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Chapter 1. Fields with matter

1. Field equations and Bianchi identities

The Einstein field equations (without cosmological term) are1

Rc
a − 1

2
Rδc

a = −T c
a , (1.1.1)

where T c
a is the energy-momentum tensor of the sources of the field.

For the investigation of properties of exact solutions of the gravita-
tional field equations it is useful to consider not only the field equa-
tions, but also the Bianchi identities

Rab[cd;e] = 0. (1.1.2)

Since these equations, written in the habitual form (1.1.2), are quite
intransparent – though there are five indices, the equations (1.1.2)
represent only 20 independent equations for the first derivatives of the
Riemann tensor – we want to put them into a form which is more
handy for practical calculations. For this purpose we recall the well-
known decomposition of the Riemann tensor2 into its components that
are irreducible with respect to the Lorentz group. It is

Rabcd = Cabcd + Eabcd +
R

12
gabcd. (1.1.3)

Here Cabcd is the Weyl tensor, Eabcd = −gabe[cS
e
d], (Se

d := Re
d − R

4 δe
d)

is algebraically equivalent to the Ricci tensor.
With respect to the duality map the parts of the Riemann curvature

tensor have the symmetries

∗C∗
abcd = −Cabcd,

∗E∗
abcd = Eabcd,

∗g∗
abcd = −gabcd. (1.1.4)

Writing the Bianchi identities in the equivalent form ∗R∗abcd
;d = 0 and

inserting (1.1.3,4) we get

Cabcd
;d = Eabcd

;d − 1

12
gabcdR,d. (1.1.5)

1We are using units such that the velocity of light c and the Einstein gravita-
tional constant are equal to 1.

2See e.g. (1), (2).

(5)
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44 Page 6 of 36 W. Kundt, M. Trümper

This equation implies by contraction1(
Rc

a − 1
2Rδc

a

)
;c

= 0. (1.1.6)

Eliminating Eabcd from (1.1.5) and using (1.1.6) we finally get

Cabcd
;d = Rc[a;b] − 1

6
gc[aR,b]. (1.1.7)

Replacing the Ricci tensor by the energy-momentum tensor by using
(1.1.1) we can write instead of (1.1.7)

Cabcd
;d = −T c[a;b] +

1

3
gc[aT ,b]. (1.1.8)

From the last equation one gets by contraction the “conservation” law,
equivalent to (1.1.6)

T c
a;c = 0. (1.1.9)

From (1.1.7) another important relation can be deduced. Taking the
divergence with respect to xc and using the Ricci identity we get

Cabcd
;dc = Rc[a;b]

;c = Rc[a
;c

;b] + Rm[a
c
b]Rc

m + Rmc
c
[bRa]

m.

Each of the three terms to the right vanishes and we get the identity2

Cabcd
;cd = 0. (1.1.10)

Because of (1.1.5) this equation is equivalent to

Eabcd
;cd = 0, (1.1.11)

and thus it also follows
Rabcd

;cd = 0. (1.1.12)

If we consider the Weyl tensor as the “free part” of the gravitational
field, we can describe the meaning of equations (1.1.8), (1.1.9), (1.1.10)
in this way: (1.1.9) are the equations of motion for the sources, (1.1.10)
are differential equations for the free part of the field, and (1.1.8) give
the interaction between the sources and the free part of the field. Here
the metric field gab is considered as a kind of auxiliary field in which
the “physical” fields are moving. Of course, it must not be forgotten
that there is a reaction by the sources on the field.

1This is the Bianchi identity [translator].
2The identities (1.1.10) to (1.1.12) can be obtained equally fast from the Ricci

identity alone.

(6)
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2. Fields with matter

By field with matter we mean here a gravitational field created by
an ideal fluid. This is described phenomenologically by the energy-
momentum tensor

Tab = μuaub + phab. (1.2.1)

Hereby ua (with ucu
c = −1) is the four-velocity of matter, μ is its

density, and p the (isotropic) pressure. As usual, hab = gab + uaub is
the tensor which projects onto the space orthogonal to ua.

From equation (1.1.9) follow the basic equations of hydrodynamics
(the dot on a quantity means application of the operator uc∇c)

μ̇ + (μ + p)θ = 0, (1.2.2)

hc
ap,c + (μ + p)u̇a = 0. (1.2.3)

The kinematics of the fluid is described by the kinematical quantities1

ωab (vorticity tensor), σab (shear tensor), and θ (expansion scalar)
which are defined by the identity

ua;b = ωab + σab +
1

3
θhab − u̇aub (1.2.4)

and
ω(ab) = 0, σ[ab] = 0, θ = uc

;c.

With (1.2.2,3,4) the Bianchi identities yield

Cabcd
;d = μ;[aub]uc + 1

3μ,dh
d[agb]c

(1.2.5)
−(μ + p)

[
ωabuc − u[aωb]c + u[aσb]c

]
.

These relations show how the free part of the gravitational field is
related to the hydrodynamical and kinematical properties of the flow
of matter. The equations are useful for the investigation of fields with
matter where assumptions are made either about the Weyl tensor or
the movement of the fluid. It is remarkable that the acceleration vector
of matter u̇a does not explicitly occur in the Bianchi identities (1.2.5).

Applying the identity (1.1.10) to (1.2.5) and using equs. (1.2.2),
(1.2.3) and the results of (5), chapter 1, paragraph 3, we get after
some calculation

1For a more complete foundation of these quantities see (5) or (6).

(7)
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44 Page 8 of 36 W. Kundt, M. Trümper

μ,ch
c[au̇b] +

(
2
3 μ̇ − ṗ

)
ωab

(1.2.6)

+(μ + p)
(
2σc

[aωb]c − 2u[aωb]cu̇c − ω̇ab
)

= 0.

We can simplify this equation by taking the dual in the space orthog-
onal to ua. To this end we introduce βab := ηabcdu̇

cud, the (skew)
tensor of “acceleration”. We get

1
4βacμ

,c + (μ + p) (hc
aω̇c − σc

aωc) − (
2
3 μ̇ − ṗ

)
ωa = 0. (1.2.7)

Here ωa = 1
2ηabcdu

bωcd is the vorticity vector. If we further define the
flow index F by

ṗ

μ + p
=

Ḟ

F

and the auxiliary quantity l by l̇/l = 1
3θ we get

1

Fl2
[
hc

a(Fl2ωc)
. − σc

aFl2ωc

]
= −1

4βac
μ,c

μ + p
. (1.2.8)

This formula is analogous to the equation of propagation of ωa along
the flow lines given by J. Ehlers in (5), chapter 1, paragraph 4. It
means that, for a thin vorticity tube with cross section δS, the vorticity
strength FωδS is constant in time if and only if the space projection
of the gradient of the density is collinear with the acceleration vector.

If the matter obeys an equation of state μ = μ(p) the right hand side
of (1.2.8) vanishes because of (1.2.3). In this case our formula reduces
to the one given by Ehlers.

Equation (1.2.6) shows that special assumptions about the kinemat-
ics of the flow of matter impose a restriction of the admissible equation
of state. E.g. for an ideal fluid with vanishing rotation the spatial pro-
jection of the density gradient is collinear with the acceleration vector
because of (1.2.6) and (1.2.3) implies that only equations of state of
the form μ = μ(p, t) are admitted1 (t is the universal time coordinate
defined by ṫua = −t,a).

3. Type null fields with matter

The question whether gravitational fields of the null type can serve
as models for the interaction between gravitational radiation and its
sources that are physically interesting and useful for the theory of

1Cf. (7), p.38.

(8)
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gravitational radiation can be decided only after one has succeeded in
constructing a corresponding solution of the Einstein field equations.

Gravitational vacuum fields of type null have to be considered as
the far fields of spatially bounded sources of radiation. If one has no
bounded sources, but matter distributed continuously in space, it is
conceivable that it gives rise to a null field. This view is supported
by the fact that in the case of special movement of matter and special
distribution of mass there are solutions of the field equations even with
vanishing Weyl tensor (the Friedmann cosmological models).

We now want to investigate first what can be said about the move-
ment of matter in a gravitational null field.

Let ka denote the light-like eigendirection which is (up to a factor)
uniquely determined by the Weyl tensor.

This tensor then has the form

Cabcd = 4C(VabVcd−
∗
V ab

∗
V cd) (1.3.1)

with
Vab := k[aξb], kcξ

c = 0, ξcξ
c = 1.

ξa is a spacelike vector which is determined by the field up to null
rotations.

We want to use the vectors ka, ua, and ξa to construct a pseudo-
orthonormal tetrad. It will be convenient to impose the condition

kau
a = −1 (1.3.2)

by using the time rotations (ka → Aka)). By a suitable null rotation
(ξa → ξa + rka) we then arrange

ξau
a = 0. (1.3.3)

We then define a null vector ma by

ma := 1
2ka − ua (1.3.4)

and, finally, we choose the space-like unit vector ηa which is orthogonal
to ka, ma, and ξa. Then we have the orthogonality relations

k · k = k · ξ = k · η = m · m = m · ξ = m · η = ξ · η = 0,

k · m = ξ · ξ = η · η = 1.

In the following we will use the abbreviation ta := 1/
√

2(ξa + iηa).

(9)
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The tetrad is uniquely determined by the above conventions.
In order to get information on the movement of matter we shall

exploit two sets of equations which follow from Cabcdkd = 0 :

Cabcd
;dkc + Cabcdkc;d = 0

Cabcd
;dkb + Cabcdkb;d = 0.

(1.3.5)

The terms to the left will be rewritten by use of the Bianchi identities
(1.2.5) while to the right we replace ka;b by its decomposition with
respect to the tetrad.1 We are introducing the abbreviations

γ := ka;bt
a
kb

and
σopt. := ka;bt

a
t
b
,

and note that γ vanishes if and only if ka is geodesic. We further
introduce the space-like vector

sa := ha
ck

c

which is the direction of the gravitational “ray” in the local rest frame
of the fluid. Then, from (1.3.5) we get

(μ + p)ωac = 4C(γs[at
c]

+ γs[atc]), (1.3.6)

(μ + p)σac = μ,bs
b(sasc − 1

3hac), (1.3.7)

ha
cμ

,c − μ,cs
csa = 6C(γt

a
+ γta), (1.3.8)

μ,cs
c = 6Cσopt.. (1.3.9)

From (1.3.6) we derive an expression for the vorticity scalar ω

(μ + p)ω =
√

8 C|γ|, (1.3.10)

while (1.3.7) and (1.3.9) yield

(μ + p)σ = 2
√

3 Cσopt.. (1.3.11)

The last two equations contain the well-known result that in a vac-
uum field (μ = 0 = p) of type null the vector ka belongs to a null
congruence which is geodesic and shear free.

The properties of the motion of matter which can be read directly
from the equations (1.3.6) to (1.3.11) are summed up by

Theorem 1.3.1: In a matter field of type null (with Cabcd �= 0) the
flow of matter has the following properties:

1We use the identity ka;b = δc
aδd

b kc;d with δa
b = kamb + makb + tatb + t

a
tb

[translator].

(10)
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I. The shear ellipsoid is a rotational ellipsoid whose longitudinal
axis coincides with the spatial direction of the null ray.

II. The vorticity vector is an eigenvector of the shear tensor belong-
ing to the degenerate eigenvalue.

III. The flow is irrotational if and only if the null ray is geodesic.
For this to happen it is necessary and sufficient that the spatial
direction of the ray coincides with the spatial projection of the
density gradient.

IV. The shear vanishes if and only if the distortion of the rays (rela-
tive to the “observer” ua) vanishes. This is the case if and only
if the spatial direction of the ray is tangent to the hypersurfaces
μ = const.

With our results we can describe the case of conformally flat matter
fields without further calculation. From (1.3.6,9) we infer: If the Weyl
tensor of the field vanishes, i.e. if C = 0, the flow of matter is free of
shear and rotation; the flowlines orthogonally intersect the hypersur-
faces μ = const. Using orthogonal coordinates with respect to these
hypersurfaces we have μ = μ(t). If the matter satisfies an equation of
state μ = μ(p, t) the flowlines are geodesics because of (1.2.3). From
these facts it follows with use of the field equations that we have a
Friedmann model1.

4. Type null fields with irrotational and shearfree flow of matter

To approach the question of the existence of type null matter fields
we start with a flow of particular kinematical simplicity. We assume
ωac = 0 and σac = 0. According to Theorem 1.3.1 this means that the
congruence of rays of the null field is geodesic and shear-free. Then,
according to (1.3.8,9), we have ha

cμ
,c = 0. Therefore, the flow of mat-

ter satisfying an equation of state μ = μ(p, t) is geodesic. The field
equations then yield the Friedmann models, i.e. the Weyl tensor nec-
essarily vanishes. We get Theorem 1.4.1: Matter fields of type null
with irrotational and shear-free flow of matter satisfying an equation
of state μ = μ(p, t) are conformally flat.

1Cf. (8), (9).

(11)
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5. Type null fields with a non-rotating fluid

We now turn to the question whether or not null fields with non-
rotating flow of matter can exist. Since the calculations to treat this
problem are somewhat complicated we shall only give a sketchy ac-
count of them. We shall use the following information on the field:

a) The field equations, which are, by well-known auxiliary formu-
lae,1 reduced to equations for the spatial sections (orthogonal
to uμ). Here we are using a modified form of those auxiliary
formulae, by introducing the kinematical quantities into them.
– If we choose coordinates referred to the hypersurfaces that
are orthogonal to uμ, then we can write the metric in the form

Q = gμν(x
a)dxμdxν − V (xa)2dt2 = q − V (xa)2dt2, (1.5.1)

ua = V −1δa
0 , ua = −V δ0

a.

We shall denote the covariant derivative with respect to the
space-metric q by a colon in front of the differentiation index;
the partial derivative with respect to t shall be denoted by a
prime, e.g. θ′ := ∂θ

∂t . The Ricci tensor of q is denoted R
λ
ν .

The field equations Rc
a = −(μ + p)uau

c + 1
2(p − μ)δc

a, equivalent to
(1.2.1), then read

R
μ
ν +

1

V
V :μ

ν −
(

1

V
(σμ

ν )′ + θσμ
ν

)
− 1

3

(
1

V
θ′ + θ

)
δμ
ν = 1

2(p − μ)δμ
ν ,

(1.5.2)(
σλ

ν − 2
3θδλ

ν

)
:λ

= 0, (1.5.3)

1

V
(V :λ

λ − θ′) − 2σ2 − 1
3θ2 = 1

2(3p + μ). (1.5.4)

1(1), p. 53 and following.

(12)
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b) The hydrodynamic and kinematic relations (1.2.2,3,6) and
(1.3.6,7,8,10) which simplify, because of ω = 0 and the ensuing
relation γ = 0:

1

V
μ′ + (μ + p)θ = 0, (1.5.5)

p,λ + (μ + p)
V,λ

V
= 0, (1.5.6)

σν
λ =

√
3σ(sνsλ − 1

3δν
λ) (1.5.7)

with √
3(μ + p)σ = μ,λsλ, (1.5.8)

μ,λ =
√

3(μ + p)σsλ, (1.5.9)

μ,[λV,ν] = 0. (1.5.10)

c) The “null field conditions”, Cab
cdk

d = 0. With help of the equa-
tions kd = sd + ud and Cab

cd = Rab
cd − Eab

cd − 1
12Rgab

cd

and the auxiliary equations in (1), pp. 53 and following, the
null field conditions can be reduced to equations for the spatial
hypersurfaces. We are presenting the final equations:

Cμν
ρdk

d = 0 :

R
[μ
ρ sν] + δ[μ

ρ R
ν]
λ + σ[μ:ν]

ρ + 1
3δ[μ

ρ θ,ν]

+
(

2
3σ2 − 1

3
√

3
θσ − 1

9θ2 + 1
3μ − 1

2R
)

δ[μ
ρ sν] = 0,

Cμν
0dk

d = 0 :

σρ
[μ:ν]sρ + 1

3s[μθ,ν] = 0,

C0ν
0dk

d = 0 :

1

V
[V :ν

λ − (σν
λ)′]sλ −

(
1

3V
θ′ + 4

3
√

3
θσ + 4

3σ2 + 1
9θ2 +

μ + 3p

6

)
sν = 0,

C0ν
ρdk

d = 0 :

2
(
σν

[ρ:λ] + 1
3δν

[ρθ,λ]

)
sλ =

1

V

(
V :ν

ρ − (σν
ρ)′ − 1

3θ′δν
ρ

)
(13)
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44 Page 14 of 36 W. Kundt, M. Trümper

−σ2
(
sνsρ + 1

3δν
ρ

) − 2
3θσν

ρ −
(

1
9θ2 +

μ + 3p

6

)
δν
ρ .

d) The time derivative of σ (cf. (5), p.806)

1

V
(σ2)′ =

1

V
V :ν

λσλ
ν − 4

3θσ2 − 2√
3
σ3.

(The corresponding equation for θ is identical with the field equation
R0

0 = 1
2(μ + 3p)).

From these equations which, of course, are not independent of each
other, the following equations can be extracted by substituting and
combining.

1

V

(
V :ν

λ − 1
3V :μ

μδν
λ − (σν

λ)′) sλ =
(

2
3σ2 + 4

3
√

3
θσ

)
sν , (1.5.11)

R
ν
λ − 1

3Rδν
λ +

1

V

(
V :ν

λ − 1
3V :μ

μδν
λ

)
=

1

V
(σν

λ)′ + θσν
λ, (1.5.12)

R = −2σ2 + 2
3θ2 − 2μ, (1.5.13)

θ,[λsν] −
√

3σ,[λsν] = 0, (1.5.14)
√

3σs[λ:ν] + s[λθ,ν] = 0, (1.5.15)[
1

V
V,μsμ +

√
3σ

] [
sν

:λ − 1
2sμ

:μ(δν
λ − sνsλ)

(1.5.16)
+ 1√

3σ
(θ,λ − θ,μsμsλ)sν

]
= 0.

Now the Weyl tensor becomes (because of its symmetry we need
only to give the components listed below)

C0ν
μλ = −2

√
3

σ

V

(
sν

:[μsλ] − 1
2sρ

:ρδ
ν
[μsλ]

)
, (1.5.17)

C0ν
0λ = −

√
3σ

[
sν

:λ − 1
2sμ

:μ(δν
λ − sνsλ)

(1.5.18)

− 1√
3σ

(θ,ν − θ,μsμsν)sλ

]
.

We now want to consider the case where the irrotational flow is
geodesic. Since now we can choose the Gaussian coordinates with
respect to the hypersurfaces which are orthogonal to the worldlines
of the flow, the condition is expressed by V = 1. Because of theorem
1.4.1 we have to assume that σ �= 0 and then it follows from (1.5.16)

(14)
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that sν
:λ = 1

2sμ
:μ(δν

λ −sνsλ) and s[νθ,λ] = 0. Now (1.5.17,18) imply that
the Weyl tensor vanishes. We have proved

Theorem 1.5.1:Gravitational fields of type null with a non-rotating
inertial flow of matter do not exist.

If the matter is free of pressure, the absence of rotation is sufficient
for the above statement to be true; the assumption of an inertial flow
is necessary only for matter with pressure.

As the conclusion just drawn from (1.5.16) does not lead to anything
of interest, the only way to satisfy this equation is by

1

V
V,λsλ +

√
3σ = 0.

From V,[λsν] = 01 it follows 1
V V,λ = −√

3σsλ and (1.5.6) then reads

p,λ =
√

3(μ + p)σsλ.

Comparing this result with (1.5.9) we realize that the equation of
state μ = μ(p, t) would need to take the special form μ = p + A(t).
Such an equation of state can be discarded for physical reasons since
the pressure could not have the same order of magnitude as the rest
energy density. Thus we see that an irrotational ideal fluid cannot give
rise to a gravitational field of type null. Should a gravitational null
field exist in the presence of matter, kinematically more complicated
flows would have to be invoked.

1with equs. (1.5.9,10) [translator].
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Chapter 2. The twist-free pure radiation fields

1. Introduction

In this chapter, those (coordinate-independent!) statements are to
be compiled which we can make (so far) about pure radiation fields
in finite domains. For their definition, we choose the existence of a
bundle of rays (see section 2.4), which provides distortion-free maps in
the small; this definition is formed in analogy to Maxwell’s theory and
turns out to be an extremely useful formal criterion. For Maxwellian
and Jordanian vacuum fields we postulate in addition that the re-
spective field quantities are adapted to the ray bundle; i.e. that the
additional fields have the same rays as the metric field. (Only for
this case, transparent statements emerge). In the third section we can
show that the above definition is broadly equivalent with the definition
proposed by Pirani, based on the algebraic shape of the conformal,
or Weyl, tensor, which likewise imitates the Maxwellian theory and
intuitively states that in the case of radiation, a privileged flow of in-
tensity in a preferred lightlike direction is described by the conformal
tensor; cf. (3), p. 184. This definition will also be strengthened by
further statements, which can be made for expansion-free radiation
fields.

Sections 2.5 and 2.6 give a rough survey of the formal methods, with
which a number of (local) properties of the twist-free pure radiation
fields can be proven in the last section.

As concerns the foundations, we refer the reader to our paper II,
whose notations and results will be currently used. Further proofs
suppressed here can be found in the publications (17), (18), as well
as (21).

2. Geodetic null congruences

This section will refer to the most important formal and intrinsic
properties of a congruence of geodetic null lines. We shall make use
of a more extensive presentation in our earlier paper II, Chapter 1.

Let la be the geodetically gauged tangent vector of the considered

null geodesics: lala = 0 =
l
∇la, with

ξ

∇ := ξa∇a for an arbitrary

(16)
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vector ξa. Its gradient being decomposed w.r.t. a (complex) null
tetrad adapted to the congruence1 {ta, la, ma}:

gab = 2{t(atb) + l(amb)}, (2.1)

la, ma real, ta complex, tat
a

= 1 = lam
a, all other scalar products

equal to zero; we get

la;b = 2 Re {ztatb + σtatb + Ωtalb + ζlatb} + βlalb. (2.2)

We call the expansion coefficients θ, ω, (z := θ+ iω), σ,Ω , ζ, β occur-
ring herein “optical scalars”. Such a congruence shall be called a “ray
congruence” iff its distortion |σ| vanishes; it shall be called “twist-free”
iff la is hypersurface-normal.

Twisted bundles of electromagnetic radiation can be generated ex-
perimentally by cables made of fiberglass; all other standard optical
equipment works with twist-free ray bundles.

We further denote by wave hypersurface every (lightlike) hypersur-
face which intersects all rays perpendicularly, and by wave surface

every spacelike 2-surface with the same property. Wave surfaces and
wave hypersurfaces exist for a congruence iff it is twist-free: the vanish-
ing of the twist ω is a necessary integrability condition for the existence
of spacelike 2-surfaces orthogonal to la:

0
!
= la(

t
∇t

a −
t
∇ta) = −2iω;

conversely, ω = 0 is clearly sufficient. We remark in passing that with
this notation, the spheres (r, t) = const of Schwarzschild’s vacuum
fields are (frozen) wave surfaces.

Locally, each spacetime contains twist-free null congruences. They
can be described by their phase, or retarded time u, defined by u,a :=
la; (la is automatically normalised geodetic). u is unique up to arbi-
trary monotonic transformations:

u = f(u), f ′(u) �= 0. (2.3)

We now prove
Theorem 2.1: For an expansion-free (θ = 0) geodetic null con-

gruence with Rabl
alb = 0, being twist-free is equivalent with being

distortion-free i.e. in particular: a twisted ray congruence must ex-
pand2.

1Also called “Sachsbein”.
2The word “expansion” is used for both signs of θ.

(17)
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44 Page 18 of 36 W. Kundt, M. Trümper

Proof: From the Ricci identity

2ξa;[bc] = −Rd
abcξd, (2.4)

follows, for ξa = la (by transvection with gablc and partial differentia-
tion):

ż + z2 + |σ|2 = 1/2 Rcdl
cld. (2.5)

Under our assumptions, the real part of this equation reads:

ω2 = |σ|2.

We finally mention the easy-to-grasp1

Theorem 2.2: The existence of a twist-free and expansion-free ray
congruence is equivalent with the existence of a real solution u of the
equation

∇a
ae

iu = 0.

3. Field equations and ray congruence

In the present chapter, we want to consider electromagnetic gravi-
tational fields with variable scalar of gravitation κ, which satisfy the
Jordan-Maxwell vacuum field equations. They are obtained as La-
grange equations for the function

L = κ−1R − ζκ−3κ,cκ,c − 1

2
F abFab (3.1)

under variation w.r.t. the 15 potentials κ, gab, and Φc (with Fab =
2Φ[b,a]). One finds⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a) R + ζ(3κ−2κ,cκ,c − 2κ−1κ;c
c) = 0

(b) Gab + (2 − ζ)κ−2κ,aκ,b − κ−1κ;ab+[(
ζ
2 − 2

)
κ−2κ,cκ,c + κ−1κ;c

c

]
gab = −κEab

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.2)

Φ[ab,c] = 0 (3.3)

with Gab := Rab − R
2 gab, Φab := Fab + i

∗
F ab, 2Eab = ΦacΦb

c
. For

ζ �= 3/2, the equations (3.2) can be written more simply:

1See (10).

(18)
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⎧⎪⎨⎪⎩
(a) (κ−1);cc = 0

(b) Rab + κEab =

{
λ;ab for ζ = 1, λ := − lnκ

λ;ab/(ζ − 1)λ for ζ �= 1, λ := −κζ−1.

⎫⎪⎬⎪⎭
(3.4)

Even simpler become Jordan’s field equations under Schücking’s con-
formal transformation: g̃ab = κ−1gab, ζ �= 3/2 =⇒

R̃ab + κEab =

(
ζ − 3

2

)
κ−2κ,aκ,b. (3.5)

The 10 equations (3.5) are equivalent with the 11 equations (3.4)
(which are not all independent, because of the Bianchi identity) and
have a quite simple structure so that it appears appropriate to work
with the conformal metric g̃ab in all formal operations. The field equa-
tions (3.3) with (3.4) or (3.5) change for κ = const into the Einstein-

Maxwell vacuum field equations, which are thus absolutely included
into our considerations.

Even though with our present state of insight we consider it at least
early to try and define radiation fields also inside of matter, let us
weaken the field equations (3.5) for just one theorem by complement-
ing the electromagnetic energy-momentum tensor Eab by a tensor Tab

describing possible matter, with the only constraint that it possess a
timelike eigenvector and negative trace; these properties hold for ev-
ery physically admissible energy-momentum tensor, see e.g. IV. With
such an ansatz we claim, for κ = const:1

Theorem 3.1: The existence of a twist-free and expansion-free null
congruence in a material world with κ = const implies that 1. the
congruence is a ray congruence (σ = 0), 2. a possible Maxwell field
possesses the congruence as eigencongruence, and 3. the material con-
tent (described by T a

b ) necessarily vanishes.
Proof: Under our assumptions, (2.5) transforms to

2|σ|2 = −κ(Eab + Tab)l
alb

= −κ(laFacl
bFb

c + la
∗
F acl

b
∗
F b

c + Tabl
alb);

(3.6)

here the right-hand side is ≤ 0. For 1. laFca and la
∗
F ac are real vectors

perpendicular to la and hence spacelike or parallel to la. And 2. a
symmetrical tensor Tab with timelike eigenvector can be diagonalised
simultaneously with the metric; expand la w.r.t. such a simultaneous

1Compare (10).

(19)
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(orthonormal) eigentetrad of gab and Tab, then follows Tabl
alb > 0 from

the trace condition T a
a < 0. All statements can now be read off from

(3.6).
The theorem just proven permits us to some extent to assume T a

b = 0
in the future. Unfortunately, the case of a variable scalar of gravita-
tion κ cannot be incorporated without additional assumptions into the
above propositions; nevertheless, we want to go on occupying ourselves
with it and prove

Theorem 3.2: In a Jordan-Maxwellian vacuum field (3.3), (3.5)
with κ,a �= 0, ζ �= 3/2, the existence of an expansion-free ray con-
gruence with Eabκ

,aκ,b = 0 follows from each of the subsequent three
equations:
1) κ,aκ,a = 0, 2) κ;a

a = 0, 3) R̃ = 0, as well as 4) from R = 0, if
ζ �= 0.

Proof: First one concludes in each case, using (3.4a) and ∇a
af(κ) =

f ′κ;a
a + f ′′κ,aκ,a that κ,aκ,a = 0 = κ;a

a; i.e. κ is the phase of a twist-
free and expansion-free null congruence. Now follows Rabκ

,aκ,b ≤ 0
from (3.4b) because of κ,aλ;ab and Eabκ

,aκ,b ≥ 0, cf. proof of theorem
3.1. Insertion into (2.5) yields σ = 0 = Eabκ

,aκ,b as claimed.
As a remarkable consequence from the theorem just proven results

that there is no field with κ,aκ,a = 0 �= κ;a
a, for which κ would

propagate at the speed of light along expanding rays. One should
therefore expect that short-lasting spatial inhomogeneities of the κ
field relax at a speed which reaches the speed of light only at separations

from the source.
Of importance for our study of the connections between the differ-

ent fields and the existence of a ray congruence is also the following
theorem first proven in (11), (12) and then more systematically in II,
theorems 3.2.1, 3.3.2:

Theorem 3.3: The congruence determined by the lightlike eigendi-
rection of a null bivector obeying Maxwell’s equations (3.3) is a ray
congruence, and conversely, for every ray congruence there is a Max-
wellian null field belonging to it.

A further deep insight yields the following theorem, whose proof one
can find in (13), and which generalises the theorem of Goldberg

and Sachs (14), which says that there exists a ray congruence in a
vacuum field if and only if the Riemann tensor is of special type:

Theorem 3.4: The two following properties of a world domain:
(A) The conformal tensor is special
(B) There exists a ray congruence

(20)
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are equivalent iff there is a complex lightlike bivector Vab with:

(C)

⎧⎪⎨⎪⎩
V eaV bcCd

abc;d = 0, Vab = −i
∗
V ab, Vabk

b = 0,
V bcCd

abc;d = 0 for Cabcd of type III,
V eaCd

abc;d = 0 for Cabcd of type N.

⎫⎪⎬⎪⎭
Here kb denotes a multiple (lightlike) eigendirection of Cabcd when
(A) holds true, or the tangential vector of the congruence when (B)
applies, respectively. The last two lines of (C) are only necessary for
the conclusion (A) =⇒ (B).

In order to illuminate the range of applicability of this theorem,
which establishes an important connection between two very different
approaches to radiation theory, we prove

Lemma 3.5: The property (C) of theorem 3.4 follows from (B) if
the Ricci tensor possesses the vector ka as eigenvector, and if it satisfies
the following two further (real) equations Rabt

atb = 0. Consequently,
(A) follows from (B) in particular for Einstein-Maxwell fields whose
eigencongruence is a ray congruence.

Proof: Because of Bianchi’s identity

Cdabc
;d = −P a[b;c], P a

b = Ra
b − R

6
δa
b , (3.7)

(C) from theorem 3.4 changes into1.

V eaV bcRa[b;c] = 0. (3.8)

As usual, we put Vab = 2k[atb] and complete ka, ta by ma to a null
tetrad. Then by assumption, the Ricci tensor is the real part of a
complex linear combination of terms of the form

kakb, k(atb), t(atb), k(amb) (3.9)

and the only surviving terms after formation of (3.8), partial differen-
tiation and use of the orthogonality relations (2.1) have the form

ka;bt
a
t
b

and ka;bt
a
kb,

hence are proportional to σ and to a scalar γ which measures the
deviation from geodesy. Consequently, when (B) holds, (3.8) holds
likewise.

A deeper lying reverse of lemma 3.5 has been found by Trümper:

Theorem 3.6: When for an Einstein-Maxwell field, the conformal
tensor is special and its multiple eigendirection is simultaneously an

1Only the first line of (C) must be proven: the others follow from theorem 3.4.

(21)
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eigendirection of the Maxwell bivector, then this eigendirection de-
scribes a ray congruence; whereby in the proof, a special value of the
ratio of the eigenvalues of Cab

cdC
cd

ef and Ea
b must be excluded.

Remark: The theorem holds also for Jordan-Maxwell fields when
the gradient of κ spans the preferred congruence.

For the sake of transparency, we leave out in our proof the easy
generalisation formulated in the remark. Then the Bianchi identity
(3.7) reads in spinor notation, cf. (3) (2.9):

ΓABCD
;D

Ė = EABĖḞ ;C
Ḟ , (3.10)

where the field equations Gab = −Eab were used. (As in II, ΓABCD

denotes the totally symmetrical conformal spinor; spinor equivalents
of tensors are denoted with the same core symbol). According to (3.2)
we have:

2EABĖḞ = ΦABΦĖḞ , (3.11)

where ΦAĊBḊ := ΦABεĊḊ; and ΦAB satisfies, by assumption, the
Maxwell equations (3.3):

ΦAB
;BĊ = 0. (3.12)

As the case of a null field has already been covered by theorem 3.3,
we now restrict ourselves to non-null fields, and set:

ΦAB = −2ϕκ(AμB) (3.13)

with normalised κA, μA: κAμA = 1; let κA be the multiple eigendirec-
tion of ΓABCD:

κAκB
ΓABCD = −γκCκD. (3.14)

Application of κC∇D
Ė

to (3.14) yields

κAκBκC
ΓABCD

;D
Ė = 3γκCκDκC;DĖ . (3.15)

Insertion of (3.10) with (3.11), (3.12) leads to

1

2
κAκBκC

ΦAB;C
Ḟ
ΦĖḞ = 3γκCκDκC;DĖ . (3.16)

Application of the operator κAκB∇Ḟ
C to (3.13) yields, on the other

hand,
κAκB

ΦAB;C
Ḟ = 2ϕκAκA;C

Ḟ , (3.17)

(22)
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so that by insertion into (3.16) one obtains:

−2|ϕ|2κ(ĖκḞ )κ
AκCκA;C

Ḟ = 3γκCκDκC;DĖ . (3.18)

Transvection of this equation with, respectively, κĖ , μĖ yields:{
(a) (|ϕ|2 + 3γ)κAκCκĖκA;CĖ = 0

(b) (|ϕ|2 − 3γ)κAκCμĖκA;CĖ = 0

}
, (3.19)

so that for |ϕ|2 �= 9γ2, the condition II (3.2.3) of geodesy and absence
of distortion results:

κAκCκA;CĖ = 0, (3.20)

q.e.d..

4. Definition of pure radiation fields and classification

As already remarked in the introduction, the definition of gravita-
tional waves requires an extension of the term pure radiation from
other areas of physics, which is suggestive, but by no means “deter-
mined by correspondence”. We choose the

Definition 4.1. An Einstein-Maxwell vacuum domain is called a
pure radiation field when in it there is a ray congruence (= distortion-
free geodetic null congruence), which is simultaneously an eigencon-
gruence of the Maxwell bivector. (The case Rab = 0 is considered a
special case of this).

Theorems 3.4 to 3.6 have taught us that, cum grano salis, this def-
inition is equivalent to the original one given by Pirani in (15). We
prefer it for formal and intrinsic reasons.

Which fields are covered by our condition? For orientation we con-
sider electromagnetic fields in flat spacetime. The well-known formula
for retarded field strengths shows that an arbitrary pointlike distribu-
tion of charges and currents leads to “pure radiation fields” in our sense.
Their common property is that the space projection of the (lightlike)
eigendirection of the field strength points from the source to the point
considered. In particular, static Coulomb fields are not excluded. We
could exclude them because of the existence of a timelike symmetry
group, but, for formal reasons, we consider this inappropriate; we keep
them as “frozen waves”. Simplest gravitational representatives of this
kind are the spherically symmetric Schwarzschild metrics.

(23)
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Open remains the question of what additional properties one should
demand for a pure Jordanian radiation field. Here theorem 3.2 and the
remark to theorem 3.6 teach us that, evidently, the following postulate
appears appropriate:

Definition 4.2. A Jordan-Maxwell vacuum domain is called a pure

radiation field when it possesses the properties of Definition 4.1 and
the gradient of κ is lightlike.

We can immediately classify the thus defined radiation fields coarsely
in terms of the invariant properties of their radiation bundles: the
vanishing of ω characterises twist-free bundles, that of θ expansion-free

ones; and inside the last mentioned class, Ω = 0 is a characterising
property for parallel rays, (i.e. for radiation whose direction appears
spacelike and timelike constant to all observers). A finer classificatioin
is possible, among others, by the type of the conformal tensor. In the
following sections, we will strengthen and enlighten the given partition
into classes by different properties.

5. Canonical coordinates of a twist-free ray congruence

When in some world domain, a twist-free null congruence with phase
u is specified – such a congruence always exists locally – one can
introduce two space-like coordinates xA with xA

,au
,a = 0. Setting

(xa) := (xA, s, u) implies ga4 = 0 for a �= 3, and because of g4agab = δ4
b ,

the metric fundamental form takes the form

G = gABdxAdxB + 2madxadu; (5.1)

(la := u,a). The wave hypersurfaces are described by u = const; they
contain the wave surfaces s = s(xA). For the expansion θ one easily
gets

θ =
l
∇ ln r with r := (det(gAB))1/4. (5.2)

At this point, a first distinction of cases is required. For θ �= 0, (the
“Sachs parameter ”) r yields the distance from the source judged by
local measurements due to the rays’ expansion; see e.g. II section 3.3,
or (17) page 83; we specialise s to r. For θ = 0, on the other hand, it

is useful to specialise s as an affine parameter (dxa/ds
!
= u,a) and to

again call it r. We present the further possible specialisations of the
coordinates under additional assumptions in the form of:1

1∂A = p−2∂A.

(24)
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Table 5.1

1) θ �= 0 gAB = r2hAB , ∂rdet(hAB) = 0, m3 = 1

θr

σ = 0 hAB = p2δAB , ∂rp = 0
Rabl

alb = 0 m3 = 1
Rabl

atb = Rabt
atb = 0 mA = 0

Rabt
at

b
= 0 m4 = r∂u ln p + 1

2
∂A∂A ln p − r−1m(x, y, u)

2) θ = 0 ∂rdet(hAB) = 0, m3 = 1

σ = 0(⇐⇒ Rabl
alb = 0) gAB = p2δAB , ∂rp = 0

Rabl
atb = 0 ∂r

2mA = 0

a) ∂rmA �= 0,

Rabl
atb = 0 ∂rmA = p2(m,1

2 + m,2
2)−1m,A, ∂A∂Am = − 1

2

Rabt
at

b
= 0 (m,B∂B − 1)(m,Am,A)−1 = 2∂A∂A ln p

Rabl
amb = 0 ∂r

2m4 = (4m,Am,A)−1 − ∂A∂A ln p

III,N, 0 p = 1, m1 = −2κ−1r + n1(x
A, u), m2 = 0

N, 0 n1 = 0

b) ∂rmA = 0,

Rabt
at

b
= 0 p = 1, m2 = 0

Rabl
amb = 0 ∂r

2m4 = 0
N, 0 mA = 0

Please note: 1) ∂rmA = 0 is equivalent to the property Ω = 0 of
parallel rays.1 2) For σ = 0, the Gaussian curvature K of the wave
surfaces is given by

K =

{−r−2∂A∂A ln p for θ �= 0
−∂A∂A ln p for θ = 0

}
(5.3)

hence vanishes for p = 1. 3) The symbols II, D, III, N, 0 denote
the types of the conformal tensor. 4) As soon as a ray congruence
is uniquely marked as an eigencongruence to the conformal tensor –
in theorem 3.4 we have given characterising conditions; the possible
ambiguity for type D can be ignored for the present considerations –
u is uniquely fixed up to monotonic transformations. One then sees
easily that for σ = 0 precisely the following gauge transformations

conserve the normal form of the metric (we put x1 + ix2 = z):

I u = f(u), r = rf ′−1(u), z = z (change of phase)

II z = F (z; u), F analytic in z, r = r, u = u

1Author’s note (2013): This equivalence holds for θ = 0 only.
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(conformal transformations in wave surfaces) (5.4)

III r = r + g(x, y, u), z = z, u = u for θ = 0

(translation of the affine origin on the rays)

To conserve mA = 0 even requires Δg = 0, to conserve p = 1 re-
quires instead F = zeiσ(u). With respect to more detailed discussions
of possible further gauges and a simultaneous restriction of the gauge
(semi)group we refer to (18) and (17) respectively, and content our-
selves with a listing – in the last section – of the size of the space
of functions remaining undetermined in the line element in spite of
gauging for the case of Einstein’s vacuum field equations Rab = 0.

As a concluding remark of our formal considerations, here a word
concerning the simplest invariants : Starting from the gauge transfor-
mations (5.4), Robinson and Trautman have constructed in (18)
a number of simple invariants for the case θ �= 0 = σ = Rab. We
mention the Gaussian curvature K of the wave surfaces calculated in
(5.3) as well as the corresponding curvature −r−3(rm4)r=0 of their
orthogonal 2-surfaces. More easily reached is the goal for θ = 0: here
the gradient of the ray vector defines a vector pa via

la;b = 2l(apb), (5.5)

which is invariant up to an additive multiple of la,1 from which one
can form, among others, the following invariants:

pap
a = 2|Ω|2 = (4m,Am,A)−1 (5.6)

K = 4|Ω|2 − 2
p

∇ ln |Ω| = −∂A∂A ln p (5.7)

J := ∂r
2m4 via : 4p[a,b]lb = laJ. (5.8)

Of course, in each case one can form a basis of all invariants by
forming scalars from the Riemann tensor and its covariant derivatives;
for this, cf. (23).

Please note the occurrence of invariants in the canonical form of the
metric, Table 5.1!

1Author’s note (2013): This formulation corrects, in passing, an oversight in
the original phrasing.
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6. Solution of the field equations

For a complete solution of the vacuum field equations, one can start
from the normal forms for the metric given in Table 5.1 and solve with
them the equations Rabm

b = 0. This step has been widely reduced,
in (18) and (17), to the solution of differential equations of Poisson
type. In this section we only want to discuss the additional difficulties,
which arise when additional fields are present.

The case of a pure radiation field with a variable scalar of gravitation
is quickly treated: according to (3.5), the conformal metric g̃ab obeys
the equation

R̃ab = lalb, (6.1)

if (ζ − 3/2)1/2 lnκ is chosen as the (now invariant!) phase u of the ray
congruence. Compared with the Einsteinian vacuum, here the only
change (in canonical coordinates) is the addition of a constant to just
one of the field equations. However, as stressed in section 2.3, these
statements only hold for expansion-free radiation fields.

Also, the additional presence of an electromagnetic null field in a
pure radiation field does not pose a serious obstacle to its formal eval-
uation. For this we first prove1

Theorem 6.1: A simple (real) bivector Fab with

Fa[bFcd;e] = 0 (6.2)

is proportional to the skew product of two gradients:

Fab = λu[avb].

Proof: The bivector
∗
F ab dual to Fab obeys the equation

∗
F [ab

∗
F c]d

;d = 0, (6.3)

and this in turn implies the integrability of the 2-surface elements

spanned by
∗
F ab: for it says that the Lie product

η

∇ξa −
ξ

∇ηa of two

vectors ξa, ηa spanning
∗
F ab is a linear combination of these vectors.

Call u, v two local coordinates by whose being constant these surfaces
can be described. Then the 2-surface elements orthogonal to them are
spanned by u,a and v,a, which yields the claim.

1Cf. (19), where a very similar theorem is proven; but also (22) page 82.

(27)

123



44 Page 28 of 36 W. Kundt, M. Trümper

Among others, this theorem can be applied to every simple Maxwell
bivector, in particular to Maxwell-null-bivectors. Here one can choose
the lightlike eigenvector as one of the two gradients, if hypersurface
normal, and one gets:

Theorem 6.2: A Maxwell null field Fab with twist-free rays can be
brought to the form

Fab = λu[,ax,b] (6.4)

when u,a describes the ray congruence.1

For the sake of transparency, we now restrict ourselves to fields with
constant scalar of gravity. Then the field equations read (with κ = 1):{

(a) 2Rab = −ΦacΦb
c

(b) Φ[ab;c] = 0

}
(6.5)

Equ. (b) implies that Φab is of the form

Φab = λu[,az,b], z := x1 + ix2, λ complex, (6.6)

whereby (a), for θ = 0 and by using Table 5.1, goes over into:

Rab = −1

4
p−2|λ|2lalb, (6.7)

When one now sets2

λ =
√

2μpeiϕ, with 2Rab = −μlalb, (6.8)

(6.5b) becomes equivalent with the equations

l
∇ϕ = 0,

t
∇ϕ =

i

2

t
∇ ln(μp2), (6.9)

with the only integrability condition:

∂A∂A ln(μp2) = 0 (6.10)

(note:
t
∇ ∼ ∂1 + i∂2). (6.10) means that μp2 is the magnitude of a

function which is analytic in z. We have thus proven:

1Because of F[ab;c] = 0, λ can even be absorbed in x.
2Even simpler gets the evaluation of (6.5b) when one works with the complex

amplitude λ: (6.5b) just says that λ = λ(z; u) is a u-dependent, analytic function
in z.
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Theorem 6.3: The field equations for an expansion-free Einstein-
Maxwell null field are in canonical coordinates equivalent with{

(a) 2Rab = −μu,au,b

(b) μ = p−2|F (z; u)|, F analytic in z.

}
(6.11)

The Maxwellian bivector is then given by (6.6) with λ = (2F )1/2.
Equation (6.11b) is the “geometrised” Einstein-Maxwell equation, cf.

III, (22).

7. Properties of the different solution classes

We begin this section with a table of the twist-free pure radiation

fields, restricted to Einstein’s vacuum fields Rab = 0:

Table 7.1 of the twist-free pure radiation fields in Einstein’s vacuum:

Type W.S. B.C. Further division

θ �= 0

II, D ΔK �= 0 p(x, y)

II ΔK = 0, K �= const K(x)

D K = const K

III ΔK = 0, K �= const
K(x, u)
p(x, u)

N K = const p(x, u)

θ = 0

II, D K �= 0

p(x, u)

m(x, u)

A(x, u)

III
K = 0

nongeodetic

n(x, u)

A(x, u)

N, 0
K = 0

geodetic
A(x, u)

Ω �= 0

Ω �= 0

Ω = 0

Ω �= 0

Ω = 0 plane waves

Herein the notations of Table 5.1 are used.
The third column lists the behaviour of the (invariant) Gaussian

curvature K of the wave surfaces (= W.S.). One notices that inner
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(K) and outer (θ, geodesy) curvature of the wave surfaces lead to a
classification, which is almost equivalent to the one given by the first
two columns. Δ denotes the Laplace operator w.r.t. the canonical
coordinates x, y (x standing for x1, y for x2). The D fields with θ �= 0,
K = const are the static Schwarzschild-like fields, which were called
the “DS-fields” in (18) and the “A-fields” in (21).

The fourth column with the headline “boundary conditions” (= B.C.)
lists the functions which can be arbitrarily prescribed, and cannot
be further constrained by gauge transformations. Lower-dimensional
data are suppressed. Left-out arguments in the functions mean that
the corresponding coordinates are kept constant; and (y, r, u) = const
stands symbolically for a piece of boundary curve in a wave surface.
A(x, y, u) is the term in m4 constant w.r.t. r, n the corresponding
r-constant term in m1 (for a suitable gauge).

In the last column, refinements of the given classification are listed:
for expansion-free radiation, parallelism or non-parallelism of the rays
(Ω = 0 or �= 0) motivate a splitting of classes of type III, N, or 0
into equally large partial classes. Here we have called the (electro-
magnetic) waves emitted by an ideal searchlight “parallel” if and only
if the searchlight is not tilted. By “plane-fronted ” we denote the waves
with plane and geodetic wave surfaces; they are the expansion-free null
fields, as has been shown in detail in (29) and (17). Inside the partial
class of plane-fronted waves with parallel rays (= pp-waves), which
can be characterised by, among others, the existence of a (necessarily
lightlike) constant bivector, the plane waves can be defined by their
property that the amplitudes (of relative accelerations of neighbour-
ing test particles) in wave surfaces are constant. Other characteris-
ing properties of them are the existence of a 3-dimensional lightlike
Abelian isometry group with 1-dimensional lightlike subgroup, or the
existence of a 5-dimensional isometry group. Formally, they can be
described by m4,ABC = 0.

The partial classes described in the last section have been discov-
ered very many times in the literature. For instance, the pp waves
were already found in 1923 by Brinkmann (24), then in 1956 by I.

Robinson (unpublished), and rediscovered in 1959 by (25) and (26).
They are most thoroughly treated in (21); see also I. Among others,
the partial class of plane waves is subject of the publications listed un-
der (27). The more general class of expansion-free waves with parallel
rays has been found in the papers listed under (28), and independently
covered in (29).
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We now present a series of further local properties of the twist-free
pure radiation fields, and drop in particular the restriction to Ein-
steinian vacuum metrics. To begin with, let us remark that all state-
ments of the Table, excepting only the column “boundary conditions”,
remain valid when the field equations are weakened to

2Rab = −μlalb. (7.1)

The Jordanian radiation fields and electromagnetic null fields are then
included, and, in the last line of the Table, there appear non-flat fields
of type 0 (Cabcd = 0).

In the 6th section we have shown that every Maxwellian null field

with twist-free rays can be written in the form

Φab = u,[aΦ,,b] (7.2)

with analytic Φ(z; u). When one now asks for the restrictions which
the Einstein-Maxwell equations impose in addition on a combined ra-
diation field, one obtains from theorem 6.3 and the analogue for θ �= 0
described in (18):

Theorem 7.1: For every twist-free Maxwellian null field there are
Einstein-Maxwell null fields (i.e. solutions of (6.5)). For a given com-
plex amplitude λ := ∂zΦ – the latter can always be reduced (locally)
to 1 by gauges (5.4) I, II – there are no constraints imposed upon
the type of the conformal tensor in the expansion-free case. In the
expanding case, however, the conformal tensor must be of type II or
D.

The theorem formulated right now teaches that in the expansion-
free case, a rather arbitrary “mixture” is possible of electromagnetic
and gravitational radiation. – In flat spacetime there are Maxwellian
null fields with spherical fronts ; they can be generated from pp-waves
by reflection on a parabolic mirror, placed parallel to the ray direc-
tion. Also these fields have analogues in the Einstein-Maxwell theory:
namely fields with constant inner and outer curvature of the wave
surfaces. But the above theorem teaches that the conformal tensor
cannot be of type III, N, or 0.

The large similarity between electromagnetic and gravitational radi-

ation becomes clearer under confrontation of all expansion-free Maxwell
waves of flat spacetime with the expansion-free pure gravitational
waves. A comparison can be made on grounds of the invariant prop-
erties of the respective ray congruences. During this confrontation,
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because of la;[bc] = 0 in flat spacetime, only gravitational fields of type
N qualify. Astonishingly, it could be shown in (17):

Theorem 7.2: The correspondence h:

Re(Φ) →
{

x−1A for Ω �= 0
A for Ω = 0

}
is a unique 1-to-1 map of all non-constant expansion-free (⇔ plane-
fronted) Maxwellian null fields onto the plane-fronted gravitational
waves; (Φ was introduced in (7.2); A is the term in m4 constant w.r.t.
r. For the rest see Table 5.1). h maps functions F onto each other

which satisfy the equations
l
∇F = 0 = ΔF (and only them).

Next we take interest in the possible variability of the type in a pure
radiation field. Because the type of the conformal tensor in canonical
coordinates is determined by functions which are independent of their
distance from the source r, and which satisfy the Laplace equation
in the wave surfaces, and because the local introduction of canonical
coordinates does not mean a restriction, we conclude:

Theorem 7.3: In a twist-free pure radiation field, the type of the
conformal tensor is constant in wave surfaces. As a function of the
retarded time u, however, it can change arbitrarily (even for metrics
of continuity class C∞).

Hence there exist arbitrarily “multilayered sandwich waves”.
Almost all pure radiation fields possess no symmetries at all. Of

interest is the question for those matter-free spacetimes which permit a
1-dimensional lightlike isometry group. Here one finds, as expected, a
partial set of the twist-free pure radiation fields; the result was already
derived in (17), it reads:1

Theorem 7.4: The only metrics obeying (7.1) which allow a 1-
dimensional group of lightlike isometries are 1) the pp waves (θ = 0,
type N, 0, Ω = 0), and 2) a class of expansion-free II(D)-fields which
in canonical coordinates are given by p = x−1/4, m1 = −x−1v +
x−3/2y n(u), m2 = 0, ∂rm4 = 0. To the latter belongs the static,
Schwarzschild-like vacuum field B3 from (21).

Up to now we have only studied the local properties of the pure
radiation fields expecting that, domainwise, the latter form a good
approximation to realistic radiation fields. But how does one have to
continue them to global solutions? For this we can make two state-
ments. The first statement was proven in (21):

1This result was found independently, and in coordinates adapted to the group,
by Dautcourt, see (30).
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Theorem 7.5: The plane waves are g-complete if m4 in Table 5.1
belongs to continuity class C3, and if R4 is chosen as the canonical
coordinate domain.

Here “g-complete” means that all geodesics have infinite length in
both directions (for lightlike geodesics, an affine parameter should be
taken as measure of length). Consequently, the plane waves are source-
free world models, closed against action from beyond.

When one tries to extend Theorem 7.5, one already fails at the next
simple class of waves: already the amplitudes (= components of the
Riemann tensor) of the pp waves are non-constant potential func-
tions w.r.t. the wave-surface coordinates, hence possess a singularity

at finite or infinite separations. And one finds for the simplest rep-
resentatives that these singularities are reached by timelike geodesics
within finite proper time! By this one arrives at the impression that
all non-planar waves play the role of interpolating fields in the interior
or exterior of “wave guides”; exactly as in electrodynamics, the waves
would possess singularities inside or outside of tubes or funnels if one
tried to continue them to the full space. But how does a wave guide
for gravitational waves look? It can certainly not consist of electro-
magnetic radiation; for the amplitudes of electromagnetic fields are
likewise analytic functions in wave surfaces, hence vanish everywhere
or almost nowhere. It could possibly consist of neutrinos, (i.e. mat-
ter with restmass zero). Instead, we assume in what follows that the
waveguide consists of matter, with tensions which can be neglected in
comparison with their energy density, at high approximation. Then
Einstein’s field equations read in the exterior domain:

Rab = −μuaub, uaua = −1, μ > 0, (7.3)

and for every lightlike vector ka we have

Rabk
akb < 0. (7.4)

In the exterior domain, therefore, at least inequality (7.4) must be sat-
isfied for the ray direction la, through which the canonical coordinate
system fails. Nevertheless, we can infer from (2.5) that inside the wave
guide near its boundary1, θ decreases approximately2 linearly with the
source distance r. From this behaviour of the expansion we can con-
clude at the behaviour of the rays in the rest space of an observer, and

1More precisely: for 2(z2 + |σ|2) <
∼−Rabl

alb.

2For lalb
l

∇Rab ≈ 0, i.e. for an approximately homogeneous wave guide.

(33)

123



44 Page 34 of 36 W. Kundt, M. Trümper

from here at the shape of the 2-surfaces of constant phase u: they are
broken off at the boundary, and beyond, in the wave guide, they are
curved concavely w.r.t. the wave channel. Unfortunately, the state-
ments which we can make about the present continuation problem
exhaust themselves with this.
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