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Abstract A conjecture related to the Bartnik quasilocal mass, is that the infimum of
the ADM energy, over an appropriate space of extensions to a compact 3-manifold
with boundary, is realised by a static metric. It was shown by Corvino (Commun
Math Phys 214(1):137–189, 2000) that if the infimum is indeed achieved, then it
is achieved by a static metric; however, the more difficult question of whether or
not the infimum is achieved, is still an open problem. Bartnik (Commun Anal Geom
13(5):845–885, 2005) then proved that critical points of the ADM mass, over the space
of solutions to the Einstein constraints on an asymptotically flat manifold without
boundary, correspond to stationary solutions. In that article, he stated that it should
be possible to use a similar construction to provide a more natural proof of Corvino’s
result. In the first part of this note, we discuss the required modifications to Bartnik’s
argument to adapt it to include a boundary. Assuming that certain results concerning a
Hilbert manifold structure for the space of solutions carry over to the case considered
here, we then demonstrate how Bartnik’s proof can be modified to consider the simpler
case of scalar-flat extensions and obtain Corvino’s result. In the second part of this
note, we consider a space of extensions in a fixed conformal class. Sufficient conditions
are given to ensure that the infimum is realised within this class.
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1 Introduction

The Bartnik mass is often cited as the gold standard definition of a quasilocal mass,1

if only it were possible to compute for a generic domain. The mass of a domain Ω in
some initial data 3-manifold is as taken to be the infimum of the ADM mass over a
space of admissible extensions to Ω , satisfying the Einstein constraints. In Ref. [2],
where Bartnik first defined the quasilocal mass now bearing his name, it is conjectured
that this infimum is realised by a static extension to Ω .

In 2000, Corvino proved part of this conjecture (Theorem 8 of Ref. [9]); he proved
that if a minimal ADM energy extension exists then it must be static. Note that we
differentiate between the energy and the mass—the latter being the absolute value
of the energy-momentum four-vector, while the former refers to the component that
is orthogonal to the Cauchy surface. It was then shown by Miao [16] that this static
extension must also satisfy Bartnik’s geometric boundary conditions; that is, the metric
and boundary mean curvature agree on either side of ∂Ω . Later, Bartnik suggested
that a variational proof of Corvino’s result, based on extending his work on the phase
space [3] to manifolds with boundary, would be more natural.

In the first part of this note, we discuss how Bartnik’s analysis may be modified
to the case where the data is fixed on the boundary to provide an alternate proof of
Corvino’s result. The extensions considered here fix the first derivative of the metric
on the boundary, which is a stronger condition than the usual Bartnik data. In the
context of the Bartnik conjecture, and in light of Miao’s result, one would like to
consider extensions that fix the mean curvature of the boundary while, rather than
fixing the first derivative of the metric. It would also be interesting if one can obtain
Miao’s result within this framework. However, it is not obvious how to develop the
appropriate variational principle in this case; this is to be the subject of future work.

In Sect. 2, we discuss the Hilbert manifold of extensions to be considered, which
is essentially Bartnik’s phase space with boundary conditions imposed. In Sect. 3, we
introduce energy, momentum and mass definitions, and demonstrate how Corvino’s
result on static extensions can be obtained. Finally, in Sect. 4, we consider a space
of extensions in a prescribed conformal class. We give sufficient conditions to ensure
that the infimum is realised within the fixed conformal class. However, as above, the
boundary conditions considered here are not appropriate to be of direct significance to
the Bartnik mass. It would be interesting to find a larger class of initial data for which
a similar argument is possible, and impose Bartnik’s geometric boundary conditions.

2 The phase space

Let M be a smooth asymptotically flat 3-manifold with smooth boundary, Σ . We
also assume that M has only a single asymptotic end; that is, there exists a compact
set K ⊃ Σ such that M\K is diffeomorphic to R

3 minus the closed unit ball, φ :
M\K → R

3\B0(1). On M\K we define g̊ to be the pullback of the Euclidean
metric via φ, and let r be the Euclidean radial coordinate function composed with φ.

1 We borrow the phrase “gold standard” from a quote by Hubert Bray in a Duke University press release.
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On K , g̊ is extended to be smooth, bounded and positive definite, while r is smooth
and bounded between 1

2 and 2. Throughout, “◦” will indicate quantities defined with
respect to the background metric g̊. In order to include the asymptotics and prescribe
the data on the boundary, we define the weighted Sobolev spaces, which are equipped
with the following norms:

‖u‖p,δ =
{(∫

M |u|p r−δp−3dμo
)1/p

, p < ∞,

ess supM(r−δ|u|), p = ∞,
(1)

‖u‖k,p,δ =
k∑
j=0

‖∇̊ j u‖p,δ− j . (2)

The spaces L p
δ and W

k,p
δ are defined as the completion of smooth, compactly

supported functions on M\Σ with respect to these norms. Spaces of sections of

bundles are defined as usual and we use the standard notation W
k,2
δ = H

k
δ . We also

make use of the spaces Wk,p
δ and Hk

δ , defined as the completion of smooth functions
with bounded support on M. That is, the overline indicates spaces of functions that
vanish on the boundary, in the trace sense.

Initial data for the Einstein equations is given by a Riemannian metric g and a
contravariant symmetric 2-tensor density π , on a 3-manifold M. Motivated by the
Bartnik mass, we are interested in the space of asymptotically flat extensions to a
region Ω in a given initial data set (M̃, g̃, π̃). In the context considered here, an
extension to Ω is an asymptotically flat manifold M with boundary Σ that may be
identified with ∂Ω via a diffeomorphism, such that the initial data agrees across the
boundary.

Let π̊ be some fixed symmetric 2-tensor density that is supported near Σ . We then
consider a choice of g̊, which we are free to specify near Σ , and π̊ as providing our
boundary conditions; explicitly, we define the spaces

G :=
{
g ∈ S2 : g > 0, g − g̊ ∈ H

2
−1/2

}
, K :=

{
π ∈ S2 ⊗ Λ3 : π − π̊ ∈ H

1
−3/2

}
,

where Λ3 is the space of 3-forms on M, and S2 and S2 are symmetric covariant and
contravariant tensors on M respectively. Initial data (g, π) ∈ F := G × K on M is
to be thought of as an extension of some Ω , where g̊ and π̊ are given by extending g̃
and π̃ into M; that is, Ω can be glued to M along the boundaries and data on Ω can
be extended into M. However, while this is the motivation for fixing the data on the
boundary, we do not make reference to g̃ and π̃ , as g̊ and π̊ may be freely specified.
Note that the space F imposes both the asymptotics and boundary conditions.

The constraint map, Φ : F → N ⊂ L2−5/2(Λ
3 × T ∗M ⊗ Λ3), is given by

Φ0(g, π) = R(g)
√
g −

(
π i jπi j − 1

2
(πk

k )2
)
g−1/2, (3)

Φi (g, π) = 2∇kπ
k
i . (4)
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The constraint equations are then given by Φ(g, π) = (16πρ, 16π ji ), where ρ and
ji are the source energy and momentum densities respectively.

Bartnik’s work on the phase space relies on the use of weighted Sobolev-type
inequalities, most of which remain valid on an asymptotically flat manifold with
boundary (see Theorem 1.2 of Ref. [1]), although some care should be taken with
the use of the weighted Poincaré inequality. As such, it is straightforward to verify
that the majority of Bartnik’s proof, showing the level sets of Φ are Hilbert manifolds
(cf. Conjecture 1, below), is valid in the case where M has a boundary and the initial
data has the boundary conditions imposed by F . The place that Bartnik’s proof, when
applied to this case, breaks down is in proving the linearised constraint map is sur-
jective. In fact, if N = L2−5/2(Λ

3 × T ∗M ⊗ Λ3) then this is almost certainly false.
Nevertheless, we expect the following conjecture to be true and intend on pursuing a
proof of this as part of future work.

Conjecture 1 (cf. Theorem 3.12 of Ref. [3]) For some N , Φ is a smooth map of Hilbert
manifolds and DΦ(g, π) is surjective at each point (g, π) ∈ G × K . It then follows
from the implicit function theorem that the level sets of Φ are Hilbert submanifolds
of F .

That is, the space of possible extensions to a given domain Ω is a Hilbert mani-
fold; we refer to this as the constraint submanifold, and use the notation C(ρ, j) =
Φ−1(16πρ, 16π j). It should be noted that such a result is required for the arguments
outlined in Sect. 3.

3 Static metric extensions

The total ADM energy and momentum are respectively given by

16πE :=
∮

∞
g̊ik(∇̊kgi j − ∇̊ j gik)dS

j , (5)

16πpi := 2
∮

∞
πi j dS

j . (6)

Note that we omit reference to g̊ in writing dS, as the definitions are independent of
the asymptotically flat metric used to define the area measure (cf. Lemma 1 below,
particularly its application in the proof of Proposition 2). Note that we have also made
a slight abuse of notation here, as π is in fact a density. Often the quantity E is called
the mass, however we reserve the term mass for the quantity, m = √

E2 − |p|2; we
assume the dominant energy condition here to ensure this is real.

We are now in a position to discuss critical points of the mass/energy over the space
of extensions, and in particular show how Bartnik’s work is easily adapted to give
another proof of Corvino’s result on static metric extensions. Previously, the author
considered evolution exterior to a 2-surface [14]; however, the data was not fixed on
the boundary so the conclusion is somewhat different. In the context of the static metric
extension conjecture, it is more interesting to consider fixed boundary data.

It should be emphasised here that this section is to be understood as a discussion,
or commentary, on the implications of Bartnik’s earlier work, rather than a new inde-
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pendent work. It is our hope that Conjecture 1 is established in the near future, and
furthermore that the boundary conditions can be replaced with Bartnik’s geometric
boundary conditions. A variational argument such as this, with boundary conditions
directly relevant to the Bartnik mass, would be of significant interest.

Proposition 1 (cf. Corollary 6.2 of Ref. [3]) Fix (g, π) ∈ C(ρ, j), where (ρ, j) ∈
L1. Assume that Conjecture 1 holds, and further assume that a weak solution, λ to
DΦ(g, π)∗[λ] = f for f ∈ L2−5/2(S

2⊗Λ3)×H1−3/2(S2), is indeed a strong solution;
that is, if λ ∈ N ∗ satisfies

∫
M

λ · DΦ(g, π)[h, p] =
∫
M

f · (h, p)

for all (h, p) ∈ T(g,π)F , then DΦ(g, π)∗[λ] = f . Then if Dm(g, π)[h, p] = 0 for
all (h, p) ∈ T(g,π)C(ρ, j), (g, π) is a stationary initial data set.

The assumption that weak solutions imply strong solutions is a result obtained in
proving the analogue of Conjecture 1 in [3]; it is expected to be true here too. Note
that Conjecture 1 and the additional condition regarding weak solutions are precisely
the requirements for the arguments given in Sections 5 and 6 of [3] to hold. In fact,
Proposition 1 follows directly from these arguments if one replaces the function spaces
used there with ours, which include boundary conditions. The proof of Proposition 2 is
essentially the same argument; as such, we only present this and refer the reader to [3]
for the proof of Proposition 1. Note that Proposition 1 above differs from Corvino’s
static extension result, which in our framework is essentially Proposition 2 below.
Let R(g) = R(g)

√
g, and note that Conjecture 1 implies DR(g) : TgG → TgN0 is

surjective, where N0 is the projection of N onto the first (Λ3) factor. In the following,
a static initial data metric is to be taken as a metric g such that there exists a function
N , asymptotic to a constant, satisfying DR(g)∗[N ] = 0. A well-known result of
Moncrief [18] (see also Ref. [5]) implies that the evolution of such an initial data
metric is static. In fact, explicit calculation shows

DR(g)∗[N ] =
(

∇ i∇ j N − ΔgN − N Rici j + N

2
Rgi j

) √
g,

which reduces to the well-known static vacuum equations (cf. Ref. [9]) when R = 0.
It is worth noting that such an N is unique up to scaling, provided the initial data is
not flat [17]. Stationary initial data in the context of Proposition 1 is to be understood
similarly.

Proposition 2 Fix g ∈ Ĉ(ρ) = {g ∈ G : R(g) = 16πρ}, where ρ ∈ L1. Assume that
Conjecture 1 holds, and further assume that a weak solution, λ0 to DR(g)∗[λ0] = f
for f ∈ L2−5/2(S

2 ⊗ Λ3), is indeed a strong solution; that is, if λ0 ∈ N ∗
0 satisfies

∫
M

λ0DR(g)[h] =
∫
M

f · h
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for all h ∈ TgG, then DR(g)∗[λ0] = f . Then if for all h ∈ TgĈ(ρ), we have
DE(g)[h] = 0, it follows that g is a static initial data metric.

Proof Fix some constant N∞ ∈ R, then for N satisfying (N − N∞) ∈ H2−1/2(M),
consider the following Lagrange function for the Hamiltonian constraint:

L(g; N ) = N∞E(g) −
∫
M

N R(g)
√
g. (7)

Note that this is essentially the Regge-Teitelboim Hamiltonian with the momentum set
to zero. While this Lagrange function is well-defined on Ĉ(ρ), it is not the case for a
generic g ∈ G. However, by writing the energy as the volume integral of a divergence
over M (cf. Proposition 4.5 of [3]) the terms combine and the dominant terms cancel
out. In particular, the regularised Lagrange function,

L reg(g; N ) =
∫
M

(N∞ − N )R(g)

+
∫
M

N∞(g̊ik g̊ jl(∇̊k∇̊l gi j − ∇̊i ∇̊kg jl)
√
g̊ − R(g)), (8)

is well defined on all of G, and equal to L(g; N ) where the latter is defined. The first
integral clearly converges since ρ ∈ L1 and the second is bound by noting that the
dominant term in R(g) is g̊ik g̊ jl(∇̊k∇̊l gi j − ∇̊i ∇̊kg jl), when expressed in terms of
the background connection (see Proposition 4.2 of [3], and the explicit expression for
R(g) can be found in Appendix A of [15]). Now we show that if (N − N∞) ∈ W 2,2

−1/2
then we have

DL reg(g; N )[h] = −
∫
M

h · DR(g)∗[N ], (9)

where DR(g)∗ is the formal adjoint of DR(g). This is easily seen by direct calculation,
making use of the following Lemma. �
Lemma 1 (Lemma 4.4 of Ref. [3]) Let SR be the Euclidean sphere of radius R, ER

be the exterior region to SR – the connected component of M\SR containing infinity
– and AR be the annular region between SR and S2R. Suppose u ∈ H1−3/2(ER0), then
for every R ≥ R0, ∮

SR
|u|dS ≤ cR1/2‖u‖1,2,−3/2:AR , (10)

where c is independent of R.

Note first

h · DR(g)∗[N ] − NDR(g)[h] = ∇ i (N (∇̊i h
k
k − ∇ j hi j ) + hi j ∇̊ j N − hkk∇̊i N )

√
g,

and then taking the integral of this divergence over M results in several boundary
terms; those on ∂M vanish due to the boundary conditions. The boundary terms at
infinity of the form h∇̊N are o(r−2), and controlled by
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‖h∇̊N‖L1(SR) ≤ O(R1/2) sup
SR

|h|‖N‖2,2,−1/2 = o(1)

therefore the surface integrals at infinity also vanish. Now, by rewriting

∇ i (N (∇̊i h
k
k − ∇ j hi j )) = ∇ i ((N − N∞)(∇̊i h

k
k − ∇ j hi j ) + N∞(∇̊i h

k
k − ∇ j hi j ))

we see that the integral of the first term again vanishes, since

‖(N − N∞)∇̊h‖L1(SR) ≤ O(R1/2) sup
SR

|N − N∞|‖h‖2,2,−1/2 = o(1).

We are therefore left with∫
M

(h · DR(g)∗[N ] − NDR(g)[h]) =
∫
M

(N∞∇ i (∇̊i h
k
k − ∇ j hi j ))

√
g.

By making similar use of ∇̊ − ∇ and
√
g − √

g̊, we establish (9), which is valid for
all h ∈ TgG.

We now employ the following theorem of Lagrange multipliers for Banach mani-
folds (see Theorem 6.3 of [3]).

Theorem 1 Suppose K : B1 → B2 is a C1 map between Banach manifolds, such
that DK (u) : Tu B1 → TK (u)B2 is surjective, with closed kernel and closed comple-
mentary subspace for all u ∈ K−1(0). Let f ∈ C1(B1) and fix u ∈ K−1(0), then the
following statements are equivalent:

(i) For all v ∈ ker DKu, we have

D f (u)[v] = 0. (11)

(ii) There is λ ∈ (TK (u)B2)
∗ such that for all v ∈ Tu B1,

D f (u)[v] = 〈λ, DK (u)[v]〉 , (12)

where 〈 , 〉 refers to the natural dual pairing.
Let K (g) = R(g) − 16πρ, so that Ĉ(ρ) = K−1(0) and TgĈ(ρ) = ker(DK (g)), and
let f (g) = L reg(g; N ).

Then if g is a critical point of the ADM energy over the space of extensions satisfying
R(g) = 16πρ, we have DE(g)[h] = 0 for all h ∈ ker(DK (g)); that is, (i) in the
above theorem is satisfied. It follows that there exists λ ∈ (TK (g)N0)

∗, such that

−
∫
M

h · DR(g)∗[N ] = Df (g)[h] =
∫
M

λDR(g)[h]

for all h ∈ TgG. That is, λ is a weak solution to DR(g)∗[λ] = F , where F =
−DR(g)∗[N ] ∈ L2−5/2(S

2 ⊗ Λ3). By assumption, this is a strong solution and we
therefore have
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DR(g)∗[λ + N ] = 0;

that is, g is a static initial data set, with static potential (λ + N ) → N∞ at infinity.
It is clear that Theorem 1 should imply a converse statement, however little can be

said about this without explicitly knowing N .

Remark 1 If g ∈ C3 then an argument of Fischer-Marsden [11] (cf. Ref. [9], Propo-
sition 2.3) says staticity implies R(g) = 0. In particular, the above result then implies
for ρ �= 0, any critical points of the mass (subject to the hypotheses holding) should
be rougher than C3. If the condition g ∈ C3 can be weakened to g ∈ H2

loc, then one
concludes that there are no critical points of the mass for ρ �= 0.

4 Energy minimisers in a fixed conformal class

A standard approach to simplify the constraint equations is to look for solutions within a
fixed conformal class (see Ref. [4] and references therein); in this case, the Hamiltonian
constraint becomes elliptic. Here we make use of this simplification by considering the
space of extensions to Ω within a given conformal class. Specifically, we consider a

fixed metric g̃ ∈ G and consider extensions of the form g(φ) = e4φ g̃, with φ ∈ H
2
−1/2.

For simplicity, we assume that M is diffeomorphic to R
3\B0(1); that is, we consider

the most natural extensions to Ω . This affords us the use of the weighted Poincaré
inequality (see, for example, Lemma 3.10 of Ref. [3]).

It should be emphasised that the boundary conditions imposed by the condition

φ ∈ H
2
−1/2 are too strong to be of direct significance to the Bartnik mass. While

motivated by the Bartnik mass, the results in this section are simply of mathematical
interest; it is the hope that similar ideas can be used to prove the existence of a minimiser
in a much larger class of extensions, and therefore gain insight into the computability
of the Bartnik mass. One natural candidate for a larger class of extensions would be to
consider Brill initial data, using a variation of Dain’s mass functional (see, for example
[10]).

The scalar curvature of g = e4φ g̃ is given by the well-known formula,

R(g) = e−4φ(R̃ − 8|∇̃φ|2 − 8Δ̃φ),

where ∼ indicates quantities defined with respect to g̃. This allows us to write the

conformal constraint map, Φ̂ : H2
−1/2(M) × K → L2−5/2(Λ

3 × T ∗M ⊗ Λ3), as

Φ̂0(φ, π) = e2φ

[
(R̃ − 8|∇̃φ|2 − 8Δ̃φ)

√
g̃ − g̃ik g̃ jl(π

i jπkl − 1

2
π ikπ jl)g̃−1/2

]
,

(13)

Φ̂i (φ, π) = 2e4φ
(
g̃i p∇̃kπ

kp + 4g̃i pπ
kp∇̃kφ − 2g̃ j pπ

j p∇̃iφ
)

. (14)

From this point on, we will raise and lower indices, and consider the weighted Sobolev
norms, with respect to g̃ rather than g or g̊. Note that the domain of Φ̂ enforces the
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boundary conditions on (g, π); in particular, the conformal metric g̃ must itself be an
extension of Ω , although it need not necessarily satisfy the constraints.

Proposition 3 For any φ ∈ H
2
−1/2, we have g = e4φ g̃ ∈ G.

Proof It is clear that e4φ g̃ is positive-definite, and using the standard weighted
Sobolev-type inequalities we have,

‖e4φ g̃ − g̃‖2,2,−1/2 ≤ c‖g̃‖∞,0(‖e4φ − 1‖2,−1/2 + ‖e4φ∇̃φ‖2,−3/2

+ ‖e4φ∇̃2φ‖2,−5/2)

≤c ‖g̃‖∞,0(‖e4φ − 1‖2,−1/2 + ‖e4φ‖∞,0‖∇̃φ‖1,2,−3/2).

Note that φ is continuous by the Morrey embedding and |e4φ −1| < 5|φ| near infinity,
so ‖e4φ − 1‖2,−1/2 < ∞. �

Proposition 4 Let (φ, π) ∈ H
2
−1/2(M) × K satisfy Φ̂0(φ, π) = 16πρ, where

ρ ∈ L1−3(Λ
3(M)) is the source energy density. TheADMenergy can then be expressed

as,

16πE = 16π Ẽ +
∫
M

(
(8|∇̃φ|2 − R̃)

√
g̃ + (π i jπi j − 1

2
(πk

k )2)/
√
g̃ + 16πe−2φρ),

(15)
where Ẽ is the ADM energy of g̃.

Proof First we write E in terms of φ and g̃,

16πE =
∮

∞
g̊ike4φ

(
4∇̊k(φ)g̃i j + ∇̊k g̃i j − 4∇̊ j (φ)g̃ik − ∇̊ j g̃ik

)
dS j

=
∮

∞
g̊ik

(
4∇̊k(φ)g̃i j + ∇̊k g̃i j − 4∇̊ j (φ)g̃ik − ∇̊ j g̃ik

)
dS j

+
∮

∞
g̊ik(e4φ − 1)

(
4∇̊k(φ)g̃i j + ∇̊k g̃i j − 4∇̊ j (φ)g̃ik − ∇̊ j g̃ik

)
dS j .

(16)

Lemma 1 can now be used to control the second integrand in Eq. (16),

∣∣∣ ∮
SR

g̊ik(e4φ − 1)
(

4∇̊k(φ)g̃i j + ∇̊k g̃i j − 4∇̊ j (φ)g̃ik − ∇̊ j g̃ik
)
dS j

∣∣∣
≤ c‖e4φ − 1‖∞:SR (‖g̃‖∞:SR‖∇̊φ‖1:SR + ‖∇̊ g̃‖1:SR )

≤ O(R1/2)‖e4φ − 1‖∞:SR (‖g̃‖∞:SR‖∇̊φ‖1,2,−3/2 + ‖∇̊ g̃‖1,2,−3/2).

Now making use of the continuity and asymptotics of e4φ and g̃, the right-hand-side
simply becomes o(1) and therefore vanishes as R tends to infinity. Equation (16) now
becomes
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16πE =
∮

∞
g̊ik

(
4∇̊k(φ)g̃i j + ∇̊k g̃i j − 4∇̊ j (φ)g̃ik − ∇̊ j g̃ik

)
dS j ,

which can be expressed in terms of the energy, Ẽ , of g̃,

16πE = 16π Ẽ + 4
∮

∞
g̊ik

(
∇̊k(φ)g̃i j − ∇̊ j (φ)g̃ik

)
dS j .

Since (g̊− g̃) ∈ H
2
−1/2 and ∇̊φ = ∂φ = ∇̃φ, Lemma 1 can again be used to conclude

16πE = 16π Ẽ + 4
∮

∞
g̃ik

(
∇̃k(φ)g̃i j − ∇̃ j (φ)g̃ik

)
dS j

= 16π Ẽ − 8
∮

∞
∇̃ jφdS

j .

It is now simply a matter of applying the divergence theorem and making use of
the Hamiltonian constraint (13) to complete the proof. �

Henceforth, when we write E(φ, π), we mean to take (15) to be the definition of
the energy, which is well-defined provided both R̃ and the source are integrable.

In the vacuum case (ρ = 0), if R̃ = 0 then it is clear from (15) that the energy of
any solution g in the conformal class of g̃ has energy greater than Ẽ , with equality
only if g = g̃. That is, if there exists a metric ĝ in the conformal class of g̃ with
R(ĝ) = 0 and appropriate boundary conditions satisfied, then the infimum of the
energy is attained by ĝ. Generically such a scalar-flat extension does not exist though,
as our boundary conditions on ∇̃φ are too strong to ensure this. An argument of Cantor
and Brill [7] proves the existence of scalar-flat metrics when no boundary is present,
and a similar argument can be used to guarantee the existence of such an extension
under Dirichlet boundary conditions2; however, this argument does not hold for the
(stronger) boundary conditions here.

Note that the proof of Proposition 4 requires the vanishing of ∇̃g on Σ ; if we
relax the condition on ∇̃φ, there is an extra surface integral on Σ corresponding to
the difference in the mean curvatures due to g and g̃, reminiscent of the Brown-York
quasilocal mass [6]. Interestingly, imposing Bartnik’s geometric boundary conditions
enforce that this term indeed vanishes.

Now we will need the following estimate for the proof of the main result of this
section.

Proposition 5 For u ∈ W 1,2
δ and ε > 0, it holds that

‖u‖4,δ ≤ c(ε)‖u‖2,δ + ε‖u‖1,2,δ. (17)

2 To the best of the author’s knowledge, this argument hasn’t been explicitly published; however, it is almost
certainly true and we intend on explicitly verifying this as part of another project.
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Proof This follows from the weighted Hölder and Sobolev inequalities, the definition
of the weighted norms, and Young’s inequality:

‖u‖4,δ = ‖u1/4u3/4‖4,δ

≤ ‖u1/4‖8,δ/4‖u3/4‖8,3δ/4

= ‖u‖1/4
2,δ ‖u‖3/4

6,δ

≤ c(ε)‖u‖2,δ + ε‖u‖6,δ

≤ c(ε)‖u‖2,δ + ε‖u‖1,2,δ.

�
The main theorem is divided into the two following, related statements:

Theorem 2 Let S+
α be the set of (φ, π) ∈ H

2
−1/2(M) × K, satisfying the following

conditions:

(i) Φ̂0(φ, π) ≥ 0,
(ii) φ ≥ −α,

(iii) Φ̂0(φ, π) ∈ L1−3.

Then either the infimum is achieved over S+
α , or for all minimising sequences

(φn, πn) ∈ S+
α , that is sequences satisfying lim

n→∞ E(φn, πn) = inf
(φ,π)∈S+

α

E(φ, π), we

have that

max

{
‖Φ̂(φn, πn)‖2,−5/2−ε,

‖∇̃kπ
i j
n ‖2,−5/2−ε

‖∇̃ jπ
i j
n ‖2,−5/2−ε

}
→ ∞

for all ε ∈ (0, 1
2 ).

Theorem 3 Let S0 = {(φ, π) ∈ H
2
−1/2(M) × K : Φ̂(φ, π) = 0}. Then either the

infimum is achieved over S0, or for all minimising sequences (φn, πn) ∈ S0, we have

that
‖∇̃kπ

i j
n ‖2,−5/2−ε

‖∇̃ jπ
i j
n ‖2,−5/2−ε

→ ∞ for all ε ∈ (0, 1
2 ).

Remark 2 The conditions (i) and (iii) simply state the source energy density is non-
negative and the total energy is finite, while condition (ii) prevents the limiting metric
from becoming degenerate. In Theorem 2, the alternative ‖Φ̂(φn, πn)‖2,−5/2−ε → ∞
simply excludes the possibility that source energy-momentum blows up as the ADM
energy is minimised, which one imagines is certainly never the case for an initially

integrable source. The alternative,
‖∇̃kπ

i j
n ‖2,−5/2−ε

‖∇̃ jπ
i j
n ‖2,−5/2−ε

→ ∞, unfortunately doesn’t have

an obvious physical interpretation.

Since the two theorems are similar, we prove them simultaneously, noting the
relevant differences.
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Proof From Proposition 4 we have

‖∇̃φ‖2
2,−3/2 + ‖π‖2

2,−3/2 ≤ 32π(E − Ẽ) + 2
∫
M

R̃
√
g̃

− 2π

∫
M

e−2φΦ̂0(φ, π)

≤ 32πE + C̃ . (18)

This implies that if the initial data is sufficiently large then we can guaran-
tee that the energy is large. Let S be either of the sets S+

α or S0, and define
E0 = inf(φ,π)∈S E(φ, π). Now let (φn, πn) be a sequence in the constraint set such that
E(φn, πn) → E0. Note that (18) and the Poincaré inequality imply that there exists a
constant K such that for ‖(φ, π)‖H1−1/2×L2−3/2

> K , we have E(φ, π) > E0 + 1. That

is, truncating the beginning of the sequence if necessary, ‖(φn, πn)‖H1−1/2×L2−3/2
< K .

In particular, extracting a subsequence if required, (φn, πn) convergences weakly in
H1−1/2 × L2−3/2 to a limit, (φ∞, π∞). It remains to be shown that (φ∞, π∞) ∈ S.

In the following, it will be convenient to let δ0 = −ε/2, then we assume

max{‖Φ̂(φn, πn)‖2,−5/2+2δ0 ,
‖∇̃kπ

i j
n ‖2,−5/2+2δ0

‖∇̃ jπ
i j
n ‖2,−5/2+2δ0

} < C , and prove below that the infi-

mum is realised in S.
Proposition 5 and the definition of Φ̂0 give

‖Δ̃φn‖2,−5/2+2δ0 ≤ c(‖R̃‖2,−5/2+2δ0 + ‖∇̃φn‖2
4,−5/4+δ0

+ ‖πn‖2
4,−5/4+δ0

+ ‖e−2φnΦ0(φn, πn)‖2,−5/2+2δ0)

≤ c(ε)(1 + ‖πn‖2
2,−5/4+δ0

+ ‖∇̃φn‖2
2,−5/4+δ0

)

+ ε(‖πn‖2
1,2,−5/4+δ0

+ ‖∇̃φn‖2
1,2,−5/4+δ0

), (19)

which follows from the assumption ‖Φ̂(φn, πn)‖2,−5/2+2δ0 < C and condition (ii) for
the proof of Theorem 2, and from Φ̂(φn, πn) = 0 for the proof of Theorem 3.

Similarly, the assumption
‖∇̃kπ

i j
n ‖2,−5/2+2δ0

‖∇̃ jπ
i j
n ‖2,−5/2+2δ0

< C and the definition of Φi gives

‖∇̃πn‖2,−5/2+2δ0 ≤ c(‖∇̃φn‖4,−5/4+δ0‖πn‖4,−5/4+δ0

+ ‖e−4φnΦi (φn, πn)‖2,−5/2+2δ0)

≤ c(‖∇̃φn‖2
4,−5/4+δ0

+ ‖πn‖2
4,−5/4+δ0

+ 1)

≤ c(ε)(‖∇̃φn‖2
2,−5/4+δ0

+ ‖πn‖2
2,−5/4+δ0

+ 1)

+ ε(‖∇̃φn‖2
1,2,−5/4+δ0

+ ‖πn‖2
1,2,−5/4+δ0

). (20)

We now recall the scale-broken estimate (Theorem 1.10 of Ref. [1], Proposition
4.13 of Ref. [13]):

‖u‖2,2,δ ≤ C
(
‖Δ̃u‖2,δ−2 + ‖u‖2,0

)
. (21)
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Note that the application of the scale-broken estimate here requires ε �= 1
2 . Combining

(21) with (19), applying the weighted Poincaré inequality (cf. Lemma 3.10 of Ref.
[3]) to (20), and choosing ε sufficiently small gives

‖φn‖2,2,−1/2+2δ0 + ‖πn‖1,2,−3/2+2δ0 ≤ c
(

1 + ‖φn‖2
1,2,−1/4+δ0

+ ‖πn‖2
2,−5/4+δ0

)
≤ c

(
1 + ‖φn‖2

1,2,−1/2 + ‖πn‖2
2,−3/2

)
,

since δ0 > − 1
4 . Weak convergence in H2−1/2+2δ0

× H1−3/2+2δ0
follows, and since

δ0 < 0, the weighted Rellich compactness theorem (Lemma 2.1 of Ref [8]) implies
strong convergence in H1−1/2 × L2−3/2.

At this point we consider S = S+
α explicitly, and demonstrate that if (φn, πn) ∈ S+

α ,
then (φ∞, π∞) also satisfies conditions (i)–(iii). Consider

Fn =
(
R̃ − 8|∇̃φn|2 − 8Δ̃φn

)√
g̃ −

(
π2
n − 1

2
(trg̃πn)

2
)
g̃−1/2.

Note that the |∇̃φn|2 and π2
n terms converge weakly in L2−5/2 since

‖π2‖2,−5/2 = ‖π‖2
4.−5/4 ≤ C‖π‖2

1,2,−3/2.

Furthermore, as the map π �→ π2 is a bounded polynomial function from L2−3/2 to

L1−3, it is smooth (see, for example, Chapter 26 of [12]); that is, π2
n converges to π2∞

strongly in L1−3 and by uniqueness of limits π2
n converges weakly in L2−5/2 to π2∞.

Note that |∇̃φn|2 is similar. By simply integrating Δ̃φn against a test function and
integrating by parts, it is clear Δ̃φn converges to Δ̃φ∞ weakly in L2−5/2. It follows

that Fn converges weakly in L2−5/2 to

F∞ =
(
R̃ − 8|∇̃φ∞|2 − 8Δ̃φ∞

) √
g̃ − (π2∞ − 1

2
(trg̃π∞)2)g̃−1/2.

We prove F∞ ≥ 0 by contradiction; assume there is a bounded set U ∈ M such
that F∞ < 0 on U . Let χU be the characteristic function of U , then by the weak
convergence of Fn we have

∫
U
Fn =

∫
M

FnχU →
∫
M

FχU =
∫
U
F∞.

Since Fn ≥ 0 by assumption, we have a contradiction and it therefore follows that
Φ̂0(φ∞, π∞) ≥ 0. An almost identical, albeit simpler, argument shows φ∞ ≥ −α,
and from the definition of E it is obvious that

∫
Φ̂(φ∞, π∞) < ∞. We therefore

conclude (φ∞, π∞) ∈ S+
α .

The case S = S0 is similar, albeit much simpler. �
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Remark 3 Theorem 2 still holds without the assumption of condition (i), however it
is more interesting to impose the weak energy condition.
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