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Abstract In this work we study the dynamics of the Schrödinger–Newton (SN)
equation upon different choices of initial conditions. Setting up superpositions of
Gaussian-like wave packages, a very rich behavior for the critical mass as a function
of the parameters of the problem is observed. We find that, for certain values of the
parameters, the critical mass is smaller than the critical mass for the system whose
initial condition is a single Gaussian wave package, which was the situation previ-
ously investigated in the literature. This opens a possibility that more complex initial
conditions could in fact produce a significant decrease in the value of the critical mass,
which could imply that the SN approach could be tested experimentally. Our conclu-
sions rely on both numerical and analytic estimates. Furthermore, a detailed numerical
study is carried out in order to investigate finite-size effects on the simulations, refining
earlier results already published. In order to facilitate the reproducibility of our results,
a detailed description of our numerical methods has been included in the presentation.
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1 Introduction and statement of the results

Consider the Schrödinger-Newton equation

i h̄
∂Ψ (t, x)

∂t
=

(
− h̄2

2m
Δ − Gm2

∫
R3

|Ψ (t, y)|2
|x − y| dy

)
Ψ (t, x), (1)

where h̄ is Planck’s constant; G is Newton’s constant; m is a real-valued parameter
representing the mass; i2 = −1; Δ is the Laplacian in R

3; and Ψ is the wave-function,
a complex-valued function in R

4 of unit norm in L2(R3). Here, R
4 is physically

thought of as time and space, R
4 = R × R

3, with coordinates denoted by (t, x),
where t is time and x the spatial position. For background on Eq. (1), see Sect. 1.1
below. Here, let us simply point out that Eq. (1) is based on some rather intriguing
hypotheses about the coupling of gravity with matter, leading to a description of
certain non-relativistic quantum-mechanical systems that differs from that provided
by the ordinary Schrödinger equation. Thus, assessing the correctness of Eq. (1) can
potentially provide a phenomenological window into the elusive subject of the behavior
of gravity in the presence of quantum effects.

From a quick heuristic analysis of Eq. (1), it is seen that when m � 1, the dynamics
will be dominated by gravity, i.e., by the term proportional to G, and by the diffusion,
i.e., the term involving Δ, when m � 1. Thus, it is natural to expect that there
exists a value of m, henceforth called the critical mass and denoted mc, for which
the gravitational and the diffusive terms are “balanced”. Previous works refer to mc

as a mass value above which the package “collapses” [54], or a value below which
the dispersion is “gravitationally inhibited” [26]. Experimentally observing such a
collapse would be tantamount to verifying a prediction based on the Schrödinger-
Newton equation, hence suggesting the validity of the underlying assumptions that lead
to Eq. (1) (some of such assumptions are discussed in Sect. 1.1 below). It becomes,
therefore, important to estimate mc quantitatively, particularly if such an estimate
yields values of mass accessible to current technology.
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Initial condition dependence and wave function confinement… Page 3 of 23 129

Naturally, an initial condition Ψ (0, x) has to be provided in order to solve Eq. (1),
and one expects that mc will depend upon Ψ (0, x). When the initial condition is
a (radially symmetric) Gaussian of width σ , the value of mc has been investigated
initially by Carlip and Salzman [50], and subsequently in more detail by Giulini

and Großardt [26] and Meter [54]. They found that mc is of the order
(

h̄2

Gσ

) 1
3 ≡

mr . With this estimate at hand, we can in principle test Eq. (1) experimentally by
evolving a quantum-mechanical system of mass m � mc whose wave function at
t = 0 is as just described. If, under these conditions, the wave-function of the system
remains confined in a region of space rather than spreading out as predicted by standard
quantum mechanics (or if the spreading is gnificantly slower than that predicted by the
Schrödinger equation for a free particle), then we would have found evidence favoring
a description based on the Schrödinger-Newton equation. Actually implementing this
procedure, however, is technically challenging in that one has to construct, in a lab,
a physical system that is described in terms of a wave-function of width σ , having a
mass of the ordermc, and for which, at the same time, quantum-mechanical effects can
be precisely measured. To understand where the difficulty lies, one simply has to point
out that systems whose quantum mechanical nature is manifest in lab experiments tend
to have very tiny masses and wave-packages of small width, a situation that precludes

m �
(

h̄2

Gσ

) 1
3
. This is the case even when one considers the so-called “heavy” systems

for which quantum effects can still be experimentally observed. For instance, current
day molecular interferometry technology allows experimentalists to build systems
corresponding to wave-packages of size σ ∼ 0.5μm and masses as large as m ∼ 103u
[3,31]. This is still, however, several orders of magnitude below the corresponding mc

for σ ∼ 0.5μm, namely, mc ∼ 109u.
In light of the above, an obvious question is whether it is possible to find initial

conditions that produce smaller values for mc. In other words, dependence of mc on
Ψ (0, x) raises the possibility that there exist initial conditions that lead to values mc

closer to what can be achieved in actual experiments of quantum mechanical systems.
This is the problem addressed in this manuscript.

We take as Ψ (0, x) a superposition of a Gaussian peaked at the origin and a
Gaussian-like function peaked away from the origin. By Gaussian-like, we mean a
radially symmetric function that is in fact a Gaussian centered at some R > 0 with

respect to the radial variable r , i.e., a function of the form ∼ e− (r−R)2

2σ2 . Obviously,
such a function is not a Gaussian in R

3 (unless R = 0), but it retains the Gaussian
features of being radially symmetric and peaked at R. While a superposition of two
actual Gaussian would also sound natural, this would break radial symmetry when
one of them is not centered at the origin, making the analytic and numerical estimates
more difficult. Figure 1 illustrates our initial conditions. We notice that simply taking

e− (r−R)2

2σ2 rather than a superposition will not have the desired effect of lowering mc

(see Sect. 1).

Main result. Putting ψR = e− (r−R)2

2σ2 , we write explicitly Ψ (0, x) = A(ψ0 + ψR),

where A is a normalization constant and ψ0 = e− r2

2σ2 . We investigate how mc varies
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Fig. 1 Illustration of a typical initial condition

with the separation R between the two peaks. The results are summarized in Fig. 5,
wheremc is plotted, in units ofmr , as a function of R. The two curves in Fig. 5 represent
the analytic and numerical estimates. Both agree qualitatively, with the quantitative
discrepancy probably stemming from some of the rough approximations we have
employed in the analytic calculations as discussed below. Our results show that mc

decreases in comparison to mr for certain choices of R. While this decrease is barely
by an order of magnitude, thus still far from what is needed to reach values of masses
achievable in lab experiments in the foreseeable future, the main message here is that

it is possible to obtain values of mc less than mr ≡
(

h̄2

Gσ

) 1
3
upon suitable choices

of initial conditions. This raises the interesting possibility that more complex initial
conditions could in fact produce a significant decrease in the value of mc.
Figure 5 also shows that the critical mass of our system approaches mr when R � 1.
This behavior is discussed in detail in the “Appendix 4”. In a nutshell, when R becomes
very large, the system “decouples” into two subsystems associated with ψ0 and ψR .
For ψR , a very large value ofm is necessary to prevent the system from spreading, thus,
ψ0 is solely responsible for the confining behavior when m = mc. Therefore, noticing
that, by construction, mc = mr when R = 0, it can be concluded that the observed
lowering of the critical mass in relation to mr is a consequence of the interaction
of the parts of Ψ (t, x) associated with ψ0 and ψR . In physical terms, this can be
understood as follows. For R � 1, the gravitational interaction between the packages
concentrated near zero and near R is negligible, and thus confinement can only happen
due to the self-interaction of each of these packages. However, when the two packages
are near each other, not only does their self-gravitational interaction work against
the diffusive term, but their mutual interaction also contributes to the confinement.
This raises the obvious question of what happens when several (i.e., more than two)
packages are employed, but this is not addressed in this work.
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Notice that the question of whether wave functions whose associated probability
density resembles some given intricate initial condition (or even our Ψ (0, x)) can
be realized in laboratories is left untouched here. If it turns that such constructions
seem out of reach, this would definitely diminish the appeal for the investigations
we have carried out. On the other hand, we should not underestimate the ability of
experimentalists in producing actual far-reaching quantum states of matter, as many
recent advances have demonstrated [3,8].

A second question addressed in this paper is that of the robustness of earlier numer-

ical results. Although the estimate mc ∼
(

h̄2

Gσ

) 1
3

for a single wave-packet as initial

condition has been independently verified by Giulini and Großardt [26] and Meter [54],
and their results agree with standard analytic estimates, leaving little doubt about
the correctness of their results, we believe that a third and more thorough verifica-
tion is beneficial. This seems appropriate especially in light of finite-size effects that
inevitably plague numerical simulations. Such effects have not been reported in Giulini
and Großardt, and have been dealt with by Meter via a clever, albeit artificial, choice
of boundary conditions. In this regard, it is perhaps worthwhile to remember that the
first reported numerical results concerning mc were very crude [50], and it took about
five years after [50] for a coherent and more reliable picture to emerge. Such caution is
particularly important when one takes into account the non-linear and non-local nature
of Eq. (1). Reassuringly, although by no means surprisingly, our results confirm those
of [26,54].

We finish this section with an important conceptual consideration. We find that the
regime where the gravitational interaction becomes relevant involves large values of
mass, as indicated in Fig. 5. Such values of mass can only occur in large systems,
such as the type of heavy molecules previously referred to, requiring a description
of multi-particle systems. On the other hand, we are considering the dynamics of a
single mass distribution self-interacting via Eq. (1). In order to make these two ideas
compatible, one has to work with systems where the multi-particle dynamics can be
reduced to that of its center-of-mass, with the latter described by Eq. (1). The dynamics
of the center-of-mass has been analyzed by Giulini and Großardt in [28]. They found
that if the extent of an object is small in comparison to the uncertainty in localisation
of its centre of mass, then Eq. (1) provides a good approximation for the dynamics
of the multi-particle system, and our results should be understood in this context. See
also the discussion in [1].

1.1 Background

In this section we describe some of the reasoning leading to Eq. (1), and specialists
may want to skip this section.

As it is well-known, reconciling Einstein’s General Theory of Relativity and Quan-
tum Mechanics is one of the main open problems in contemporary Theoretical Physics.
Whether this has to be achieved by finding a suitable theory of quantum gravity or by
modifying Quantum Mechanics in a way that would allow it to be consistently coupled
to classical General Relativity (or some other, more general, theory of gravity), is still
an open question, although many plausible arguments point in the direction of the
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former alternative, which also seems to be the consensus among the majority of the
physics community. See, e.g., [10,52,55,56] for a general discussion.

If one assumes that gravity is quantized, then the outstanding success of General
Relativity implies that quantum aspects pertaining to the gravitational field are negli-
gible in most phenomena presently accessible to observation. However, it is expected
that quantum gravity becomes important in the presence of extremely strong gravita-
tional fields, such as those believed to exist in the interior of black hole event horizons
and in the early universe. Unfortunately, despite much progress over the decades,1 we
still lack a robust theory of quantum gravity that could be used to make indirect, yet
sufficiently accurate, predictions to match with observations. And due to the energy
scales involved, direct measurements of quantum gravitational phenomena seem to be
out of the question for generations to come, if not forever.

Given such a state of affairs, it seems natural to use some sort of semi-classical
approximation to try to understand general features of how gravity interacts with
matter. One hopes to be able to construct semi-classical models that retain enough
features of the underlying full-fledged quantum description as a way of extracting
information that can help us to constrain current theories of quantum gravity. For
instance, despite being derived in a semi-classical formalism, the Hawking radiation
[32] is an important guide to quantum theories of gravity, so that the ability to reproduce
it becomes one of the first tests to any theory that attempts to quantize the gravitational
field.

In such semi-classical approaches, one describes the gravitational field classically,
but imposes quantum behavior on the matter present in the model in question. Spec-
ifying how matter interacts gravitationally is one of the main aspects of the model,
and different choices are available. The most common choices rely on Quantum Field
Theory on Curved Backgrounds, where one performs field quantization in a space-
time background that satisfies Einstein’s equations. The matter-gravity interaction is
described via a minimal coupling, with backreaction effects on the metric tensor gen-
erally (but not always) ignored. See the monographs [7,23,39,55] for an in-depth
exposition, or the introduction in [17] for a short discussion. While this approach
is very natural, it is technically challenging, thus one may ask if there are further
simplifications that can lead to more tractable models.

One further simplification would be to consider non-relativistic models. As the non-
relativistic limits of Quantum Field Theory and General Relativity are, respectively,
ordinary Quantum Mechanics and Newtonian gravity, one possibility is to consider
quantum matter that interacts gravitationally via a Newtonian gravitational potential.
This is the situation described by the Schrödinger–Newton equation. Its physical con-
tent is as follows. Consider a spatially extended mass distribution that self-interacts
gravitationally according to Newton’s law of gravity. Denoting the total mass by m

1 Any list of references on this is doomed to be very incomplete, but we mention the following works. For
standard treatments of String Theory and its relation to the quantization of the gravitational field, see [30,45],
or [5] for a more recent monograph. Attempts at constructing semi-realistic models out of String Theory
and the related problems of stabilization and de Sitter vacua can be found in [2,9,16,19–22,29,33,53]
and references therein, while connections with cosmology are explored in [4] and their references. For
approaches based on Loop Quantum Gravity, see [48,49], or the recent survey [13], and references therein.
For approaches based on Twistors, see [40,41,44] and references therein.
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and the mass density function by ρm , the gravitational potential Φ satisfies

ΔΦ = 4πGρm,

where G is Newton’s constant. Suppose that the matter in the above equation is
described quantum mechanically, in the sense that the time-evolution determines only
the probability of finding an amount δm of the mass within a volume δV in space, and
that such probability is given by the ordinary Schrödinger equation. In this case, the
probability density, �, is given by

� = |Ψ |2,

where the probability density and the mass density are linked through mass by �m =
ρm and Ψ is a wave-function satisfying Schrödinger’s equation with a potential given
by Φ,

i h̄
∂Ψ

∂t
=

(
− h̄2

2m
Δ + mΦ

)
Ψ.

Combining the above, we obtain the Schrödinger–Newton equation Eq. (1).
Several remarks are in place. In considering the above reasoning, a specific assump-

tion about the behavior of gravity coupled to matter in the quantum-mechanical realm
is made. It consists of a modification of Schrödinger’s equation, allowing for self-
interaction inasmuch a massive particle is present, regardless of the existence of
an external potential. In particular, the concept of free particles no longer exists.
Such a modification, it should be noticed, is not excluded by current theoretical and
experimental understandings of quantum mechanics because (a) we do not know pre-
cisely what quantum gravity is, and, therefore, the details of its possible semi-classical
regimes are open to exploration; and (b) consequently, the limits where a semi-classical
description is valid are not known either. Furthermore, it should come as no surprise
that the Schrödinger equation is replaced by a more accurate description of quantum
mechanical behavior once a more fundamental theory of gravity coupled to matter is
formulated. The real question is whether this modification looks like Eq. (1) in some
appropriate limit. Regarding this question, what makes the Schrödinger–Newton equa-
tion interesting is that the scales involved are far more modest than those of full-fledged
theories of quantum gravity, even in the face of the aforementioned gap between known
values ofmc and current technology. This is one of the reasons why Eq. (1) has recently
attracted considerable attention (see, e.g., [11,26,28,50,54] and references therein).
Recently, electromagnetic interactions have been added to the Schrodinger–Newton
equation to include relativistic effects [37].

Although above we have given a motivation to study Eq. (1) on the basis of a semi-
classical analysis, it ought to be stressed that the Schrödinger–Newton equation also
plays an important role in some approaches that assume that gravity remains funda-
mentally classical at all levels, and in Penrose’s discussion of the “collapse” of the
wave-function [42,43] (although it should be stressed that the meaning of the term
“collapse” here has nothing to do with the infamous “collapse of the wave-function”).
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We refer the reader to [28,54] for a more detailed discussion of the theoretical under-
pinnings of Eq. (1). In passing, we point out that Eq. (1) does follow from certain
non-relativistic limits of the Einstein-Klein-Gordon or Einstein-Dirac systems [27].

We finish this section pointing out that the study of equation Eq. (1) has also spurred
a great deal of activity in the mathematical community. See, e.g., [6,12,14,15,18,24,
25,34–36,38,47,51].

2 Analytic estimate of the critical mass

In this section, we provide analytic estimates for the critical mass. We proceed essen-
tially as in section 3.1 of [26], making the necessary adaptations for our initial
condition. Unfortunately, some of the computations are extremely long, involving
several page-long expressions (although they are by no means difficult, consisting
essentially of derivatives and algebraic manipulations). Hence, we will describe the
procedure, omitting some of the explicit expressions. The final expression for mc is
given in the “Appendix”.

Consider the following wave function for a free particle of mass m (i.e., a solution
to the ordinary Schrödinger equation):

ΨR(t, x)=
⎛
⎝√

π

(
1+ i h̄t

mσ 2

) 3
2

√
σ(2Rσe− R2

σ2 +√
π(2R2+σ 2)(1+Erf(R/σ)))

⎞
⎠

−1

×e

− (r−R)2

2σ2
(

1+ i h̄t
mσ2

)
, (2)

where Erf is the error function and r2 = |x |2. Thus, ΨR(0, x) has the form described

in the introduction, e− (r−R)2

2σ2 up to a normalization factor. Naturally, ΨR reduces to the
usual free-particle solution with a Gaussian initial condition when R = 0. In fact, the
calculations below reduce to those in section 3.1 of [26] when R = 0.

Define

Ψ (t, x) = A (Ψ0(t, x) + ΨR(t, x)),

where A is a normalization constant. By the linearity of the Schroödinger equation, Ψ

is a solution with initial condition Ψ (0, x) ∼ e− r2

2σ2 + e− (r−R)2

2σ2 . The radial probability
density associated with Ψ (t, x) is

�rad(t, r) = 4πr2|Ψ (t, x)|2.

In principle, differentiating �rad with respect to r , we can find the critical points of
�rad, and in particular the value of r for which �rad has a global maximum, henceforth
called rp (it can be inspected graphically that such a maximum in fact exists). It is a
function of t , i.e., rp = rp(t). It also depends, of course, on the other parameters of
the problem, σ , R, m, and h̄, but this dependence will be omitted in order to simplify
the notation.
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Unfortunately, the expressions involved in this procedure are too complicated and
it is unlikely that rp can be found explicitly as a function of t , as in the case where
R = 0. Since the acceleration of the density’s peak, r̈ p, is needed to estimate mc, we
will proceed as follows (recall that we are following the ideas of [26]).

Because rp is a critical point of �rad, it satisfies

∂�rad(t, rp)

∂r
= 0, (3)

where the above means ∂�rad(t,r)
∂r evaluated at rp, i.e., ∂�rad(t,r)

∂r

∣∣∣
r=rp

. Differentiating

Eq. (3) twice in time, and solving for r̈ p, we obtain r̈ p as a function of t , ṙ p and rp,
which we write symbolically as

r̈ p(t) = f (t, ṙ p(t), rp(t)).

Evaluating this expression at zero and using that ṙ p(0) = 0, we obtain r̈ p(0) as a
function of rp(0), which again we write symbolically as

r̈ p(0) = f (rp(0)).

Next, we need rp(0). Here, as before, we need to solve Eq. (3) for r , except that now
we also set t = 0, and, again, we find that the resulting expression is too complicated
to allow for an explicit solution. However, for the case t = 0, Eq. (3) simplifies
considerably, so that rp(0) can be found numerically. We remark that Eq. (3), at t = 0,
has more than one solution, but once the solutions are found it is easy to directly verify
which one is the global maximum. Notice that rp(0), and therefore r̈ p(0), is a function
of σ , R, m, and h̄, although this fact is obscured by the numerical procedure necessary
to determine rp(0).

To find mc, we set r̈ p(0) equal to the Newtonian gravitational attraction given by
Gm/(rp(0))2,

r̈ p(0) = Gm

(rp(0))2 . (4)

As r̈ p(0) and rp(0) are functions of σ , R, m, and h̄, we can solve for m in terms of
the remaining parameters. Doing this for different values of R yields the first graph in
Fig. 5.

We remark that this procedure gives an explicit expression for mc in terms of σ , R,
m, h̄, and rp(0), which is given in the “Appendix 3”. Indeed, from the above procedure,
we obtain explicitly r̈ p(0) in terms of rp(0), and thus Eq. (4) producesmc as just stated
after solving for m. It is only to find rp(0) that a numerical solution is needed. In
particular, because such explicit expressions are available and a numerical algorithm
had to be implemented solely to determine rp(0), we still characterize this argument as
an “analytic” estimate of mc. In fact, the procedure yielding rp(0) consists of a simple
root finding for an algebraic equation. We thus reserve the the term “numerical” for
methods that fully deserve this name, as the numerical solutions to Eq. (1) investigated
in the next section.
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Finally, it should be pointed out that the procedure described in this section involves
the crucial approximation of eventually evaluating all the time-dependent quantities
at time zero. While this is sensible, since one would expect that if gravity is going
to confine Ψ (t, x), this should happen at earlier times before the wave-function has
spread out considerably, it is an approximation nonetheless. For the case R = 0,
more accurate analytic tools are available in [26], but it seems that it would be far
too complicated to implement them in our case. We believe that this approximation
combined with the convoluted form of our initial conditions is responsible for the
discrepancy between the analytic and numerical methods observed in Fig. 5.

3 Numerical methods

To study the time behavior of the Schrdinger-Newton equation, we solve equation
Eq. (1) numerically using the initial conditions described above and illustrated in
Fig. 1. We follow the numerical method used in [26], with the difference that units of
mass, time and space are expressed in terms of G, h̄ and σ , as in the reference [54]. The
initial value of the width of the wave-package σ is the distance unit, tr = (σ 5/Gh̄)1/3

is the unit of time, andmr = (h̄2/Gσ)1/3 is the unit of mass. The convenience of these
units is that they exhibit the scale-invariance of the Schrodinger–Newton equation and
reduce the problem to a single parameter, namely, the mass. If one replaces the mass
by m = mr m̃, t = tr t̃ and r = σ r̃ , the Eq. (1) can be written as

i
∂Ψ (t̃, r̃)

∂ t̃
=

(
− 1

2m̃
Δ + m̃Φ(t̃, r̃)

)
Ψ (t̃, r̃), (5)

with
ΔΦ = 4πm̃|Ψ (t̃, r̃)|2. (6)

Hereafter, all results will be given in terms of the reduced units. The details necessary
to reproduce our numerical results are explained in “Appendix 1”. Here, we will
discuss only two important aspects of the numerical solutions: the boundary and initial
conditions

3.1 Boundary conditions

The system under study lives in an infinite space. However, the simulation box has
to be finite and the outer boundary should be far enough from the origin in order to
avoid reflection of the wave packet at the boundary. To solve this problem, Meter [54]
uses Neumann boundary conditions in his simulations. This means that the part of
the packet that touches the outer boundary is eliminated from the simulation domain.
Here, we keep the system size big enough to avoid such reflections. In practice, a big
system of size L is chosen and the simulation is run during an interval of time such
that the wave packet calculated at the boundary is negligible. Explicitly:

�rad(r̃ = L) ≤ 10−8.
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3.2 Initial conditions

We use two different shapes for the wave packet as initial conditions. The first one
initializes the system with a spherically symmetric Gaussian packet:

Ψ0(t̃ = 0, r̃) = (π)−3/4 exp

(
− r̃2

2

)
. (7)

This condition was introduced in previous works, [26,50,54], and here it is used
to compare our simulations with previous numerical results. In references [26,54], a
difference of about 20 % in the critical mass was found. We will comment on this in
“Appendix 2”.

The second initial condition is a combination of two Gaussians in the radial variable,
as illustrated in Fig. 1:

Ψ (t̃ = 0, r̃) = Ψ0(r̃) + ΨR(r̃) , with

Ψ0(r̃) = A1 exp

(
− r̃2

2

)
, and

ΨR(r̃) = A2 exp

(
− (r̃ − R)2

2

)
,

(8)

where A0 is such that
∫ ∞

0 r̃2|Ψ0|2dr̃ = A, A2 is such that
∫ ∞

0 r̃2|ΨR |2dr̃ = A and A
such that

∫ ∞
0 r̃2|Ψ |2dr̃ = 1. Note that when R = 0 it reduces to the case with only

one Gaussian, Eq. (7).
In the next section we describe the evolution of the system using this initial con-

dition and compare the critical mass measured numerically with the result obtained
analytically in Sect. 2.

4 Results

In this section we present the study of the evolution of the Schrödinger–Newton equa-
tion (5) using as initial condition the distribution expressed by Eq. (8). The distance,
R, between the Gaussian peaks is left as a free parameter to explore the corresponding
values for the critical mass, mc. Also in this section, we describe the criterion to define
the critical mass and compare the numerical results with the analytical predictions
discussed in Sect. 2.

Figure 2 describes the system behavior as a function of time for the particular initial
condition with a single Gaussian centered at the origin, Eq. (7). Two kinds of measures
are shown in this figure: (a) the value of the peak rp of the radial probability density,
�rad(r̃), as a function of time, and (b, c) plot of �rad(r̃) as function of the position r̃
at different times for different values of m. These figures show clearly that there are
two distinct regimes: one at small m where the packet diffuses and the other, at larger
m when it oscillates. We can then define mc as being the value of mass for which
the system changes its behavior from diffusive to oscillatory. Nevertheless, from a
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Fig. 2 Results for the case of a single gaussian R = 0. a The peak of the radial probability density
�rad(r̃) = 4π r̃2|Ψ |2, rp , plotted against time for several masses, whose values are shown in the figure.
Vertical dashed lines indicate the interval of time ΔT used to measure the average of rp and define 〈rp〉. b
Radial probability density �rad as a function of r̃ at different times (specified in the legend) form = 1.14mr .
c Radial probability density �rad as a function of r̃ at different times for m = 1.24mr . Each color represents
a different instant of time, which is specified in the legend of the figure. Distances are in units of σ and time
in units of tr . The system size is L = 104σ , Δr = 0.01σ and Δt = 0.01tr (numeric parameters Δr and
Δt are defined in “Appendix 1”) (color figure online)

numerical point of view this definition is hard to fulfill. We then need a practical
criterion that is defined in the following.

The quantitative definition of the critical mass mc. The critical mass mc is defined
as the smallest value of mass for which the solution is oscillatory. We stress that
this definition has some arbitrariness, because it depends on the interval of time ΔT
during which one defines the average value of rp, 〈rp〉. Also, it has to be assured
that the system size is big enough to avoid interference with the wave reflecting at
the outer border of the system. Quantitatively, we chose the simulation time such that
�rad(r̃ = L) < 10−8. For the system size used in the case of Figs. 2 and 3, L = 104σ ,
one can safely use ΔT ∈ [2000tr − 4000tr ]. This interval is represented in the figures
by the vertical lines.

Similar results as the ones shown in Fig. 2 were already reported in the references
[26,54]. As already pointed out, these results differ by about 20 %, a point to which
we return in “Appendix 2”. The novelty here is that we go further and search mc for
other initial conditions. An example is given in Fig. 3, where we do the same analysis
as in Fig. 2 but with an initial condition where there is one Gaussian at the origin and
a second one at a distance R = 5σ . Qualitatively we observe the same behavior in
both cases. The difference is quantitative: the critical mass mc changes depending on
the value of R.

We further simulate various initial conditions (in other words, different values of
R) and, for each R, scan several values of mass. We then measure the average value of
rp during the interval ΔT and plot it as a function of m for different values of R. This
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Fig. 3 Same measures as shown in Fig. 2, but here the results are for the initial condition with R = 5σ . aThe
peak of the radial probability density �rad = 4π r̃2|Ψ |2, rp , plotted against time for several masses. Vertical
dashed lines indicate the interval of time ΔT used to measure the average of rp . bRadial probability density
�rad as a function of r at different times (specified in the legend) for m = 0.85mr . c Radial probability
density �rad as a function of r̃ at different times for m = 1.20mr . Each color represents a different instant
of time, which is specified in b. Distances are in units of σ and time in units of tr . The system size is
L = 104σ , Δr = 0.01σ , and Δt = 0.01tr . The time evolution of the radial probability density for the
masses exemplified in b and c are also shown in an animation in the supplementary material for time above
t = 100tr (color figure online)
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Fig. 4 Average value of rp versus m for various initial conditions [different values of R, Eq. (8)]. The
dashed blue line is the threshold limit to define mc . 〈rp〉 and R are measured in units of σ and m in units
of mr . 〈rp〉 is defined during the interval ΔT ∈ [2000tr , 4000tr ], which is indicated in Figs. 2 and 3 by the
vertical dashed lines (color figure online)

is shown in Fig. 4. Note that in Fig. 4 we plot not only the cases where the solution is
oscillatory but also when it is diffusive. It is clear that when the solution is diffusive,
〈rp〉 is not representative of the behavior of the packet, since it keeps increasing during
the measurement interval. For all R simulated, Fig. 4 shows a smooth behavior of 〈rp〉
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Fig. 5 The critical mass mc as a function of the position R of the peak second Gaussian [Eq. (8)] for the
theoretical computation in a and from numerical simulations in b. Note that the scale of distances are not
the same in both figures because the agreement between the simulations and the analytical estimate is only
qualitative, as discussed in the text. Masses are in units of mr and R in units of σ

withm. In other words, there is no clear modification in the behavior of 〈rp〉 for a given
m that could suggest a clear definition of mc. This pushes us to adopt the following
criterion to quantitatively definemc: For all R simulated we analyze the curves of rp as
a function of time, as exemplified in Figs. 2a and 3a, and we observed that, regardless
the initial condition, when rp passes a distance of ≈ 20σ from the origin, the packet
does not come back again. We then define mc as a value of mass at which 〈rp〉 = 20σ .
We emphasize that this criterion involves a degree of arbitrariness, and it can depend
on the system size or on the parameters (Δt , Δr ) of the simulation. However, the
parameters (L ,Δt , Δr ) have been varied and the essence of the wave packet behavior
remained robustly the same.

Figure 5 summarizes the main result of this work. It shows how the value of the
critical mass mc varies when R changes from 0 to ∞ in an analytic estimate (Fig. 5a)
and in the numerical simulations (Fig. 5b). Since the analytical estimate uses the initial
shape of the wave packet, ignoring its dynamical evolution, it is not surprising that it
has no quantitative agreement with the numerical simulations. However, the results
from the theory and from the numerical simulations do share three interesting aspects:
(i) the behavior of mc is non-monotonic with R; (ii) in particular, mc has a minimum
value, denoted asmmin

c , that is smaller thanmc at R = 0; and (iii) when both Gaussians
are very far from each other (limit of large R), the mc is the same as in the case with
only one Gaussian (R = 0). The point (iii) can be understood as a “decoupling” of
the system into two weakly interacting subsystems when R is large. This is intuitively
reasonable from the fact that the gravitational interaction decays with the distance,
and it can be shown directly from Eq. (1). It is discussed in detail in “Appendix 4”.

We stress that the main conclusions are robust against the exact criterion used to
define mc. We defined mc as a value of mass at which 〈rp〉 = 20σ . From Fig. 4, we
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observe that we could have chosen a slightly different threshold to define mc, as, for
example, 〈rp〉 = 10σ or 〈rp〉 = 30σ . This would for sure change the absolute value
of mc, but it would not change the conclusions (i), (ii), and (iii) commented above.

Appendix 1: Details of the numerical methods

In this section we explain all the details necessary to solve the Eq. (5) numerically. We
stress that the procedure used here is very similar to the one developed in the reference
[26], but with the reduced variables used in [54]. We keep the same notation as in
[26] as much as we can. We also note that, equation Eq. (5) is written in terms of the
reduced variables m̃, t̃ and r̃ . However, to simplify the notation, in this section we
replace m̃ → m, t̃ → t ; and r̃ → r .

For concreteness, we rewrite Eq. (5) in a suitable way:

i
∂Ψ

∂t
= HΨ, (9)

H = 1

2m
Δr + mΦ. (10)

The formal solution of this equation is given by Ψ (t, r) = e−i HtΨ (0, r). We
observe that this is the solution when H does not depends on time t . In the case of
Eq. (1), H depends on Ψ which depends on t . However, for the numerical solution we
assume that the time discretization is small enough to consider Ψ as constant during it.
The first step to solve Eq. (9) numerically is to discretize it in time and in space: time
is written as t = nΔt and the space as r = jΔr , where both j and n are integers, Δt is
the time discretization, and Δr is the space discretization. The wave function is then
denoted as Ψ n

j = Ψ (r = jΔr, t = nΔt). A numerical method to solve this equation
needs to be both stable and unitary (required because the probability of finding a
particle in the whole space should be constant). It is known that the Cayley’s form for

the finite-difference representation of e−i Ht , given by � 1 − i HΔt/2

1 + i HΔt/2
, meets these

two criteria [46]. This form leads to the following representation of the solution of the
above equation:

(
1 + 1

2
i HΔt

)
Ψ n+1

j =
(

1 − 1

2
i HΔt

)
Ψ n

j . (11)

With algebraic manipulation, Eq. (11) can be expressed as

Ψ n+1 =
[

2

(
I + i

Δt

2
H

)−1

− I

]
Ψ n . (12)

We then define the matrix Q,

Q = 1

2

(
I + i

Δt

2
H

)
, (13)
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and Eq. (12) can be simplified to

Ψ n+1 =
(
Q−1 − I

)
Ψ n = χn − Ψ n, (14)

where
χn = Q−1 Ψ n . (15)

Setting up the matrix Q

To build the matrix Q, we need to handle the two terms of the hamiltonian represented
by the Eq. (10): the Laplacian operator and the nonlinear term Φ.

The radial component of the Laplacian, Δr , in spherical coordinates is given by

Δr =

⎧⎪⎪⎨
⎪⎪⎩

∂2

∂r2 + 2

r

∂

∂r
if r > 0

3
∂2

∂r2 if r = 0,

(16)

which can be discretized in the following way,

ΔΛn
j =

⎧⎪⎨
⎪⎩

1

(Δr)2

(
j − 1

j
Λn

j−1 − 2Λn
j + j + 1

j
Λn

j+1

)
if j > 0

1

(Δr)2 (−6Λn
0 + 6Λn

1) if j = 0.

(17)

The second term of the Hamiltonian, Φ, is the solution of the Possion equation,
Eq. (6). We apply the Green method to solve it [54]:

φ = −
∫ ∞

0
G(r, r′)|Ψ (r ′, t)|2dV ′,

where G(r, r′) is the Green function,

G(r, r′) = 1

4π max(r, r ′)
. (18)

The result is given by

φ = −4πm

[
1

r

∫ r

0
|Ψ (r ′, t)|2r ′2dr ′ +

∫ ∞

r
|Ψ (r ′, t)|2r ′dr ′

]
. (19)

The expression above can be discretized as

φn
j = −4πm(Δr)2vnj , (20)
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where

vnj = 1

j

j−1∑
i=0

|Ψ n
i |2i2 +

N−1∑
i= j

|Ψ n
i |2i. (21)

Since we now have all the parts of the Hamiltonian discretized, we can write the
matrix Q in the following way:

Q =

⎛
⎜⎜⎜⎜⎜⎝

b0 c0 0 0 · · ·
a1 b1 c1 0 · · ·
0 a2 b2 c2
...

... · · ·
0 · · · aN−1 bN−1

⎞
⎟⎟⎟⎟⎟⎠

, (22)

with

a j = β
j − 1

j
for 0 < j ≤ N − 1, (23)

b0 = 1

2
− 6β − γ v0, b j = 1

2
− 2β − γ v j for 0 < j ≤ N − 1, (24)

c0 = 6β c j = β
j + 1

j
for 0 < j < N − 1, (25)

and γ and β being defined as

β = − i

8m

Δt

(Δr)2 and γ = iπm2(Δt)(Δr)2. (26)

Since matrix Q (22) is tridiagonal, the numerically efficient Thomas algorithm may
be used do solve the system of equations (15). Then, the system evolution is obtained
iterating expression (14).

Appendix 2: Comparison between our results and the literature

For the initial condition with only one Gaussian, Eq. (7), there are at least other two
works that evaluated numerically the critical mass mc. These two works, references
[26,54], found a discrepancy of 20 % in its value. In this appendix we compare our
results with the results of the reference [54] and show that our estimate for mc agrees
with this. We also discuss the possible sources of the discrepancy with the work [26].

In reference [54], Meter studies numerically four different values of mass. In Fig. 4
of [54] he shows the temporal evolution of rp, from which we extract the average
value 〈rp〉. Figure 6 compares Meter’s result with the value of 〈rp〉 found for R = 0
in this work and shows a good agreement.

We cannot do the same comparison with the reference [26] because the authors
did not compute the long time behaviour of the wave packet. In our Figs. 2 and 3,
we observe that a long time series is necesssary to obtain the stationary solution. We
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Fig. 6 Average value of rp versus m for the initial condition with a single Gaussian. 〈rp〉 is defined during
the interval Δt ∈ [2000tr , 4000tr ]. 〈rp〉 is measured in units of σ , m in units of mr , and the system size
used in this simulation is L = 104σ . The diamond symbols are extracted from Fig. 4 of reference [54]

believe that this is the source of the discrepancy between both results. Another possible
source of difference are finite size effects. The authors in reference [26] do not specify
their system size, but it is possible that they used a relatively small system. As already
noted in the main text, for the kind of boundary conditions we are employing – which
is the same as the authors of the reference [26] – it is important to keep the system size
big enough in order to avoid reflections of the wave packet at the system boundary.

Appendix 3: The critical mass

The expression for the critical mass obtained via the method of section 2 is

mc =
(

A

4B

) 1
3

,

where

A = h̄2r3
p(0)

(
8e

r2
p (0)+R2

σ2 Rσ 4(2r4
p(0) − 7r2

p(0)σ 2 + 3σ 4)

+ 4e
r2
p (0)+2R2

σ2
√

πσ 3(2R2 + σ 2)(2r4
p(0) − 7r2

p(0)σ 2 + 3σ 4)

+ 4e
(r p (0)+R)2

σ2
√

πσ 5(2r4
p(0) − 6r3

p(0)R − 2R2σ 2 + 3σ 4

+ r2
p(0)(6R2 − 7σ 2) + rp(0)(−2R3 + 9Rσ 2)

)

+ 4e
r2
p (0)+2R2

σ2
√

πσ 3(2R2 + σ 2)(2r4
p(0) − 7r2

p(0)σ 2 + 3σ 4) Erf(R/σ)
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+ e
2r2

p (0)+2r p (0)R+3R3

2σ2 π
1
4

√
s3

( − 8r4
p(0)(R2 − 2σ 2) + 12r3

p(0)(R3 − 2Rσ 2)

+ r2
p(0)(−6R4 + 32R2σ 2 − 56σ 4) + 2σ 2(R4 − 4R2σ 2 + 12σ 4)

+ rp(0)(R5 − 16R3σ 2 + 36Rσ 4)
)

×
√

σ
(
2e− R2

σ2 Rσ + √
π(2R2 + σ 2) + √

π(2R2 + σ 2) Erf(R/σ)
) )

,

and

B = Gσ 6
(

2e
r2
p (0)+R2

σ2 Rσ 2(2r4
p(0) − 5r2

p(0)σ 2 + σ 4)

+ e
r2
p (0)+2R2

σ2
√

πσ(2R2 + σ 2)(2r4
p(0) − 5r2

p(0)σ 2 + σ 4)

+ e
(r p (0)+R)2

σ2
√

πσ 3(2r4
p(0) − 4r3

p(0)R + 4rp(0)Rσ 2 + σ 4+r2
p(0)(2R2 − 5σ 2)

)

+ e
r2
p (0)+2R2

σ2
√

πσ(2R2 + σ 2)(2r4
p(0) − 5r2

p(0)σ 2 + σ 4) Erf(R/σ)

+ e
2r2

p (0)+2r p (0)R+3R2

σ2 π
1
4
√

σ 3
(
4r4

p(0) − 4r3
p(0)R + 4rp(0)Rσ 2

+ 2σ 4 + r2
p(0)(R2 − 10σ 2)

)

×
√

σ
(
2e− R2

σ2 Rσ + √
π(2R2 + σ 2) + √

π(2R2 + σ 2) Erf(R/σ)
) )

.

Appendix 4: The limit R � 1σ

In order to investigate the behavior of the system when R is large, we first consider
the situation where the initial condition is a single radially symmetric wave package at
R, Ψ (0, x) = ΨR(0, x). In this situation, it is easy to analytically estimate mc exactly
as in section 3.1 of [26]. Thus, we consider the free particle solution Eq. (2); find the
value rp(t) of r for which the radial probability density �(t, r) = 4πr2|Ψ (t, x)|2 has
a global maximum; compute the peak’s acceleration at time zero, r̈ p(0); and set it
equal to Gm/(rp(0))2. This produces the following expression for the critical mass:

mc = (R2h̄2 + 2h̄2σ 2 + h̄2R
√
R2 + 4σ 2)

1
3

(Gσ 2)
1
3 (R2 + 4σ 2)

1
6

, (27)

which of course reduces to mr =
(

h̄2

Gσ

) 1
3

when R = 0. From the above expression it

is clear that mc increases with R. In particular, one cannot decrease the critical mass
using only a single Gaussian as the initial condition.

We now show that the system “decouples” into two weakly interacting subsystems
when R is large.
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Suppose that Ψ is a solution to Eq. (1) with initial condition Ψ (0, x) = Ψ1(0, x)+
Ψ2(0, x). For simplicity, assume that Ψ1(0, x) and Ψ2(0, x) have compact and disjoint
supports, i.e.,

supp(Ψi (0)) ≡ {x ∈ R
3 | Ψi (0, x) �= 0} ⊂ Bri (0),

i = 1, 2, where Bri (0) is the ball of radius ri > 0 centered at the origin (strictly
speaking, the support is the closure of the above set, but this will make no difference
in our argument), and

supp(Ψ1(0)) ∩ supp(Ψ2(0)) = ∅, | supp(Ψ1(0)) − supp(Ψ1(0))| � 1.

In our case the supports are not disjoint, but since we are interested in the case R � 1,
this will be approximately the case. As Ψ is generally a well-behaved function of t ,
we can also assume that for small t , Ψ ≈ Ψ1 +Ψ2, where Ψi (t, x) is close to Ψi (0, x)
if t is very small. Thus we can also assume that

supp(Ψ1(t)) ∩ supp(Ψ2(t)) = ∅, | supp(Ψ1(t)) − supp(Ψ1(t))| � 1 (28)

(again, this will hold only as an approximation, but it suffices for our purposes). We
restrict our attention to small t , because if confinement is going to happen due to the
gravitational interaction, this should happen at earlier times before the wave-function
has spread out considerably.

For Ψ = Ψ1 + Ψ2, Eq. (1) reads

i h̄
∂Ψ1

∂t
+ i h̄

∂Ψ2

∂t
=

(
− h̄2

2m
Δ − Gm2

∫
R3

|Ψ1|2
|x − y| dy

)
Ψ1

+
(

− h̄2

2m
Δ − Gm2

∫
R3

|Ψ2|2
|x − y| dy

)
Ψ2

−Gm2
(∫

R3

|Ψ1|2
|x − y| dy

)
Ψ2 − Gm2

(∫
R3

|Ψ2|2
|x − y| dy

)
Ψ1

−Gm2
(∫

R3

Ψ1Ψ
∗
2 + Ψ ∗

1 Ψ2

|x − y| dy

)
(Ψ1 + Ψ2).

The cross terms Ψ1Ψ
∗
2 and Ψ ∗

1 Ψ2 vanish, because for any given y, either Ψ1(t, y) or
Ψ2(t, y) vanishes in light of expression (28).

If x ∈ supp(Ψ1(t)), then the term

−Gm2
(∫

R3

|Ψ1|2
|x − y| dy

)
Ψ2

vanishes, and the term

−Gm2
(∫

R3

|Ψ2|2
|x − y| dy

)
Ψ1
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will be very small since

∫
R3

|Ψ2|2
|x − y| dy =

∫
supp(Ψ2(t))

|Ψ2|2
|x − y| dy,

and x and supp(Ψ2(t)) are very far away, so that |x − y| is very large.
A similar statement holds if x ∈ supp(Ψ2(t)) instead, and obviously all terms vanish

if x /∈ supp(Ψ1(t)) ∪ supp(Ψ2(t)). Thus

i h̄
∂Ψ1

∂t
+ i h̄

∂Ψ2

∂t
≈

(
− h̄2

2m
Δ − Gm2

∫
R3

|Ψ1|2
|x − y| dy

)
Ψ1

+
(

− h̄2

2m
Δ − Gm2

∫
R3

|Ψ2|2
|x − y| dy

)
Ψ2,

i.e., under the above circumstances, the evolution behaves as if the system were lin-
ear. Thus if one considers the situation where Ψ1(0, x) ≈ Ψ0(0, x) and Ψ2(0, x) ≈
ΨR(0, x), with R � 1, a very large value of m is necessary to confine the part of
the wave function associated with Ψ2 [recall Eq. (27)]. Hence, confinement happens
essentially due to Ψ1, which in this case corresponds roughly to the system with a
single Gaussian centered at the origin. This explains why mc approaches mr when R
is very large.
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