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Abstract Dilaton black hole solutions in low energy string theory (well known as
GMGHS black holes) have analogue black holes with a cosmological constant derived
by Gao and Zhang. Here, we study quasi normal modes of this dilaton-de Sitter black
hole under neutral scalar field perturbations. We have employed the sixth order WKB
analysis to compute the quasi normal mode frequencies. A detailed study is done for
the quasi normal mode frequencies by varying the parameters in the theory such as
the mass, cosmological constant, dilaton charge and the spherical harmonic index. For
the massive scalar field we observed that the usual quasi resonance modes that exists
for asymptotically flat black holes do not exist for this particular black hole. We have
approximated the scalar field potential of the near-extreme dilaton de Sitter black hole
with the Pöschl-Teller potential and have presented exact quasi normal frequencies.

Keywords Static · Dilation · Near-extreme · Black hole · Stability · Quasinormal
modes · Pöschl Teller

1 Introduction

Recent observations of astronomical data indicates that the universe is expanding with
an accelerated rate [1–5]. There are many proposals to explain the mysterious dark
energy driving this acceleration of the universe. One of the simplest candidates for
dark energy is the existence of the cosmological constant � which was introduced first
by Einstein to General Relativity in order to obtain a static universe. The space-time
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with a positive cosmological constant is known as de Sitter space-time. Hence, our
universe might be described by a de-Sitter geometry.

In high energy physics, de Sitter spaces have taken an important role due to the
dS/CFT correspondence; there is a holographic duality relating quantum gravity on
the de Sitter space to conformal field theory on a sphere of one dimension lower [6].
Another reason for de Sitter space-times to attract great deal of attention is the need to
understand de Sitter space-time in the context of string theory. If the real universe is de
Sitter, then, a fully satisfactory de Sitter solution to string theory has to be found [7,8].
In the low energy limit of string theory, the Einstein action gets modified by scalar
fields such as the dilaton and the axion field. Hence, studies of black hole solutions
with a dilaton field takes a important place in general relativity.

Black hole solutions with the dilaton field have properties that are different from
black hole solutions without it. Earliest charged black hole solutions to dilaton gravity
were found by Gibbons and Maeda [9]. It was also independently found by Garfinkle
et. al. [10]. This black hole is a solution to low energy string theory and is well known
as the GMHGS black hole.

First, let us present the action for dilaton gravity as,

S =
∫

d4x
√−g

[
R − 2∂μ�∂μ� − V (�) − e−2�FμνF

μν
]

(1)

Here R is the scalar curvature, Fμν is the Maxwell’s field strength and � is the dilation
field. The potential for the dilation field is given by V (�).

In an interesting paper, Poletti and Wiltshire [11] considered a single Liouville-
type potential for V (�), which is of the form, Aea�. They proved that if one expect
asymptotically (anti)-de Sitter, spherically symmetric black hole solutions, that the
potential V (�) has to be the one for the pure cosmological term 2�. In an interesting
paper, Gao and Zhang [12], introduced three Liouville type potentials given below to
obtain non trivial exact static spherically symmetric black hole solutions to dilaton
gravity with a cosmological constant.

V (�) = 4�

3
+ �

3

(
e2(�−�0) + e−2(�−�0)

)
(2)

As one can see, the dilation potential is the sum of a constant and two Liouville type
terms.

The potential used to obtain these solutions with a combination of two or more expo-
nential terms are not rare in physics literature. For example, for N = 4 supergravity
model presented by Gates and Zwiebach [13,14], the potential was given as,

V (�) = C1e
−2� + C2e

2� + C3 (3)

with C1 = − 1
8 ,C2 = − ε2

8 and C3 = − ε
2 .

In another example, in a paper by Easther [15], number of exact solutions for the
effective potential for the evolution of the Robertson Walker universe with a scalar
field were derived. All of the solutions for the potential were of the form,
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V (�) = �N
j � j e

−γ j� (4)

New class of asymptotically AdS magnetic solutions in (n+1) dimensions with three
Liouville-type potentials for the dilaton were derived by Dehghani and Bazrafshan
[16]. Sheykhi et. al. [17] derived black hole solutions to Einstein-Born-Infeld-dilaton
gravity with a potential V (�) = 2�1e2β1� +2�2e2β2�. These black holes were non-
flat asymptotically. Chan et. al. [18] derived charged dilaton black holes with unusual
asymptotic with a potential similar to the one used by Sheykhi et. al.

The metric of the dilaton-de Sitter black hole derived by Gao and Zhang [12] is
given by,

ds2 = − f (r)dt2 + dr2

f (r)
+ R(r)2(dθ2 + sin2θdφ2) (5)

where,

f (r) = 1 − 2M

r
− �r

3
(r − 2D); R(r)2 = r(r − 2D) (6)

Here, � is the cosmological constant, M is the mass of the black hole and, D is the
dilation charge. Notice that when � = 0, the black hole solution in Eq. (5) becomes
the well known GMGHS black hole [9,10]. When D = 0, the space-time becomes
the Schwarzschild–de Sitter black hole. Hence, Gao Zhang black hole given above is
the best extension of the GMGHS to include a cosmological constant.

When a black hole is perturbed by a field, it undergo damped oscillations at the inter-
mediate stage with complex frequencies. These oscillations are called quasi-normal
modes (QNM) and their frequencies only depend on the parameters of the black hole.
Studies of QNM has attracted many researchers in physics for variety of reasons.
From experimental point of view, if QNM are detected in gravitational antennas such
as LIGO, VIRGO and LISA in the future [19], that will help identifying the physical
properties of the black holes in the universe. QNM of asymptotically anti-de Sitter
black holes have attracted lot of attention due to the famous AdS/CFT correspondence
[20]. Another factor that has made QNM famous was Hod’s conjecture [21] relating
asymptotic values of QNM frequencies to quantum properties of black holes. There
have been many works focused on computing asymptotic values of QNM frequencies
due to this conjecture. Along those lines, many works also have obtained the area
spectrum of quantum black holes [22,23]. More details on QNM can be found in the
review by Konoplya and Zhidenko [24].

There are many works which have focused on QNM of dilaton black holes with-
out �. Ferrari et. al. [25] studied gravitational perturbations. Scalar perturbations of
dilaton black holes were done by several authors including Fernando and Arnold [26],
Konoplya [27,28] and Shu and Shen [29]. Dirac field QNM were studied by Shu and
Shen in [29]. Bifurcations of QNM spectrum of rotating dilatonic black holes were
studied by Kokkotas et. al [30].

The paper is organized as follows: In Sect. 2, an introduction to dilaton-de Sitter
black hole is given. Basic equations for the scalar field around the black hole is pre-
sented in Sect. 3. In Sect. 4, QNM of massless scalar field is presented. In Sect. 5,
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massive scalar field perturbations are presented. In Sect. 6, the Pöschl-Teller approx-
imation is given. In Sect. 7 the conclusion and ideas for future direction are given.

2 Some properties of the dilaton-de Sitter black hole

In this section we will discuss important properties related to the dilaton-de Sitter
black hole in Eq. (5). First, notice that the scalar curvature of the metric is,

R = 2
(−2D3r2� − 8Dr4� + 2r5� + D2(r − 2M + 9r3�)

)
r3(r − 2D)2 (7)

From the observation of the scalar curvature R, it is clear that there is a singularity at
r = 2D. The dilation field �, the dilation charge D, and the electric field F01, for the
above solution are given by,

e2� = e2�0

(
1 − 2D

r

)
(8)

D = Q2e2�0

2M
(9)

F01 = Qe2�0

r2 (10)

�0 is the dilation field at r → ∞. Q is the electric charge of the black hole.
The roots of the function f (r) will give the horizons. For small M there are two

horizons: one is the event horizon rh and the other, the cosmological horizon, rc. For
large M there are no horizons and the space-time becomes a naked singularity. For
a special value of M , the horizons become degenerate. Since the black hole has a
singularity at r = 2D, the space-time becomes a black hole only if rh > 2D.

The Hawking temperatures of the black hole at the event and the cosmological
horizon are given by,

Th,c = 1

6π

∣∣∣∣∣
3M

r2
h,c

+ (D − rh,c)�

∣∣∣∣∣ (11)

3 Basic equations for scalar perturbations

The basic equation for a neutral scalar field is given by the Klein–Gordon equation,
which is,

(�μ �μ −m2)� = 0 (12)
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The above equation can be separated to an angular part and a radial part by substituting
for � as,

� = e−iωt Yl,m(θ, φ)
�(r)

R(r)
(13)

Here, Yl.m(θ, φ) are the spherical harmonics. Once separated, the radial part will look
like,

d2�(r∗)
dr2∗

+
(
ω2 − V (r∗)

)
�(r∗) = 0 (14)

Here, V (r∗) represents the effective potential for the scalar field given by,

V (r∗) = f

(
l(l + 1)

R2 + f ′R′

R
+ f R′′

R
+ m2

)
(15)

and ω is the frequency of the wave corresponding to the scalar field. r∗ is the tortoise
coordinate given by,

dr∗ = dr

f (r)
(16)

Equation (16) can be integrated to give,

r∗ = −3

�(rc − rh)(rh + rv)(rc + rv)
(rc(rh + rv)ln(r − rc)

−rh(rc + rv)ln(r − rh) − (rc − rh)rvln(r + rv)) (17)

Here, rv is the third root of the function f (r) which is unphysical since it is negative.
When r → rh , r∗ → −∞ and when r → rc, r∗ → +∞. The effective potential

V (r) depends on the parameters M, D,� and l. All potentials vanish at rh and rc and
they are positive in between the horizons.

4 Quasinormal modes for massless scalar perturbation

In this section, we will focus on the QNM’s of the dilaton-de Sitter black hole due to
a neutral massless scalar field. First we will focus on the effective potential for m = 0
field in the next section.

4.1 Effective potentials for a massless scalar field

The effective potential is plotted for l = 0 and l = 1 for dilaton black holes with
� = 0 and � �= 0 in Fig. 1. The figure on left represents the potential for � �= 0.
For l > 0, the potential is zero at r = rh and r = rc and positive in between. For
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Fig. 1 The figure shows V (r) versus r for dilaton and dilaton-de Sitter black holes. Here M = 0.16,
� = 1, D = 0.1

l = 0, the potential has a local minimum between the two horizons and the minimum
is negative. On the other hand the dilaton black hole with � = 0 (shown on the right
hand side) is positive for all l. This is a major difference between the two black holes
when it comes to scalar perturbations.

4.2 Computation of QNM frequencies for l > 0 modes

QNM are the solutions to the wave equation given in Eq. (14) with pure ingoing wave at
the black hole horizon. As for the boundary condition at the cosmological horizon, the
wave will be purely out going. QNM frequencies will be complex and will be written
as ω = ωR − iωI . There are many methods developed to calculate QNM frequencies.
The reader is referred to the excellent review by Konoplya and Zhidenko [24] for
various methods of computation of QNM frequencies. Here, we will use the WKB
approach developed by Iyer and Will [31] and developed to sixth order by Konoplya
[32]. This method has been employed to compute QNM frequencies in [33–35]. In
this method. the QNM frequencies are related to the effective potential as,

ω2 = −i
√−2V ′′

m

(
�6
i=2�i + n + 1

2

)
+ Vm (18)

Here, Vm is the maximum value of the potential and V ′′
m is the second derivative of the

potential at the peak of the potential. Expressions for �i can be found in [32]. Here n
is the mode number. Since n = 0 is the smallest frequency which leads to the largest
time to damp the mode, the stability of the black hole will depend on the fundamental
frequency. Hence our major focus will be on the fundamental frequency which has
n = 0.

We have computed ω by varying the parameters in the theory, M, D,�, n and l.
All ωI values were negative. We have used only the magnitude of ωI when plotting
the graphs in the rest of the paper. First, let us study the dependency of ω with D
as shown in Fig. 2. Both ωR and ωI increases with D. In particular, the damping is
greater for greater D. Hence, the presence of the dilaton leads to more stable black
holes. Therefore, dilaton-de Sitter black hole is more stable than the Schwarzschild
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Fig. 2 The figure shows the ω versus D. Here, M = 0.2, l = 1 and � = 2
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Fig. 3 The figure shows the ω versus �. Here, M = 0.2, l = 1 and D = 0.16
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Fig. 4 The figure shows the ω versus l. Here, M = 0.25,� = 2 and D = 0.16

de-Sitter black hole with the same mass. In Fig. 3, ω versus � is plotted. Both ωR and
ωI decreases when � increase. Hence, smaller � is preferred for stable black holes. In
Fig. 4, ω versus l (the spherical harmonic index) has been plotted for n = 0. It is clear
that there is a linear relation between ωR and l. ωI decreases with increasing l and
then reach a constant value for larger l. It was observed that the temperature depend
on ωI linearly for asymptotically anti de Sitter black holes [36]. We plotted ωI versus
temperature for the dilaton-de Sitter black hole in Fig. 5 and saw that in fact the two
quantities relate to each other linearly.
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Fig. 5 The figure shows the T emp versus ωI . Here, l = 1, � = 2 and M = 0.2

4.3 Scalar perturbation of l = 0 modes

As shown in Fig. 1, the effective potential for l = 0 mode significantly differs for
the l > 0 modes. It is negative in some region between rh and rc. Similar behavior
for l = 0 mode potential has been shown for the Reissner–Nordstrom–de Sitter black
hole [37] and for the regular-de Sitter black hole [38]. Due to the fact that the poten-
tial has an extra local minimum, WKB approximation is not appropriate to compute
frequencies. If one needs to compute QNM frequencies, a time-domain integration
method introduced by Gundlach et. al [39] can be employed. In this paper, instead
of computing the QNM frequencies, we will analytically investigate if l = 0 mode
decays or not.

First let us introduce null coordinates u and v as,

u = t − r∗; v = t + r∗ (19)

According to the null coordinates, the future black hole horizon rh is located at u = ∞
and the future cosmological horizon rc is located at v = ∞. The equation for the scalar
field in the new coordinates is,

∂2η(u, v)

∂u∂v
= −1

4
V0(r)η(u, v) (20)

Here,

�(u, v, θ, φ) = Yl,m(θ, φ)
η(u, v)

R(r)
(21)

and,

V0 = f ( f R′)′

R
(22)
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The solution to Eq. (20) can be expanded in a series of two arbitrary functions, G(u)

and K (v) as [37,39],

η(u, v) = a0 (G(u) + K (v)) +
∞∑
z=0

Bz(r)[G(−z−1)(u) + (−1)z+1K (v)(−z−1)]

(23)

Negative super indices on G(u) and K (v) refer to integration with respect to u and v

respectively: for example, K−1(v) = ∫
K (v)dv. The coefficient a0 can be set equal to

1 without loss of generality. By substituting Eqs. (51) to (20), one can obtain recurrence
relation for Bz(r) as,

B ′
z+1 = − ( f R′)′

2R
Bz + f ′

2
B ′
z + f

2
B ′′
z (24)

Here,

B0(r) = −
∫

( f R′)′

2R
dr (25)

after integration, it is given by,

B0(r) = 3M

8r2 − 1

r
− (D − M)

8D(−2D + r)
+ r�

3

+ (6D − 3M − 4D3�)

48D2 ln

(
r

−2D + r

)
(26)

One can compute other Bz values with the use of the recurrence relations.
Now, let us consider an initial burst of radiation at ν = 0 which is confined between

u = 0 and u = u1. This burst is given by η(u, 0) = G(u) and η(0, ν) = 0. Figure 6
demonstrate the location of null coordinates and the initial burst as well as the horizons.

Following the work by Gundlach et. al [39] and Brady et. al. [37], the evolution of
the scalar field of the initial burst can be studied in two parts: (i) the evolution of the
burst η(u, 0) = G(u) which is non-zero between 0 < u < u1 and η(0, v) = 0. (ii)
subsequent evolution in the region for u ≥ u1.

4.3.1 The evolution of the burst η(u, 0) = G(u) which is non-zero between
0 < u < u1 and η(0, v) = 0

Since the initial burst is independent of v and G(u1) = 0, the field at u = u1 is given
by,

η(u1, v) =
∞∑
z=0

Bz(r)G(u)(−z−1)(u1) (27)

123



24 Page 10 of 18 S. Fernando

Fig. 6 The figure shows the
location of null coordinates for
the dilaton-de Sitter black hole.
The initial burst is confined
between u = 0 and u = u1 and
on v = 0. The initial burst is
such that, η(u, 0) = G(u) where
G(u) �= 0, for 0 < u < u1 only

r
r h
; u

u
0

r
rc ; v

v
0 u

u 1

r 0

For sufficiently small �, the cosmological horizon rc is large. When one observe Bz

values for small � and large rc, it is clear that except B0, all other Bz vales approximate
zero. This is due to the fact that Bz for z > 0 has �2 terms or higher order terms or
r−1 or higher order terms. Hence, at the cosmological horizon rc (v = ∞),

η(u1,∞) ≈ B0(rc)G
−1(u) = B0(rc)

∫ u1

0
G(u)du + O(�) (28)

4.3.2 The evolution of the field in u ≥ u1 region

Now, one can examine the evolution of the field in the region u ≥ u1 by taking the
field η(u1, v) in Eq. (27) as the initial data for small �. The field equation given in
Eq. (20) can be solved near the cosmological horizon as [37,39],

η(u, v) ≈ [G(u) + K (v)] + B0(r)[G−1(u) − K−1(v)] (29)

Defining G−1(u) = g(u) and K−1(v) = −k(v) where g(u) and k(v) are arbitrary
functions, one can rewrite Eq. (29) as,

η(u, v) ≈ B0(r)[g(u) + k(v)] +
[
∂g(u)

∂u
− ∂k(v)

∂v

]
(30)

From Eq. (16), closer to the cosmological horizon rc, r∗ ≈ − 1
f ′(rc)Log(rc−r). Hence,

given the fact that r∗ = v−u
2 , one can write r closer to rc as,

r ≈ rc − e−κcveκcu (31)

The parameter κc above is the surface gravity at rc. Hence closer to the cosmological
horizon (i.e. ν → ∞) the right hand side of Eq. (27) can be expanded as a polynomial
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of e−κcv . By comparing Eqs. (27) and (30) one can conclude that the function k(v) is
also a polynomial of e−κcv given as,

k(v) =
∞∑
n=0

kne
−nκcv (32)

When v → ∞, k0 can be computed from Eqs. (28) and (30), as,

k0 = 1

B0(rc)
η(u1,∞) (33)

which is non-zero. Even though the nature of the function g(u) depends on the potential
everywhere, since g(u) also evolves from Eq. (27), it seems reasonable to predict that
it is of the form (when u → ∞)

g(u) =
∞∑
n=0

gne
−nκcu (34)

Hence, at late times, the field η → k0 + g0 and the scalar field � = η
R(r) = k0+g0

R(rc,b)
approach a constant value(when u and v both approach ∞). For l = 0, this is the only
static solution which is regular at both horizons rb and rc. Hence, the field decay into
a constant value at late times for l = 0. In contrast modes for l > 0 decay to zero.

Given the observation that l = 0 mode reach a constant value according to the
analysis presented here, the question arises whether the black hole is stable or not for
l = 0 modes. As presented in Fig. 1, the effective potential for l = 0 modes has a
negative region in contrast to l > 0 modes. Even though this may suggest that the
black hole may be unstable for l = 0 mode, this is in fact not true for some potentials.
For example, Bronnokov et. al [40] analyzed wormholes with a phantom scalar field
for l = 0 mode which had a potential with a negative region, and, demonstrated that
the field in fact decay without causing instability. Therefore if one needs to conclude
the status of the stability of the black hole considered in this paper for l = 0 mode,
then a more thorough analysis of the quasi normal mode behavior has to be done. In
other words one has to study the time-domain profile for the scalar mode behavior
using a finite difference technique done in [39]. Here, in this paper we have omitted
such an exhaustive analysis of the l = 0 mode behavior and just predict the possibility
of the mode to be stable.

5 Massive scalar perturbations and QNM

In asymptotically flat space-times, such as the Schwarzschild black hole, massive
scalar field has been shown to decay slower than the massless scalar field [41]. When
the mass of the field is increased to sufficiently large values, ωI decreases to zero.
Such modes with ωI = 0 are called quasi-resonance-modes(QRM). Studies of QRM
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Fig. 7 The figure shows the V (r) versus r for the dilaton-de Sitter (left) and the dilaton (right) black holes.
Here, M = 0.25,� = 1, l = 1 and D = 0.16

Table 1 QNM frequencies
corresponding to the mass of the
scalar field m

Here M = 0.34, � = 1,
D = 0.14 and l = 1

m ωR ωI

0.25 0.472589 0.157059

0.26 0.472987 0.156985

0.27 0.473401 0.156908

0.28 0.473830 0.156829

0.29 0.474275 0.156747

0.30 0.474735 0.156663

0.31 0.475211 0.156576

0.32 0.475702 0.156487

0.33 0.476208 0.156396

were first done by Ohashi and Sakagami for the Reissner–Nordstrom black hole in
[42].

The effective potential V for the dilaton-de Sitter and the dilaton black holes are
plotted in Fig. 7 by varying the mass m. Here, l = 1. For the dilaton-de Sitter black
hole, the potential height increases when the mass is increased. Also, the potential
is zero at r = rh and r = rc. For the GMGHS black hole (dilaton black hole with
� = 0), the maximum of the potential increases when the mass m is increased and
for a critical value of the mass m, the peak of the potential ceases to exist. Also, the
potential reaches a constant value when r gets large.

First we want to discuss QNM for the massive fields when l > 0. We have presented
QNM values for l = 1 in Table 1. Here, ωR increases with m and ωI decreases with
m. Hence, the massless field decay faster compared to the massive scalar field. From
Table 1, one can observe that when m increases for large values, ωI decreases but does
not approach zero. Notice that we have increased the massm upto the mass of the black
hole. Hence, there are no QRM in the dilaton-de Sitter black holes. This is similar to
what was observed for the QNM of the massive scalar field of the Schwarzschild–de
Sitter black hole by Chang et. al [43]. The reason why the de-Sitter black holes does
not have QRM values is the fact that the boundary condition at r = rc is not fulfilled
for the asymptotically flat black holes which is clear from Fig. 7.
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Fig. 8 The figure shows the
V (r) versus r for the dilaton-de
Sitter(thin curve) and the dilaton
(thick curve) black holes. Here,
M = 0.25,� = 1, l = 0 and
D = 0.16
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For l = 0, the potential for the massive field is plotted in Fig. 8. Again, the dilaton-
de Sitter black hole potential shows similar behavior as the massless potential for
l = 0. However, for large mass m, the potential will be positive between the horizons
similar to l = 0 case. When the potential has a negative region, one can do a similar
analysis as done for the massless field in Sect. 4.3 which would lead to a field reaching
a constant at the cosmological horizon.

6 Pöschl-Teller approximation for the near-extreme dilaton-de Sitter
black hole

First we would like to present some properties of the extreme dilaton-de Sitter black
hole as follows:

6.1 Extreme dilaton-de Sitter black hole

Here we consider extreme black holes when rh = rc. In that case, two conditions has
to be satisfied:

f (r) = 0; f ′(r) = 0 (35)

When the dilaton-de Sitter black hole is extreme, rextreme = rh = rc = ρ is given by,

ρ =
2D +

√
4D2 + 9

�

3
(36)

One can observe that when D → 0, ρ → 3√
�

which is the value for the extreme
radius of the Schwarzschild–de Sitter black hole [44].

The function f (r) for the extreme black hole is,

f (r) = −�(r − ρ)2(r + b)

3r
(37)
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where

b = 6Mcritical

�ρ2 (38)

Here, Mcritical is the mass of the black hole when the horizons are degenerate. Then,

f ′′(ρ) = d2 f (r)

dr2 = −
(

4Mcritical

ρ3 + 2�

3

)
(39)

Such extreme black holes where rh = rc are called Nariai black holes. Nariai black
holes in variety of context have been studied in [45–47].

6.2 Near-extreme black hole

In the near-extreme black hole, rh is very close to rc. Hence one can expand f (r) in
a Taylor series as [48],

f (r) ≈ f ′′(ρ)

2
(r − rh)(r − rc) (40)

Hence the tortoise coordinate defined in Eq. (16) can be integrated as,

r∗ =
∫

dr

f (r)
= 2

f ′′(ρ)(rc − rh)
log

(
rc − r

r − rh

)
(41)

When r → rh , r∗ → −∞ and r → rc, r∗ → ∞. From the relation in Eq. (41)

r = rh + rceηr∗

1 + eηr∗ (42)

Here,

η = − f ′′(ρ)

2
(rc − rh) (43)

With the definition given in Eq. (42) for r , the function f (r) for the near extreme
dilaton-de Sitter black hole can be written as,

f (r) = γ

4
(
Cosh

( ηr∗
2

))2 (44)

Here,

γ = − f ′′(ρ)

2
(rc − rh)

2 (45)
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Now the wave equation for the scalar field perturbation can be written as,

d2�(r∗)
dr2∗

+
(
ω2 − Vef f (r∗)

)
�(r∗) = 0 (46)

with,

Vef f = V0

Cosh2 ( ηr∗
2

) (47)

where

V0 = γ l(l + 1)

4ρ2 + γ

4
m2 (48)

In deriving V0, we have assumed 2D � rh . Hence R(r) ≈ r , R′′(r) ≈ 0 and
R(ρ) ≈ ρ. Also since f (r)′ ≈ 0, only the first term in the potential dominates.

Now the wave equation for the scalar field perturbations simplifies to,

d2�(r∗)
dr2∗

+
(

ω2 − V0

Cosh2 ( ηr∗
2

)
)

�(r∗) = 0 (49)

V0
Cosh2(

ηr∗
2 )

is the well known Pöschl-Teller potential. Ferrari and Mashhoon, in a well

known paper [49] demonstrated that ω can be computed exactly as,

ω =
√
V0 − η2

16
− i

η

2

(
n + 1

2

)
(50)

The Pöschl-Teller approximation was used to obtain exact expressions for QNM of
scalar, electrodynamic and gravitational perturbations of a near extreme Schwarzs-
child–de Sitter black hole in [50]. In [51], Pöschl-Teller approximation was used to
compute QNM for massive scalar field in d-dimensional Schwarzschild–de Sitter and
Reissner–Nordstrom–de Sitter black hole at the near extreme limit.

Some hand waving arguments can be made by observing the expression for ω

given above. When m becomes large, the dominant term for V0 comes from m2.

Hence ωR ≈
√

γ

2 m + constant and ωR will increase with m. This was observed in
Table 1. On the other hand, it is clear that ωI does not depend on m and this was clear
in Table 1.

When l is large, one can substitute the expression for V0 and expand for large l to
see how the QNM frequency ω behaves as follows:

ωlarge l ≈ l

√
γ

4ρ2 − i

2
η

(
n + 1

2

)
(51)
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Hence as obvious from the above Eq. (51), ωR depends on l linearly for large l and
this was observed in Fig. 4 when ωR versus l is plotted for large l. Again, for large l,
ωI does not depend on l and was clear from Fig. 4.

7 Conclusions and future directions

Our main goal in this paper has been to study QNM of the dilaton-de Sitter charged
black hole under scalar perturbations. The black hole has two physical horizons: cos-
mological horizon(rc), and the black hole event horizon(rh). The causal structure of the
black hole space-time changes significantly due to the presence of the dilaton. There is
a curvature singularity at a finite radius, r = 2D, compared to the Schwarzschild–de
Sitter black hole.

We have used the sixth order WKB approximation to compute QNM frequencies.
The parameters of the theory such as D,�, l and n were changed to see how QNM
frequencies depend on them. When D is increased, both ωR and ωI increased. ωI

seems to have a linear relation with D. Since ωI is large for large D, black hole with
the dilaton is more stable. When � increases, ωR and ωI decreases and they both
appear to have a linear relation with �. Hence, smaller � is preferred for stable black
holes. When the spherical harmonic index l is increased, ωR increase linearly and ωI

decreases and approaches a constant value. We also observed that ωI vary linearly
against the temperature which is similar to what was observed for AdS black holes.
We have done an analytical study of l = 0 modes.

QNM of massive scalar perturbations were also studied. We verified the non-
existence of quasi resonance modes. When the mass of the field m is increased,
ωR increased and ωI decreases. However, ωI does not reach zero even if m
is increased to large values. This observation is in contrast to what happens in
asymptotically flat black holes where for large m, ωI reaches zero leading to zero
damping.

Finally, we demonstrated that at the near-extremal limit (when rh ≈ rc), the scalar
field equation will have the Pöschl-Teller potential. Hence, one can get exact expres-
sions for the QNM frequencies. Most of the observations we did with WKB analysis
can be explained with these exact expressions.

A natural extension of this work is to study QNM of gravitational perturbations of
the dilaton-de Sitter black hole. Ferrari et. al [25] studied the gravitational perturbations
of the dilaton black hole with � = 0 (GMGHS black hole). They noticed that the
dilaton black hole breaks the isospectrality of axial and polar perturbations which
characterize both the Schwarzschild and Reissner–Nordstrom black hole. It would be
interesting to understand how the presence of the cosmological constant change these
observations.

It would be also interesting to study dS/CFT correspondence for the black hole we
studied in this paper.

Acknowledgments The author wish to thank R. A. Konoplya for providing the Mathematica file for
WKB approximation.
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