complex scalar χ permits my model to proceed by
direct imitation of the Coleman–Weinberg model for massless scalar “electrodynam-
ics” [23]. As in the latter model, the Weyl vector partially absorbs the complex scalar χ

by the usual Brout–Englert–Higgs mechanism but leaves a residual real massive scalar
field. This residual scalar field might serve as a significant WIMP contribution to the
missing dark mass in and around galaxies, which might provide direct observational
evidence for or against the model.

Another advantage of a complex scalar is that the current density χ∂μχ∗ + χ∗∂μχ

for the wave field of individual χ particles vanishes, so any primordial particles of this
kind, left over from an early stage of the universe, are incapable of acting as sources
of the Weyl gauge vector to which this current couples [see Eq. (13)]. In contrast, for
a real scalar field, the current would be nonzero, which could lead to an undesirable
cosmological Weyl vector, in conflict with the required vanishing of the Weyl vector
in the Riemannian geometry that emerges from symmetry breaking.

In my proposed Lagrangian the correction of the notorious wrong sign of the scalar
kinetic term is achieved by adopting a hybrid combination of the usual conformally
invariant expression with a kinetic term of the wrong sign,

√−g sinh2 


(
1

6
χχ∗R − gμν∂μχ∂νχ

∗
)

, (2)
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and a new expression with a kinetic term of the right sign,

√−g cosh2 
gμν

(
∂μ − 1

2
bϕμ

)
χ

(
∂ν − 1

2
bϕν

)
χ∗. (3)

Here the parameter 
 is a “mixing angle” which ensures that the combination
of the kinetic terms in the expressions (2) and (3) yields the correct net value√−ggμν∂μχ∂νχ

∗ with the correct sign, so there is no ghostery.
In the expression (3), ∂μ− 1

2bϕμ is a conformally gauge covariant derivative operator
analogous to the familiar gauge covariant derivative operator ∂μ + ieAμ of electro-
dynamics. The magnitude of the dimensionless coupling constant 1

2b that multiplies
the Weyl vector field ϕμ (analogous to the dimensionless electric coupling constant
e ∼= 1/

√
137 that multiplies the vector field Aμ of electrodynamics) is set by the

geometric interpretation of ϕμ as the gauge vector for the transport of lengths and
time intervals (see Sect. 4), as originally proposed by Weyl [24,25]. For the Coleman–
Weinberg calculation in Sect. 3, the factor cosh2 
 must be included in the coupling
constant. In principle, any nonzero value of 
 is permissible, but in practice it will
be convenient to assume that ( 1

2b cosh2 
)2 is small, so that perturbation theory is
applicable.

The kinetic terms of other scalar fields—such as, say, the Higgs field—are
assumed to appear in the Lagrangian only in the conformally invariant combination√−g[− 1

6HH
†R + gμνDμH(DνH)†], with the correct positive sign for the kinetic

term and the negative sign shifted to the R term (the differential operator Dμ is the
appropriate gauge covariant derivative constructed with the SU(2) × U(1) gauge fields
of the Standard Model, but it does not include the Weyl gauge field ϕμ). The correct
final positive sign for the net R term, after all symmetry breakings have been com-
pleted, is achieved by assuming that the positive-sign contribution arising from the
vacuum expectation value of χχ∗ is larger than the sum of negative-sign contributions
arising from the vacuum expectation values of HH† and other scalar fields implicated
in symmetry breakings.

Conformally covariant derivative operators with a Weyl vector were used in
Lagrangian models by Smolin [26], Cheng [27], Nishino and Rajpoot [28], and Drech-
sler and Tann [29]. My model is closest to that of Smolin, who, however, uses a real
scalar field. As mentioned above, a real scalar field has various disadvantages in com-
parison with a complex field. Furthermore, spontaneous symmetry breaking based on
a single-component real scalar field is problematic. The usual Englert–Brout–Higgs
mechanism for a scalar interacting with a massless vector field requires a complex
scalar field, that is, two real scalars, so that one of these scalars can be “gauged away”
and “eaten up” by the vector field, which thereby acquires a mass. Smolin concedes it is
“unlikely that a single-component [real] scalar field will in fact develop an expectation
value as a result of quantum corrections.” This problem does not arise when the scalar
field is complex, because then the explicit scalar-vector interactions in the Lagrangian
(4) directly lead to one-loop quantum effects that generate an effective potential for
the vacuum expectation value of the scalar field, in imitation of Coleman–Weinberg
massless scalar electrodynamics. Instead of adopting this direct and explicit approach,
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Smolin engages in vague speculations about unspecified instabilities in the full quan-
tum theory that might contribute to his Lagrangian an extra, unspecified, effective
potential, which might favor an asymmetric vacuum for the scalar field.

The other Lagrangian models with Weyl vectors [27–29] suffer from the same
troubles as that of Smolin, with an extra defect in that the authors inserted gauge-
covariant derivative operators ∂μ − 1

2bϕμsomewhat indiscriminately into every which
derivatives in their Lagrangians, including the derivatives of fermion fields and boson
fields. This leads to unacceptable consequences, because if the fermion fields act
as sources for the Weyl vector field, then the 0 component of the Weyl vector field
would persist after conformal symmetry breaking, with a value of approximately
ϕ0 ∼ (fermion density)/m2

P, so the high fermion density of the early universe would
maintain a large value of ϕ0 until long after conformal symmetry breaking. This
would give rise to a perplexing conflict between the conformally non-symmetric and
unambiguous Riemannian geometry and a concurrent Weyl transport law for length
and time intervals—the geometry would be neither fish nor fowl, partly a Riemannian
geometry and partly a Weyl conformal geometry, with abnormalities in the transport
behavior of clock rates and atomic frequencies, such as the predicted abnormalities
that originally led Einstein and others to reject Weyl’s theory [30]. My model resolves
this dilemma by adopting the scalar field χ as the one and only source for the Weyl
vector field, so when the components of the current density of this scalar field vanish
upon conformal symmetry breaking, the Weyl vector field also vanishes (at least as a
classical field, although a gas of incoherent Weyl quanta might survive and perhaps
make a significant contribution to the clouds of dark mass in and around galaxies).
Accordingly, in my proposed Lagrangian the conformally covariant derivatives appear
only in connection with the scalar field χ .

My paper and that of Bars et al. should be regarded as complementary. For instance,
for the Bezrukov–Shaposhnikov model, the Bars et al. “conformalization” prescription
yields a conformally-invariant precursor Lagrangian for the Higgs field, while my
hybridization procedure eliminates the unacceptable ghost in the dilaton field used
for this conformalization. A fortunate feature of the Bars et al. conformalization is
that it relies entirely on the dilaton scalar, and does not involve the Weyl vector at all,
so the Higgs field does not become an undesirable source of Weyl vector fields after
conformal symmetry breaking.

Sections 2 and 3 of my paper show how the hybridization of dilaton kinetic terms
not only exorcises the ghost, but also provides an explicit mechanism for confor-
mal symmetry breaking, in almost exact imitation of Coleman–Weinberg model of
massless scalar electrodynamics. The masses for the dilaton scalar and the Weyl
gauge-vector that emerge from this model by spontaneous symmetry breaking via
the Brout–Englert–Higgs mechanism are of the order of 1/10 of the Planck mass or
somewhat smaller. Accordingly, the conformal symmetry breaking occurs somewhat
later than the Planck time, which is consistent with the view that this symmetry break-
ing is not directly related to quantum effects of the geometry.

Section 4 considers the geometrical interpretation of the Weyl gauge-vector as a
device for the transport of length and time intervals, transport of parallels, construction
of the affine connection and geodesics, and construction of a “proper” metric tensor
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which defines conformally invariant lengths along individual non-null worldlines, but
only in a path-dependent manner.

2 The conformal model

The arguments presented in the preceding section motivate my proposal for a simple
model for breaking gravitational conformal symmetry with the following assumptions
(essentially the same as those already stated in a preliminary version of this paper [31]):
(i) Einstein’s theory should emerge from this symmetry breaking, except for some
macroscopically undetectable corrections near the Planck length; (ii) before symmetry
breaking, the model consists of a conformally-invariant version of the Jordan [32] and
Brans–Dicke [22] theories (with ω = −3/2 and Tμ

μ = 0), but with a complex scalar
field χ(x), which is coupled not only to gravitation but also to a Weyl gauge-vector
field ϕμ by a “conformal current” ∂L/∂ϕμ carried by the scalar field, so this current
acts as source of the vector field; (iii) exactly as in the Coleman–Weinberg model for
massless scalar electrodynamics [23], an effective potential for the vacuum expectation
value of the scalar field arises from radiative corrections to the χ -ϕμ interaction,
supplemented by a conformally-invariant self-interaction (χχ∗)2; (iv) spontaneous
symmetry breaking then occurs by the Brout–Englert–Higgs mechanism, resulting in
large masses for the residual (real) scalar and the vector ϕμ.

The proposed conformally-invariant Lagrangian density is (with the signature +−
−−)

L = √−g sinh2 


[
1

6
χχ∗R − gμν∂μχ ∂νχ

∗
]

+√−g cosh2 


[
gμν

(
∂μ − 1

2
bϕμ

)
χ

(
∂ν − 1

2
bϕν

)
χ∗

− λ

4! (χχ∗)2
]

− 1

4

√−ggμσ gντ fμν fστ + L(m), (4)

where fμν ≡ ∂νϕμ − ∂μϕν , and where L(m) is the conformally-invariant Lagrangian
density for the various fermion, boson, and gauge fields associated with the strong
and electroweak interactions and their characteristic scalar fields (such as the Higgs
field), before breaking of their own gauge symmetries. In the Lagrangian (4) all these
fundamental matter fields are assumed to be massless, and the observed masses of
the known particles are assumed to arise at a later stage by spontaneous symme-
try breaking of their own gauge symmetries, as in the case of the Higgs boson.
(For fermions, the contribution to L(m) must be expressed in terms of tetrad vec-

tors V (σ )
μ (x) instead of the metric tensor, which becomes gμν = V (σ )

μ V (τ )
ν ηστ . This

makes the fermion Lagrangian rather messy; but the conformal gauge transformation
of a tetrad vector is simple, merely multiplication by a factor eα(x), where α(x) is the
same arbitrary function used in Eq. (5). In the following calculations, no explicit use
will be made of these details for fermions, which are readily available in textbooks
[33]).
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The Lagrangian density (4) is invariant under the conformal gauge transformations

gμν(x) → gμν(x)e
2α(x),

χ(x) → e−α(x)χ(x),

ϕμ(x) → ϕμ(x) − (2/b)∂μα(x). (5)

where α(x) is an arbitrary real function. Note that the conformal transformations gener-
ically involve a curved spacetime geometry, and that these transformations defined by
Eq. (5) must not be confused with the so-called scale transformations in a flat space-
time with Cartesian coordinates, for which the transformation of, say, a scalar field has
a different definition, χ(x) → e−αχ(e−αx) where α is a constant real number [34].
Such a scale transformation can be regarded as a compound transformation consisting
of a constant conformal transformation of flat spacetime followed by a coordinate
transformation x → e−αx ; thus, for a Lagrangian expressed in general coordinates,
scale invariance is implicit in conformal invariance, although only in flat spacetime.
Symmetry breaking of scale-invariant Lagrangians has recently been explored as a
possible mechanism for generating the Higgs mass [35], but this is a very question-
able approach because such scale transformations are applicable only in flat spacetime
and cannot be generalized to curved spacetime.

The various fields contained inL(m) have their own appropriate conformal transfor-
mations, but we will not need the full details of these transformations in the following
calculations. Conformal invariance for scalar fields in L(m)other than χ is to be
achieved by combining each kinetic term with a term proportional to R (with a negative
sign) as in the conformally invariant combination

√−g[− 1
6HH

†R+gμνDμH(DνH)†]
for the Higgs field already mentioned in Sect. 1, and by applying the conformalization
procedure of Bars et al. to any scalar interaction terms, as appropriate. Conformal
invariance of contributions from massless fermion and boson fields (other than scalar
fields) is automatic—it requires no modifications of the general coordinate invariant
kinetic terms of these fields. Accordingly, L(m) does not contain the field ϕμ at all and
can therefore be ignored in the following discussion of the dynamics of conformal
symmetry breaking caused by the χ -ϕμ interaction.

It is possible to add to the Lagrangian (4) a conformally-invariant term containing
products of second-order derivatives of gμν , leading to fourth-order derivatives in the
field equations. But in my model such extra terms play no direct role in achieving
symmetry breaking, so I will ignore them for now.2 This is in contrast to some other
attempts at generating ordinary gravity from a conformally-invariant Lagrangian, in
which a combination of quadratic products of second-order derivatives (the square of
the conformal Weyl tensor) plays an essential role, but no term proportional to R is
included in the Lagrangian, at least not ab initio [4,5,8,10].

2 With the Lagrangian (4), additional conformally-invariant higher-order derivative terms, such as the term
αgrav

√−g(Rμν Rμν − R2/3) often favored by theorists, merely add short-range Yukawa potentials to the
usual macroscopic 1/r Newtonian potential. If αgrav is of the order of magnitude of ∼1, then the range of
this Yukawa potential is about a Planck length and it produces no measurable macroscopic effects. However,
the higher-order derivatives can lead to drastic modifications of the singularities found in general relativity.
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3 Results

In my model, the current density of the scalar field [see Eq. (13)] and its coupling to
the vector field are not the same as in the Coleman–Weinberg scalar electrodynamics
model [23]. However, the coupling χχ∗ϕμϕμ is exactly the same, with the substitution
of (b/2)2 cosh4 
 for e2. The one-loop calculation of the effective potential does not
depend on the current, but only on the χχ∗ϕμϕμ coupling and on the quartic self-
coupling (λ/4!) cosh2 
 (χχ∗)2. Equation (4) therefore leads to an effective potential
for the vacuum expectation value |χc| of the same form of that of Coleman–Weinberg,
with only some trivial changes in the coupling constants:

Veff(|χc|) = 3b4 cosh8 


(32π)2
|χc|4

(
ln

|χc|2
〈χ〉2 − 1

2

)
, (6)

where 〈χ〉 is the value of |χc| at which the minimum occurs. Equation (6) includes
renormalization of a divergent integral and also includes the Coleman–Weinberg
“dimensional transmutation”, by means of which the dimensionless coupling constant
λ is “traded” for a dimensional constant 〈χ〉. When the field settles into the stable min-
imum value〈χ〉, the Higgs mechanism breaks the conformal symmetry and endows
the scalar and vector fields with masses. With |χc|fixed at 〈χ〉, the first term in the
Lagrangian (4) then becomes 1

6 〈χ〉2 sinh2 

√−gR. For agreement with Einstein’s

theory in the classical regime, we make the choice

1

6
〈χ〉2 sinh2 
 = m2

P

16π
. (7)

The resulting vector and scalar masses are then, respectively,3

m2
V = 3b2

32π

cosh4 


sinh2 

m2

P (8)

and

m2
S = 1

π

(
3b2

32π

)2
cosh8 


sinh2 

m2

P . (9)

If the angle factors are of the order of ∼ 1, then mV is of the order of ∼ bmP/10 and mS

is ∼ b2mP/100, so gravitational and geometric effects of the scalar and vector fields
are not accessible to macroscopic measurements.4 After symmetry breaking, neither
the scalar field nor the vector field reveal themselves at the macroscopic level, and we
can ignore the effects of the Weyl gauge-vector on the transport of lengths (see Sect. 4)

3 The masses are here expressed in terms of 
, but they can be alternatively expressed in terms of λ because
the condition for a minimum in the effective potential implies the relation λ = (33/128π2)b4 cosh6 


between the coupling constants [23].
4 For conformal invariance, each of the Higgs scalar fields H associated with the breaking of GUT and
electroweak symmetries requires the addition of an extra term −√−gHH†R/6 to the Lagrangian. This
alters Eq. (7) and requires a small increase of 〈χ〉, which leads to small changes in the masses mV and mS.
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and the corresponding modifications of Riemannian differential geometry. This is in
contrast to the standard Brans–Dicke theory, in which the massless scalar field makes
a contribution to long-range gravitational effects, and thereby causes measurable vio-
lations of the equality of inertial and gravitational masses for systems of particles or
fields containing gravitational self-energy. Before symmetry breaking, the zero-mass,
long-range, scalar and vector fields in the Lagrangian (4) also make such abnormal
contributions to the gravitational masses; but this does not affect the macroscopic
free-fall experiments that we perform today.

The depth of the effective potential (6) at its minimum is about −b4m4
P/104, which

indicates that the spontaneous breaking of conformal symmetry in the early universe
occurs at a characteristic thermal energy kT ≈ bmP/10. For our universe, with a
Friedmann-Lemaître geometry, this corresponds to a time of about 10/bmp. If the
coupling constant is reasonably small, say, b ≈ 1/100 or 1/1000, then this is signifi-
cantly later than the Planck time, which suggests that quantum gravity does not play
a major role in the symmetry breaking.

4 The Weyl gauge-vector and length transport

Various expositions of Weyl geometry are readily available [24,25,30,36–40], of
which the clearest is that by Dirac [37], although it is somewhat blighted by a stub-
born insistence on following Weyl’s misbegotten notions about the geometrization of
electrodynamics. A brief review of Weyl geometry therefore seems worthwhile, with
emphasis on a few points that have not received the attention they deserve.

Before symmetry breaking, the conformal gauge transformation gμν → gμνe2α(x)

of the metric tensor prevents us from associating an unambiguous, absolute, length
or time with small displacements �xκ at different locations. At a fixed location, we
can compare lengths squared �2 = gκλ�xκ�xλ in different directions, but we cannot
compare lengths at different locations because such a comparison is gauge-dependent.
Weyl argued that to achieve comparisons of lengths at different locations it is necessary
to generalize Riemannian differential geometry by a supplementary transport law for
lengths that incorporates a gauge-vector field ϕμ, so the change in a small length
squared �2 = gκλ�xκ�xλ subjected to a transport dxμ is [25]5

d(�2) = −b�2ϕμdx
μ. (10)

In an incisive general analysis of non-Riemannian geometries, Ehlers et al. [21]
showed that this transport law for lengths is actually a consequence of the affine
structure of Weyl’s geometry, and that the Weyl gauge vector ϕμ is a required fea-
ture of this geometry, according to fundamental theorems of differential geometry
based on reasonable, intuitively self-evident, axioms about light rays and particle
worldlines. The Weyl geometry is endowed with a “conformal” structure consisting
of well-defined light cones and time-like, space-like, and null directions, in conjunc-

5 Weyl did not include the adjustable coupling constant b in his law, and he used the symbol � for the
length squared of a vector, whereas I prefer �2.
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tion with a “projective” structure consisting of geodesic worldlines representing the
motions of freely-falling particles of nonzero mass. (Conformal invariance of the
Lagrangian demands that the fundamental particles in the Lagrangian be massless, so
it would seem that only null-geodesics have physical significance when the universe
is in a conformally invariant regime. However, this does not forbid us to contemplate
hypothetical non-null geodesics, in the same way we might contemplate hypothetical
spacelike geodesics in, say, Minkowski spacetime.)

The joint conformal and projective structures imply an affine structure with a
parallel-transport law, and according to Ehlers et al. that is where the Weyl vector
makes its debut [see Eq. (12)]. The Weyl transport law for lengths stated in Eq. (10) is
then a consequence of the parallel-transport law, rather than viceversa. However, the
arguments of Ehlers et al. are rather intricate, and for the sake of brevity I will here
accept Weyl’s transport law for lengths as a starting point and proceed from this to the
parallel-transport law.

For a parallel-transport law of the usual form, d(�xκ ) = −�κ
νμ�xνdxμ, the trans-

port of the displacements contained in �2 on the left side of Eq. (10) leads to

d(�2) = ∂gκλ

∂xμ
dxμ�xκ�xλ − gκλ�

κ
νμ�xν�xλdxμ − gκλ�

λ
νμ�xκ�xνdxμ. (11)

The requirement that this equal the right side of Eq. (10) then gives us a set of equations
that we can solve for the affine connection coefficients:

�α
μν ≡ 1

2
gαβ(gβμ,ν + gνβ,μ − gμν,β) + 1

2
b(δα

μϕν + δα
ν ϕμ − gμνϕ

α). (12)

These � coefficients must be gauge invariant, because the parallel transport of vectors
cannot depend on the choice of gauge. With the gauge transformation gμν → e2αgμν

for the metric tensor, Eq. (12) then requires that ϕμ → ϕμ − (2/b)∂μα(x). This
confirms the consistency of the transport law (10) with the field-theoretic treatment of
the gauge vector in Sect. 2.

In view of the similarity between the gauge transformation of ϕμ and that of the
electromagnetic vector potential Aμ, Weyl rashly proposed that ϕμ should be identified
with Aμ, and he thought he could thereby achieve a geometrical interpretation of the
electromagnetic field. But if we attempt to make this identification in the Lagrangian
(4), we find that the current density that acts as source for the gauge-field ϕμ is the
“conformal current”

∂L
∂ϕμ

= −1

2
b
√−g cosh2 


[
χ

(
∂μ − 1

2
bϕμ

)
χ∗ + χ∗

(
∂μ − 1

2
bϕμ

)
χ

]
, (13)

which disagrees with the usual electric current. This disagreement precludes the naïve
identification of Weyl’s gauge-vector with the electromagnetic vector potential.

The conformal current density given by Eq. (13) is conserved, as can be seen directly
from the field equation ∂ν(

√−g f μν) = ∂L/∂ϕμ. Alternatively, this conservation
law for the current can be derived from invariance of the Lagrangian under conformal
transformations, by Noether’s theorem. The expression on the right side of Eq. (13)
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is the Noether current that arises from the cosh2 
 term of the Lagrangian (4). This is
the only term that contributes a current, because all the other terms in my Lagrangian
can be entirely expressed as functions of conformally invariant variables, such as gEμν ,
and this makes it immediately obvious that these terms do not contribute anything at
all to the Noether current, so Eq. (13) is actually the total current. In their critique of
conformal symmetry, Jackiw and Pi [18] regarded the vanishing of the Noether current
in their model (which lacks the cosh2 
 term) as evidence that the conformal symmetry
plays no dynamical role. My model avoids this pitfall, because, in the conformally-
symmetric regime, the cosh2 
 term in Eq. (13) evidently does not vanish.

In the symmetry-broken regime, with χχ∗ = constant, the derivative terms on the
right side of Eq. (13) vanish, and the nonderivative terms are of the form ϕμ×constant,
which is merely a mass term already included in the mass formula (8) of the Coleman–
Weinberg calculation. Thus, the gauge field ϕμ effectively becomes sourceless and
ceases to exist as a static or quasistatic classical field. This is consistent with the
geometric requirement that in the symmetry-broken regime the Weyl vector must be
zero, so lengths are transported in the normal way expected in a metric Riemannian
geometry.

The familiar Christoffel symbols in the first line of Eq. (12) completely determine
the null geodesics. The combination of Weyl-vector derivatives in the second line
of Eq. (12) has no effect on null geodesics—it merely alters the null geodesic by a
reparametrization. This insensitivity of null geodesics to the Weyl vector is consistent
with the absence of the Weyl vector from the conformally-invariant Lagrangian L(m)

for massless fields, whose field equations have free-wave solutions that propagate
along light cones. But for non-null geodesics, the combination Weyl-vector derivatives
in the second line of Eq. (12) plays a crucial role, and it cannot be ignored.

Note that the � coefficients in Eq. (12) are symmetric in their lower indices μ-ν.
This means that the Weyl geometry has no torsion. Proposed gravitational theories
with torsion, such as the Einstein–Cartan–Kibble theory [41], attempt to play a game
of hide-and-seek by making the torsion directly proportional to the local spin density,
so it exists only at the location of particles and vanishes in the empty regions of
space between and around particles. But it is not clear whether this trick can save
such theories from a conflict with the fundamental requirements of a Weyl conformal
geometry.

By integration of the transport law (10) along a specified worldline we can deter-
mine an absolute length for small intervals �xκ along or near this worldline, relative
to a standard of length established at a given initial reference point or else relative to a
standard of length established on a given reference hypersurface which all the contem-
plated worldlines intersect and on which conformal symmetry is broken, so there exist
absolute, calibrated, standards of length based on particle masses (for instance, for
purposes of cosmology, we might adopt the equal-time hypersurface of our universe
today as our reference surface and integrate backward in time along a worldline into
the conformal era of the early universe). Integration of the transport law (10) tells us
that the ratio of small lengths squared at the reference point x = 0 and at an arbitrary
point on the specified worldline is
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�2(x)

�2(0)
= exp

[
−b

∫ x

0
ϕμdx

μ

]
. (14)

Accordingly, we can define a recalibrated metric tensor g̃μνat any point on this world-
line,

g̃μν(x) ≡ �2(0)

�2(x)
gμν(x) = gμν(x) exp

[
b

∫ x

0
ϕμdx

μ

]
. (15)

This recalibrated metric tensor, or proper metric tensor, has no global significance—it
is a functional of the worldline, and it is valid only along the selected worldline (when
two worldlines intersect, they will usually have different proper metric tensors at the
intersection point).

Under the gauge transformations for gμν and ϕμ, with α(0) = 0, the proper metric
tensor g̃μν(x) is conformally invariant, and it assigns a conformally-invariant, absolute,
length to intervals along the given worldline. Thus, the proper time measured along
the worldline is defined unambiguously, even though the background geometry is
conformally symmetric. We therefore find that the geodesics defined by the affine
structure of the Weyl geometry are equivalent to the geodesics defined as worldlines
of extremal length calculated according to their proper metric tensor. It’s a case of
“metric geometry without metric geometry,” but only along each selected worldline,
with a suitable initial reference point x = 0.

This pseudo-metric behavior, subject to the restriction of selected worldlines, also
applies to the affine connection coefficients given by Eq. (12). Along a worldline, with
a proper metric tensor g̃μν defined according to Eq. (15), the affine connection �α

μν can
be shown to be identical to the usual metric affine connection (that is, the Christoffel
symbol) calculated from g̃μν :

�α
μν = �̃α

μν = 1
2 g̃

αβ(g̃βμ,ν + g̃νβ,μ − g̃μν,β), (16)

where it is assumed that the path-dependent exponential function in Eq. (15) is dif-
ferentiated by the rule that the path is held fixed and that the extra displacement dxσ

used in for differentiation is added at the end of the path. The concordance of Eqs.
(12) and (16) establishes that the geodesic determined from the proper tensor g̃μν is
both a worldline of extremal length and a worldline generated by parallel transport of
its tangential vector, as in metric Riemannian geometry.

Because of their geometrical significance and gauge invariance, it seems obvious
that the geodesics of the proper metric tensor should be used for investigations of
geodesic completeness, and that no gauge condition need be imposed on the scalar χ

and the Weyl vector ϕμ. Instead, the scalar and the Weyl vector generated by this scalar
should be calculated from their field equations before proceeding to the determination
of the geodesics. Of course, while solving the field equations we might find it expedient
to adopt some specific choice of gauge, which will do no harm, because the geodesic
equation to be solved subsequently is gauge invariant.

In their investigations of geodesics, Bars et al. [9] indeed adopted a specific gauge,
and they took care to make their extremum principle for their geodesic equation gauge
invariant. However, although gauge invariance is a necessary requirement for the geo-
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desic equation, it is not a sufficient requirement, and the geodesic equation of Bars et
al. is suspect because it contains no Weyl vector. According to the precepts of Ehlers
et al., we should obtain the geodesics from the affine structure of the geometry, that
is, from parallel transport; and the Weyl vector is required to convert these parallel-
transport geodesics into extremal paths for proper time. Leaving the Weyl-vector out
of the geodesic equation is acceptable for null geodesics, but is not acceptable for
non-null geodesics. The total absence of a Weyl vector in the geodesic equation of
Bars et al. would seem to indicate that one or several of the axioms stipulated by Ehlers
et al. are being violated.

5 Conclusions

By inclusion of a Weyl gauge vector and a complex dilaton scalar with a hybrid
kinetic term, the Lagrangian proposed in Sect. 2 eliminates the ghost problem and
thereby offers a consistent model that achieves conformal invariance for the gravi-
tational Lagrangian and also an explicit and well-founded mechanism to break this
symmetry and bring the theory into agreement with conventional Einstein theory,
in the low-energy regime. Conformally symmetric modifications of GUT and elec-
troweak interactions can be included in the model by adopting the “lifting” scheme of
Bars et al. for the relevant Lagrangian terms contributed by the Standard Model. The
absence of dimensional constants in the Lagrangian of the resulting “full” conformally
symmetric theory opens the path to a renormalizable quantum theory of gravitation.
The Lagrangian (4) is not only power-counting renormalizable, but, according to a
path-integral calculation by Haba [42], the singularities in the scattering matrix and
the n-point functions in Brans–Dicke theory are mild, no worse than the singularities
in φ4 perturbation theory, which lends support to a diagnosis of renormalizability.

Some alternative ways to formulate conformally symmetric renormalizable theories
proceed without the scalar dilaton field and instead attribute the breaking of confor-
mal symmetry to the masses that arise in the GUT or electroweak transition. The
conformally invariant gravitational Lagrangians in such theories are constructed by
relying on higher-order derivatives of the metric tensor, for instance, Lagrangians with
quadratic products of second-order derivatives [4,5,8,10]. But such higher-derivative
theories require drastic and controversial modifications of standard quantum theory
because of the violations of unitary with which they are afflicted [5,13]. Furthermore,
with higher-derivative gravitational field equations it is difficult or impossible to mimic
the behavior of the conventional Einstein theory and obtain the standard Newtonian
1/r potential [43–45]. Thus, a conformally invariant theory that merges into the con-
ventional Einstein theory by breaking of the conformal symmetry is by far the most
elegant way to accommodate the empirical facts.

Finally, it is worth emphasizing the crucial role played by the Weyl gauge vector
field in conformal geometry. Attempts at conformally invariant theories have almost
always proceeded without this Weyl vector and/or without due consideration of its
geometrical implications. A curious result obtained by Bars et al. [9]—who claim that
for non-null geodesics in the early universe, geodesic completeness/incompleteness
depends on the choice of their “c-gauge” vs. their “γ -gauge” for the dilaton scalar and
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the metric tensor—might well be attributable to a failure to take the Weyl vector into
account. If the analysis of Ehlers et al. is correct, the absence of a Weyl vector and its
geometric paraphernalia is a fatal mistake—if no Weyl vector, then no conformally
invariant theory with a geometric interpretation.
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