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Abstract We extend de la Fuente and Romero’s (Gen Relativ Gravit 47:33, 2015)
defining equation for uniform acceleration in a general curved spacetime from linear
acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime
background, we have explicit solutions. We use generalized Fermi-Walker transport
to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain
velocity and acceleration transformations from a uniformly accelerated system to an
inertial system. We obtain the time dilation between accelerated clocks. We apply
our acceleration transformations to the motion of a charged particle in a constant
electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

Keywords Uniform acceleration · Curved spacetime · Generalized Fermi-Walker
transport · Time dilation · Lorentz-Abraham-Dirac equation

1 Introduction

In [1], the authors present a differential equation which characterizes uniform rec-
tilinear acceleration, or hyperbolic motion, in a general curved spacetime. An
accelerometer carried by such a rectilinearly uniformly accelerated observer shows
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a constant linear acceleration. Thus, their equation satisfies Einstein’s criterion of
“constant acceleration in the instantaneously co-moving inertial frame.” In [2], how-
ever, we showed that, besides hyperbolic motion, there are three additional classes of
uniformly accelerated motion, including rotational acceleration with constant angular
velocity. In this paper, we introduce a differential equation which characterizes all
four classes of uniform acceleration in a general curved spacetime.

We note that hyperbolic motion itself is not Lorentz covariant (see [2]). To obtain
covariance, linear and rotational accelerations must be handled together. Thus, “con-
stant acceleration in the instantaneously co-moving inertial frame” means not only
that an accelerometer carried by the observer shows a constant linear acceleration, but
also that his gyroscope shows a constant angular velocity. Note that these are locally
measurable quantities.

We will show that in a flat background, the equation introduced here corresponds to
our previous Definition [2,3]. In [3], working in a flat background, we also introduced
defining equations for a uniformly accelerated frame and established that all four
classes of uniform acceleration do, in fact, have constant acceleration in the comoving
frame. However, until now, it was still an open question whether there were more
classes of uniformly accelerated motion which were not modelled by our equation.
In the current paper, we settle this issue by showing that, in a flat background, every
uniformly accelerated motion satisfies our equation. Thus, our equation provides a
complete and covariant description of uniformly accelerated motion in flat spacetime.
Moreover, we show here that our theory extends naturally to curved spacetimes.

In this paper, we further develop the theory of covariant uniform acceleration in
flat spacetime by deriving velocity and acceleration transformations from a uniformly
accelerated frame to an inertial frame. We also derive here the time dilation between
clocks in a uniformly accelerated frame.

The plan of this paper is as follows. In Sect. 2, we construct the Frenet-Serret frame
attached to an observer and present the defining equation for uniformly accelerated
motion in a general curved spacetime. The definition uses generalized Fermi-Walker
transport. In Sect. 3, we show that in flat spacetime, our definition reduces to the one in
[2,3]. Here, we prove one of our main results: in flat spacetime, a motion is uniformly
accelerated if and only if it satisfies our defining equation. The remainder of the paper
develops the theory of uniform acceleration in a flat background. In Sect. 4, we adapt
Horwitz and Piron’s notion of “off-shell” [4] to the four-velocity. We call the new
notion the 4D velocity and use it to derive velocity transformations from K ′ to K .
We show that when K ′ is inertial, our velocity transformations reduce to the usual
Einstein velocity addition. In Sect. 5, we show that the normalization factor between
the four-velocity and the 4D velocity can be interpreted as a time dilation factor. This
leads immediately to a general formula for the time dilation between clocks located
at different positions in K ′. We call the time dilation factor γ̃ and show that it is a
generalization of the usual γ Lorentz factor. We also derive here a formula for the
relativistic angular velocity of a uniformly accelerated body. In Sect. 6, we show that
an arbitrary rest point of a uniformly accelerated frame is also uniformly accelerated.
However, the acceleration tensor gets multiplied by γ̃ , the time dilation factor. We
obtain an explicit expression for the four-acceleration in K of a point at rest in K ′ and
explain the physical meaning of all the terms of this expression. In Sect. 7, an explicit
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expression for the four-acceleration in K of an arbitrarily accelerating particle in K ′ is
derived. This transformation depends on the position, velocity, and acceleration of the
particle in K ′ as well as the acceleration of K ′ with respect to K . Also here, we explain
the physical meaning of all the terms. We apply our acceleration transformations to
the motion of a charged particle in a constant electromagnetic field and recover the
Lorentz-Abraham-Dirac equation. All of our formulas have the appropriate classical
limit.

2 The definition of uniform acceleration

2.1 Notation

Consider a time-orientable four-dimensional differential manifold M endowed with
a metric gμν of Lorentzian signature (+,−,−,−). A tangent vector v at a given point
of M is timelike if g(v, v) > 0, spacelike if g(v, v) < 0, and null if g(v, v) = 0. Let
γ : I → M, I an open interval of R, be a smooth future-pointing timelike curve,
parameterized by the arclength ds = √

gμνdxμdxν . In a local system of coordinates
xμ, the curve γ (s) is described by a set of four functions xμ(s). We assume that the
metric satisfies the metricity condition dgμν/ds = 0.

At every point of γ , the four-velocity uμ is defined by

uμ = dxμ

ds
(1)

and has unit length:
u2 = gμνu

μuν = 1. (2)

The covariant derivative D
ds of a four-vector wμ along γ (s) is defined [5] by

Dwμ

ds
= dwμ

ds
+ Γ μ

ανw
αuν, (3)

where the Christoffel symbols Γ
μ
αν are computed from the metric g. The four-

acceleration aμ is the covariant derivative of the four-velocity:

aμ = Duμ

ds
= duμ

ds
+ Γ μ

ανu
αuν . (4)

Differentiating u2 = 1, we have
Du

ds
· u = 0, (5)

meaning that the four-acceleration is orthogonal to the four-velocity. Since the four-
velocity is timelike, the four-acceleration is spacelike.

The plane of simultaneity or the restspace at the point γ (s) is the linear subspace
of four-vectors w such that w · u(s) = 0.
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2.2 Frenet-Serret basis

We now construct an orthonormal basis {λ(0), λ(1), λ(2), λ(3)}, λ(α) = λ(α)(s), of the
tangent space at the point γ (s). The orthonormality condition means that

λ(α) · λ(β) = ηαβ, (6)

where ηαβ is the Minkowski metric diag(1,−1,−1,−1). For ease of notation, we
represent covariant differentiation of λ(α) by λ̇(α). Differentiating (6), we obtain

λ̇(α) · λ(β) = −λ(α) · λ̇(β). (7)

In particular,
λ(α) · λ̇(α) = 0. (8)

First, let λ(0)(s) = u(s). The four-acceleration a = u̇ is spacelike and orthogonal
to the four-velocity u. We assume that u̇ �= 0 for all s. Set κ = √−a2 and define

λ(1)(s) = a(s)

κ
. (9)

The unit vector λ(1)(s) gives the direction of the four-acceleration. The scalar κ(s) is
the magnitude of the four-acceleration and is also called the curve’s curvature. From
(9), we trivially get the first Frenet equation

λ̇(0) = κλ(1). (10)

Using the Gram-Schmidt procedure, (6) and (7), we construct a vector v(2) which is
orthogonal to both λ(0) and λ(1):

v(2) = λ̇(1) − (λ̇(1) · λ(0))λ(0) = λ̇(1) − κλ(0). (11)

Let τ1 = √−(v(2))2 > 0, and define

λ(2) = v(2)

τ1
. (12)

Then, from (11), we have
λ̇(1) = κλ(0) + τ1λ(2). (13)

Similarly, we construct a vector v(3) orthogonal to λ(0), λ(1) and λ(2):

v(3) = λ̇(2) − (λ̇(2) · λ(0))λ(0) + (λ̇(2) · λ(1))λ(1). (14)

Now (7), (10) and (6) imply that λ̇(2) · λ(0) = 0, while (7), (13) and (6) imply that
λ̇(2) · λ(1) = τ1. Let τ2 = √−(v(3))2 > 0, and define

λ(3) = v(3)

τ2
. (15)
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From (14) we now obtain
λ̇(2) = −τ1λ(1) + τ2λ(3). (16)

Finally, using (10), (13), (7) and (8), we get that λ̇(3)is parallel to λ(2). Then, using
(7), (16) and (6), we get λ(2) · λ̇(3) = τ2. Hence,

λ̇(3) = −τ2λ(2). (17)

Let Λ(s) be the 4 × 4 matrix whose i th column consists of the components of the
vector λ(i)(s) in the local basis. Set

A(s) =

⎛

⎜
⎜
⎝

0 κ(s) 0 0
κ(s) 0 −τ1(s) 0

0 τ1(s) 0 −τ2(s)
0 0 τ2(s) 0

⎞

⎟
⎟
⎠ . (18)

Then Eqs. (10), (13), (16) and (17), taken together, are equivalent to

DΛ(s)

ds
= Λ(s)A(s). (19)

The physical meaning of κ(s) and τ1(s), τ2(s) is as follows. An observer on γ (s)
experiences linear acceleration of magnitude κ(s) in the direction of λ(1). The torsion
is defined by a 3D vector ω = −τ2λ(1) − τ1λ(3), which is the axis of the observer’s

rotational acceleration. The magnitude of the rotational acceleration is
√

τ 2
1 + τ 2

2 .
Thus, we refer to A as the acceleration matrix. Note that A satisfies Eq. (19).

2.3 Defining uniform acceleration

Einstein’s intuitive definition of uniform acceleration is “constant acceleration in the
instantaneously co-moving inertial frame.” Mathematically, this means that both the
linear and rotational acceleration maintain the same magnitude and direction. Hence,
the acceleration matrix A(s) of formula (18) must be constant and nonzero: A(s) = A.
In addition, the Frenet basis vectorsλ(κ) must be parallel transported in a way consistent
with Eq. (19). This leads to the following

Definition 1 A timelike curve γ (s) represents uniformly accelerated motion if the
acceleration matrix A(s) corresponding to the Frenet frame Λ(s) is constant and
nonzero.

If τ1 = 0, then Eqs. (10) and (13) imply that

λ̈(0) = κ2λ(0), (20)

which is equivalent to [1], Eq. (6). This equation describes hyperbolic motion. How-
ever, to obtain a fully Lorentz covariant theory, we cannot assume that τ1 = 0. This is
because hyperbolic motion itself is not covariant, as shown in [2]. Note that Eq. (20) is
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third order. For a unique solution, one need only specify the initial position, the initial
four-velocity, and the initial linear acceleration.

We now show how to parallel transport the Frenet basis vectors λ(κ) in a way con-
sistent with definition 1. Recall that a four-vector wμ is said to be parallel transported
along γ (s) by the Levi-Civita connection if

Dwμ

ds
= 0. (21)

If the four-acceleration a(s) = Du(s)
ds is nonzero, then the four-velocity u is not parallel

transported along γ (s) by the Levi-Civita connection. This means that the Frenet basis
is not parallel transported. The covariant derivative along the curve does not preserve
the restspaces of an accelerating particle.

A more appropriate transport is defined using the generalized Fermi-Walker deriv-
ative (GFW ) D̂wμ

ds of a four vector wμ (see [1,5]):

D̂wμ

ds
= Dwμ

ds
− Ωμ

νw
ν, (22)

where Ωμν is a rank 2 tensor, defined along γ (s). Hehl [5] shows that the metric
compatibility condition, which follows from the transport of the orthonormal basis,
implies that Ωμν is antisymmetric.

In order to insure parallel transport of the Frenet basis vectors λ(κ), we choose

Ω(s) = Λ(s)AΛ−1(s). (23)

Ω(s) is antisymmetric with the same Lorentz invariants as A. In fact, Ω(s) is the
acceleration matrix A computed in the initial comoving frame. Hence, we refer to
Ω(s) as the pullback of the acceleration matrix A to the initial comoving frame.
While A is constant along the world line, Ω varies with s.

Multiplying the right side of (19) by Λ−1(s)Λ(s), we obtain

DΛ(s)

ds
= Ω(s)Λ(s). (24)

Clearly, the Frenet basis is GFW parallel transported. Using (24) and (22), we have

D̂λ(κ)(s)

ds
= Dλ(κ)(s)

ds
− Ω(s)λ(κ)(s) = 0. (25)

In Eq. (19), the matrix Λ is multiplied by A on the right. This means that the time
evolution of each basis vector depends on all of the basis vectors. However, to have
parallel transport, each basis vector must be transported without referring to the other
basis vectors. This explains why, in Eq. (19), Λ is multiplied by Ω on the left.

The rate of a uniformly accelerated clock is constant in time, since it is exposed to
static forces. Therefore, uniformly accelerated observers can synchronize their clocks,
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and they will remain synchronized for all times. In Sect. 6, we will show that every rest
point of a uniformly accelerated system is also uniformly accelerated. Therefore, any
clock at rest in a uniformly accelerated system can be synchronized to any reference
clock. In fact, we hypothesize that clock synchronization can be achieved only between
uniformly accelerated systems.

3 Uniform acceleration in flat background

In this section, we apply the results of the previous section and obtain the equation for
uniform acceleration in flat spacetime. To distinguish from the general case, we use
the proper time τ as the parameter along γ . We also review a few results from [3] on
the spacetime transformations from a uniformly accelerated frame to an inertial frame
and the metric in a uniformly accelerated frame. For details, see [2,3].

3.1 The equation of uniform acceleration

In [3], working in flat spacetime, we defined a frame to be uniformly accelerated if
there are a constant antisymmetric tensor Aμν and a one-parameter family {Kτ } of
instantaneously comoving inertial frames, with bases {λ(κ)(τ ) : κ = 0, 1, 2, 3}, such
that

dΛ(τ)

dτ
= AΛ(τ), (26)

where Λ(τ) is the 4 × 4 matrix whose κth column is the vector λ(κ)(τ ). This means
that Λ(τ) is parallel transported by the generalized Fermi-Walker derivative

D̂wμ

ds
= Dwμ

ds
− Aμ

νw
ν. (27)

We then showed that the solutions to (26) have constant acceleration in the comov-
ing frame. We can now prove the converse: in flat spacetime, for every uniformly
accelerated motion, there are Aμν and Λ(τ) satisfying (26).

To see this, first note that covariant derivatives becomes normal derivatives, since
we are working in flat spacetime. Now, let u(τ ) be the four-velocity of a uniformly
accelerated observer. As in Sect. 2.2, construct Λ(τ) and (constant) A such that

dΛ(τ)

dτ
= Λ(τ)A. (28)

By an appropriate change of basis, we may, without loss of generality, assume that
Λ(0) = I . Then, the unique solution to (28) is

Λ(τ) = exp(Aτ) =
( ∞∑

n=0

An

n! τ n

)

. (29)
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Hence, Λ(τ)A = AΛ(τ), and from (28), we obtain (26). Moreover, since Λ and A
commute, it follows from the definition (23) of Ω that Ω(τ) = A, and, therefore, the
acceleration matrix is constant even in the initial comoving frame.

Therefore, in flat spacetime, a motion is uniformly accelerated if and only if the
associated Frenet basis Λ and Frenet matrix A satisfy equation (26).

If we choose Λ(0) = I , Eq. (26) is equivalent to Mashhoon’s and Muench [6]
frame-defining equation

c
dλ

μ

(κ)(τ )

dτ
= A(ν)

(κ)λ
μ

(ν)(τ ). (30)

The unique solution to (26) with arbitrary initial condition Λ(0) is

Λ(τ) = exp(Aτ)Λ(0). (31)

The unique solution for u(τ ) can be easily obtained from (31) by noting that u(τ ) =
λ(0)(τ ). By integrating u(τ ), one obtains the worldline of a uniformly accelerated
observer. Similar constructions appear [6] and [7].

In the 1 + 3 decomposition of Minkowski space, the acceleration tensor A of Eq.
(26) has the form

Aμν(g,ω) =
⎛

⎝
0 gT

−g Ω

⎞

⎠ , (32)

where g is a 3D vector with physical dimension of acceleration, ω is a 3D vector with
physical dimension of acceleration, the superscript T denotes matrix transposition,
and

Ω = εi jkω
k,

where εi jk is the Levi-Civita tensor. The 3D vectors g and ω are related to the trans-
lational acceleration and the angular velocity, respectively, of a uniformly accelerated
motion.

We raise and lower indices using the Minkowski metric ημν =diag(1,−1,−1,−1).
Thus, Aμν = ημαAα

ν , so

Aμ
ν(g,ω) =

⎛

⎝
0 gT

g −Ω

⎞

⎠ . (33)

For any four-vector x = (x0, x), the evaluation of A on x is

Ax = (g · x, x0g + ω × x) . (34)

The equivalence of our approach and Mashhoon’s provides us with two ways to
differentiate the λ(κ)’s. Let x (κ) be a four-vector. Then, using (30), we have

x (κ) dλ(κ)

dτ
= x (κ)A(ν)

(κ)λ(ν) = A(ν)
(κ)x

(κ)λ(ν) = (Ax)(ν)λ(ν). (35)
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On the other hand, using (26), we have

x (κ) dλ(κ)

dτ
= x (κ)Aλ(κ) = A

(
x (κ)λ(κ)

)
= Ax . (36)

We will use these methods interchangeably in what follows.

3.2 Spacetime transformations and the metric

Let K ′ be a uniformly accelerated frame attached to an observer with worldline x̂(τ ).
Let {Kτ ,Λ(τ)} be the corresponding family of instantaneously comoving inertial
frames and their bases, with Λ(0) = I . Then the the spacetime transformations
from K ′, with coordinates (y(0), y(1), y(2), y(3)) = (y(0), y), to K , with coordinates
x = (x0, x1, x2, x3), are

x = x̂(τ ) + y(i)λ(i)(τ ), with τ = y(0) and i = 1, 2, 3. (37)

The differential of the transformation (37) at the point y of K ′ is

dx = λ(0)(τ )dy(0) + λ(i)(τ )dy(i) + (Aȳ)(ν)λ(ν)(τ )dy(0), (38)

where ȳ = (0, y). In the 1 + 3 decomposition (33), the differential at the point y of
K ′ is

dx =
(
(1 + g · y)λ(0) + (ω × y)(i)λ(i)

)
dy(0) + λ( j)dy

( j). (39)

The metric at the point y is

s2 = dx2 =
(
(1 + g · y)2 − (ω × y)2

)
(dy(0))2

−2(ω × y)(i)dy(0)dy(i) − δ jkdy
( j)dy(k). (40)

This formula was also obtained by Mashhoon and Muench [6]. Concerning the metric
(40), we note that

• it is static: it depends only on the position in the accelerated frame and not on time;
• it approaches the Minkowski metric in the classical limit;
• the physical meaning of the terms g · y and ω × y will be explained at the end of

the next section.

4 Velocity transformations

In this section, we obtain the transformation of a particle’s “off-shell”, or 4D velocity,
in a uniformly accelerated frame K ′ to its four-velocity in the initial comoving inertial
frame K = K0. In other words, without loss of generality, we assume that Λ(0) = I .
In the following section, we will compute the time dilation between the clock of a
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uniformly accelerated observer located at the origin of K ′ and the clocks at other
positions in K ′.

A particle’s four-velocity in K is, by definition, dxμ

dτp
, where x(τp) is the particle’s

worldline, and τp is the particle’s proper time. However, from Special Relativity, it
is known that the proper time of a particle depends on its velocity. In addition, it is
known that the rate of a clock in an accelerated system also depends on its position, as
occurs, for example, for linearly accelerated systems, as a result of gravitational time
dilation. Thus, the quantity dτp depends on both the position and the velocity of the
particle, that is, on the state of the particle.

Since we do not yet know the particle’s proper time, it is not clear how to calculate
the particle’s four-velocity in K directly from its velocity in K ′. To get around this
problem, we will differentiate the particle’s worldline by a parameter τ̃ instead of τp.
For convenience, we will choose τ̃ to be a constant multiple of the time. For example,
we often choose τ̃ = τ . The same technique was used by Horwitz and Piron [4], using
the four-momentum instead of the four-velocity, thereby introducing the area known
as “off-shell” electrodynamics.

We now introduce the following definition.

Definition 2 Let xμ(τ̃ ) be the worldline of a particle with respect to a frame K , inertial
or non-inertial, parameterized by the parameter τ̃ . The particle’s 4D velocity at a point
P on the worldline corresponding to the value τ̃0 of the parameter τ̃ is denoted by ũ
and defined by

ũμ(P) = dxμ

d τ̃
(τ̃0). (41)

Note that both the four-velocity and the 3D velocity can be recovered from the 4D
velocity. In fact, since the 4D velocity is a tangent vector to the worldline, it is a scalar
multiple of the four-velocity. Causality implies that this scalar is positive. Hence, the
particle’s four-velocity, which is a normalized tangent vector, is

u = ũ

|ũ| , (42)

the normalization of ũ. In the particular case τ̃ = t , where t is the time in an inertial
frame, then

|ũ| =
∣
∣
∣
∣
dxμ

dt

∣
∣
∣
∣ = |(1, v)| =

√
1 − v2 = γ −1. (43)

This equality can be used to define the γ factor. The 3D velocity v = dx
d τ̃

can be
recovered from the 4D velocity ũ = (ũ0, ũ) as

v = ũ
ũ0 . (44)

We compute now a particle’s four-velocity in K , given its 4D velocity in K ′. Let
y(ν)(τ ) be the worldline in the uniformly accelerated frame K ′ of a moving particle.

Let w̃(ν) = dy(ν)

dy(0) denote the particle’s 4D velocity in K ′ with respect to y(0) = τ .
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We will calculate the particle’s 4D velocity in K at the point y of K ′, with respect to
τ = γ −1t , where γ corresponds to the observer’s velocity in K . Using the differential
(38), the particle’s 4D velocity in K is

ũ = dx

dτ
= dx

dy(0)
= dy(ν)

dy(0)
λ(ν)(τ ) + (Aȳ)(ν)λ(ν)(τ ). (45)

Thus,
ũ = (w̃(ν) + (Aȳ)(ν))λ(ν)(τ ). (46)

The previous formula transforms the 4D velocity in K ′ to the 4D velocity in K . Using
(44), we can also obtain the transformation of the 3D velocity in K ′ to the 3D velocity
in K .

From (42), the four-velocity of the particle in K is

u(ν)λ(ν)(τ ) = ũ

|ũ| = (w̃(ν) + (Aȳ)(ν))λ(ν)(τ )

|w̃ + Aȳ| . (47)

Writing w̃(ν) = (1,w), the components of the 4D velocity, as defined in (46), with
respect to the basis λ(τ) are, in the 1 + 3 decomposition,

ũ(ν) = (1 + g · y, (w + ω × y)) . (48)

The components of the four-velocity are

u(ν) = (1 + g · y, (w + ω × y))
√

(1 + g · y)2 − (w + ω × y)2
. (49)

In inertial frames, all rest points have a common velocity. In an accelerated system,
the four-velocity of a rest point depends on the point’s spatial coordinates and the
acceleration of the system. Note that the expression underneath the square root in (49)
must be non-negative. This limits the admissible values for y and is a manifestation of
the locality of the spacetime transformations of [3]. The same limitation was obtained
by Mashhoon and Muench [6]. Moreover, by causality, the expression 1 + g · y must
be non-negative.

To understand the meaning of this formula, let

vp = w + ω × y
1 + g · y (50)

denote the 3D velocity of the moving particle. This 3D velocity is composed of the
addition of the particle’s velocity w in Kτ and the rotational velocity at the position of
the particle y. These two velocities are added classically because they are both in the
frame Kτ . As we will show in Sect. 5, the factor 1 + g · y adjusts for the time dilation
between the clock at the origin of Kτ and the clock at the point y. The limitation
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|vp| < c imposes a limit of the admissible values for y and is a manifestation of the
locality of the spacetime transformations of [3].

In this notation, the components (49) of the four-velocity with respect to the basis
Λ(τ) are

u(ν) = (1, vp)√
1 − v2

p

= γ (vp)(1, vp), (51)

which is the usual formula for the four-velocity of an object with 3D velocity vp. The
relativistic energy E of the particle can be obtained by multiplying the zero component
of (51) by the rest-mass m0 of the particle. Thus,

E = m0√
1 − v2

p

, (52)

with the 3D velocity vp defined by (50).
Suppose A = 0 or ȳ = 0. Then the basis vectors λ(ν) of Kτ are the columns of the

matrix of the Lorentz transformation L : Kτ → K . From (47), the four-velocity in K
is

u(ν)λ(ν)(τ ) = w̃(ν)

|w̃| λ(ν)(τ ) = L

(
w̃

|w̃|
)

. (53)

This implies that, in this case, the four-velocity transformation from K ′ to K is the usual
Einstein velocity addition between inertial frames. To show this explicitly, suppose
that Kτ is moving with uniform 3D velocity v = (v, 0, 0) with respect to the inertial
frame K . Suppose a particle has 3D velocity w in Kτ . We wish to compute v ⊕E w,
defined to be the particle’s 3D velocity in K . The particle’s 4D velocity in Kτ with
respect to the time t in Kτ , is w̃(ν) = (1,w). From (53), we get

u = 1

|w̃|

⎛

⎜
⎜
⎝

γ γ v 0 0
γ v γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
w1

w2

w3

⎞

⎟
⎟
⎠

= 1

|w̃|
(
γ (1 + w1v), γ (v + w1), w2, w3

)
. (54)

Using (44), we obtain the 3D velocity of the particle in K as

v ⊕E w =
(
v + w1, γ −1w2, γ −1w3

)

1 + w1v
= v + Pvw + γ −1(I − Pv)w

1 + w · v , (55)

where Pvw denotes the projection ofw onto v. This is the well-known Einstein velocity
addition formula [(see [8], formula (3.7)].

If A �= 0 and ȳ �= 0, then the velocity addition requires the additional term

ũa = (Aȳ)(ν)λ(ν)(τ ), (56)
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whose components in the basis λ(τ) are, in the 1 + 3 decomposition,

ũ(ν)
a = (g · y,ω × y) . (57)

The zero component, when multiplied by m0, yields the particle’s potential energy

V (y) = m0g · y (58)

due to its position at y. This additional energy causes the gravitational time dilation
and is due to the linear acceleration of K ′. The quantity ω×y is the rotational velocity
of the point y in K ′.

5 Time dilation

We turn now to time dilation. Consider a moving particle in the uniformly accelerated

frame K ′, with worldline y(ν)(τ ) in K ′. Let w̃(ν) = dy(ν)

dy(0) denote the particle’s 4D

velocity in K ′ with respect to y(0) = τ . From (46), the particle’s 4D velocity in K is

ũ = (w̃(ν) + (Aȳ)(ν))λ(ν)(τ ), (59)

and its four-velocity in K is

u = ũ

|ũ| . (60)

On the other hand, denoting the proper time of the particle by τp and using the chain
rule, we have

u = dx

dτp
= dx

dτ

dτ

dτp
= ũ

dτ

dτp
. (61)

Comparing (60) and (61), we arrive at

dτ

dτp
= 1

|ũ| . (62)

Define

γ̃ = 1

|ũ| . (63)

Thus, the time dilation is
dτ

dτp
= γ̃ , (64)

and, from (46), it follows that the time dilation between two clocks in a uniformly
accelerated system depends on their relative position and velocity, as well as on the
acceleration of the system. By composing two time dilations, it is straightforward to
compute the time dilation between any two uniformly accelerated clocks.

The definition of γ̃ for accelerated systems is analogous to the definition of γ for
inertial systems. In fact, we will see below that if A = 0, then γ̃ = γ . The factor γ̃
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expresses the time dilation between the clock at rest at y and the observer’s clock at
the origin of K ′. To obtain the time dilation of the particle with respect to the inertial
frame K , one must also multiply by the time dilation of the observer with respect
to K . This factor is the zero component of the observer’s four-velocity (for explicit
formulas, see [2]).

We now express the time dilation (62) in the 1 + 3 decomposition. If a particle has

4D velocity w̃(ν) = dy(ν)

dy(0) = (1,w) in K ′, then using (48), the time dilation between
the particle and the observer is given by

dτp = (1 + g · y)
√

1 − v2
p dτ,

implying that

γ̃ = 1

(1 + g · y)
√

1 − v2
p

= γ (vp)
1 + g · y , (65)

where the 3D velocity vp of the particle is defined by (50). Thus, the time dilation
between the particle and the observer in K ′ is the product of the gravitational time
dilation and an additional time dilation due to the velocity of the particle together
with the rotational velocity of the system. A similar formula was obtained in [9].
Note that the expression underneath the square root must be non-negative. This limits
the admissible values for y and is a manifestation of the locality of the spacetime
transformations of [3]. The same limitation was obtained by Mashhoon and Muench
[6].

If A = 0, then

γ̃ = 1√
1 − w2

= γ (w),

expressing the time dilation due to the velocity of the particle in K ′, which is an inertial
system in this case.

For a clock at rest in K ′, the particular case ω = 0 gives a time dilation of 1 + g · y,
which is the known formula for gravitational time dilation. If g = 0, the time dilation

is
√

1 − (ω × y)2, which is the time dilation due to the rotational velocity of a rotating
system.

The lower order terms of the expansion of the time dilation of (65) are

γ̃ ≈ 1 + g · y − 1

2
(w + ω × y)2

= 1 + g · y − 1

2
(ω × y)2 − 1

2
w2 − w · (ω × y). (66)

The second term represents the gravitational time dilation. The third and fourth terms
are the transversal Doppler shifts due to the rotation of the system and the velocity of
the particle, respectively. The last term is new in the setting of flat Minkowski space
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but was also obtained recently by Grøn and Braeck [[10], Eq. (29)] in Schwarzschild
spacetime.

We now obtain the physical meaning of ω in the acceleration matrix A. From (50),
with w = 0, the 3D velocity in the comoving frame Kτ of a rest point y is, in the 1+3
decomposition,

vp = ω × y
1 + g · y . (67)

This formula defines the angular velocity of a uniformly accelerated (rotating) body.
Note that for rest points on the axis of rotation, we have vp = 0. Also, if y belongs
to the plane perpendicular to g, then vp = ω × y, the classical angular velocity. In
general, one must measure the angular velocity of each point with respect to a common
clock, in this case, the clock at the origin. Then, since each point of the rotating object
must have the same period, the classical angular velocity must be multiplied by the
time dilation between the clock at the origin and the clock at the point in question.

6 The acceleration of rest points in a uniformly accelerated frame

In this section, we will show that each rest point y of K ′ is uniformly accelerated.
However, the value of the acceleration differs from point to point.

Since the property of being uniformly accelerated is covariant, it is enough to show
that the rest point y of K ′ is uniformly accelerated in the initial comoving frame K0.

Using the chain rule and (64), this point’s four-acceleration is

a = du

dτp
= du

dτ

dτ

dτp
= γ̃

du

dτ
. (68)

As can be seen from (47), the components u(ν) for a rest point do not depend on
τ . Hence, using (36), we conclude that, in the initial comoving frame K0, the four-
acceleration a(y) of the rest point y is

a(y) = γ̃ (y)u(ν) dλ(ν)(τ )

dτ
= γ̃ (y)u(ν)Aλ(ν)(τ ) = γ̃ (y)Au. (69)

In the particular case ω = 0, we have γ̃ = 1
1+g·y . Thus, in the frame K0, the

four-acceleration a(y) of the rest point y is

a(y) = g
1 + g · y . (70)

The same formula was obtained by Franklin [11].
The above shows that each rest point of a uniformly accelerated system may itself

be considered as the spatial origin of a uniformly accelerated system Ky . This amounts
to rechoosing the initial comoving frame as the comoving frame to y at τ = 0. The
components of the acceleration tensor A in the frame Ky may be computed as follows.
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Let Λ be the Lorentz transformation from K0 to Ky . Then,

A(y) = Λ−1AΛ. (71)

Using (34) and (49), we obtain the 1 + 3 decomposition of the four-acceleration
(69):

a(ν) = γ̃ 2 (g · (ω × y), (1 + g · y) g + ω × (ω × y)) . (72)

The classical limit of this acceleration is the sum of the 3D linear acceleration g and
the centrifugal acceleration ω × (ω × y) (see [12]). In relativity, we add the factor γ̃ 2

to take care of the difference between the observer’s time and the proper time of the
particle. The linear acceleration is modified by the time dilation and gives the term
(1 + g · y) g. The zero component, if multiplied by the m0c, gives the power

P = m0γ̃
2g · (ω × y) (73)

of the force generating the acceleration. In the classical limit, we have

P = m0g · (ω × y). (74)

7 Acceleration transformations in a uniformly accelerated frame

Our next goal is to obtain a particle’s four-acceleration a in K , given its position y,
4D velocity w = dy

dτ
= (1,w) and 4D acceleration b = dw

dτ
in Kτ . First, however, we

will calculate the 4D acceleration ã = dũ
dτ

in K , where ũ is the particle’s 4D velocity
in K . Now

ã = dũ

dτ
= dũ(ν)

dτ
λ(ν) + ũ(ν) dλ(ν)

dτ
. (75)

From (46), we have
dũ(ν)

dτ
= dw(ν)

dτ
+ A

d ȳ

dτ
= b + Aw̄, (76)

where w̄ = (0,w). The quantity d := b + Aw̄ is the acceleration of the particle with
respect to the comoving frame Kτ , since this is the part of ã which treats λ(τ) as
constant. Using (36) and (46), we have

ũ(ν) dλ(ν)

dτ
= A

(
ũ(ν)λ(ν)

)
= Aw + A2 ȳ. (77)

Hence,
ã = b + Aw̄ + Aw + A2 ȳ. (78)

Using (34), we now write Eq. (78) in the 1+3 decomposition. Write b(ν) = (0, ap),
where ap is the 3D acceleration of the particle in K ′. Then

ã(ν) = (
2g · w + g · (ω × y), ap + (1 + g · y) g + 2ω × w + ω × (ω × y)

)
. (79)
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Note the additional terms which appear here and not in (72). We now have an acceler-
ation ap in K ′, which adds classically. We also have two additional terms due to the
velocity w. The term 2ω × w is the Coriolis acceleration (see [12]). There is also an
addition of 2m0g · w to the power. This addition is due to the change in the potential
energy V (y) [(see formula (58)] and the change in the basis of the comoving frame.
This explains the factor of 2 in this term.

In order to compute the particle’s four-acceleration in K , we first compute dγ̃
dτ

.
Using (63) and γ̃ ũ = u, we have

dγ̃

dτ
= d

dτ

1

|ũ| = − 1

|ũ|3 ũ · ã = −γ̃ 2u · ã. (80)

Thus, the particle’s four-acceleration in K is

a = du

dτp
= du

dτ

dτ

dτp
= γ̃

d

dτ
(γ̃ ũ) = γ̃ 2ã − γ̃ 2(ã · u)u. (81)

Writing d = b + Aw̄, the formula (78) can be written ã = d + Aũ. Also notice that

Aũ · u = Aũ · γ̃ ũ = 0,

since A is antisymmetric. Thus, formula (81) becomes

a = γ̃ 2Aũ + γ̃ 2d − γ̃ 2(d · u)u = γ̃ (Au + γ̃ (d − (d · u)u)) . (82)

Let Pud be the projection of d onto u, and let d⊥ = (I − Pu)d. Then we can write the
four-acceleration as

a = γ̃ 2(Aũ + d⊥) = γ̃ Au + γ̃ 2d⊥. (83)

The explanation of formula (83) is as follows. The acceleration of the origin of K ′
in K is Au, where u is the four-velocity of the origin of K ′ in K . The factor γ̃ is the
time dilation factor between the clock at the origin of K ′ and the clock at the position
of the particle and arises here because we differentiated the four-velocity by τ instead
of τp. The term γ̃ Au accounts only for the acceleration of K ′ with respect to K . Thus,
we must add the term γ̃ 2d⊥ to account for the acceleration of the particle inside K ′.
However, since the four-acceleration is always perpendicular to the four-velocity, and
Au is perpendicular to u, the four-acceleration can contain only the component of d
which is perpendicular to u. This completes the explanation of formula (83).

Consider the motion of a charged particle in a constant electromagnetic field F .
We decompose its motion into motion under a constant Lorentz force and accelera-
tion produced by the self-force due to the radiation. We consider the particle to be
at the origin (γ̃ = 1) of a uniformly accelerated system K ′, with acceleration tensor
A = e

m F , ignoring the self-force. The acceleration due to the radiation will be consid-
ered as motion with respect to K ′. The self-force generates an acceleration, which is
known to be d = −τ0A2u, where τ0 is a universal constant. Thus, in this case, formula

123



121 Page 18 of 19 Y. Friedman, T. Scarr

(82) coincides with the Lorentz-Abraham-Dirac equation ([13], Eq. S-6, page 258)

du

dτ
= Au − τ0

(
A2u − (A2u · u)u

)
, (84)

which Rohrlich calls the correct equation of motion of a classical point charge.

8 Conclusions and future directions

We have introduced here a new equation (Definition 1) which defines uniform accel-
eration in a general curved spacetime. The solutions to this equation have constant
acceleration in the instantaneously co-moving inertial frame, as suggested by Einstein.
This improves the results of [1], which handle only hyperbolic motion. In Sect. 3, we
have explicit solutions in a flat space background.

In a flat background, we have obtained velocity and acceleration transformations
(Sects. 4, 7). To this end, we introduced here the 4D velocity (Definition 2, Sect. 4)
and the 4D acceleration. This is an adaptation of Horwitz and Piron’s [4] concept
of “off-shell” to the four-velocity. For inertial systems, our velocity transformations
reduce to the usual Einstein velocity addition (55).

Formula (65) gives the explicit form of the time dilation between clocks located
at different positions in a uniformly accelerated frame. The time dilation is a product
of the time dilation due to the potential energy at the position of the clock and the
time dilation due to the clock’s velocity. The power series expansion (66) contains all
of the usual terms plus a new term which has only been obtained in Schwarzschild
spacetime [10].

In Sect. 6, we have shown that every rest point in a uniformly accelerated frame is
also uniformly accelerated. However, the value of the acceleration differs from point
to point and must be multiplied by the time dilation factor [(formula (69)].

We consider the case of a charged particle in a constant electromagnetic field. The
co-moving frame to this particle is determined by the field, ignoring the self-force.
The acceleration caused by the radiation is considered as motion with respect to the
co-moving frame. We then apply our acceleration transformations and recover the
Lorentz-Abraham-Dirac equation.

We want to determine whether the spacetime transformations between uniformly
accelerated systems form a group. If yes, we want to characterize this group, which
will be an extension of the Lorentz group.

We have begun to apply the results here to rotating systems. The case of a disk
rotating with constant angular velocity is of particular interest. The correct form of
the spacetime transformations from such a disk to an inertial frame has been debated
for over 100 years and continues to the present day. The recent book [14] makes it
clear that there is still no universally accepted theory. Applying our methodology, one
can obtain explicit spacetime transformations using only the basic tenets of Special
Relativity, the inherent symmetries of the problem, and the results of [2,3] and the
current paper. We can also show how to avoid the time gap and the horizon problem.

Our results may also be applied to the theory known as Extended Relativity (ER),
developed in [15]. ER extends Special Relativity by purporting the existence of a
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universal maximal acceleration and has been successfully applied to the hydrogen
atom and the harmonic oscillator. Thus far, however, only the one-dimensional case
has been treated. We are currently trying to apply the results of [2,3] and the current
paper in order to extend ER to full covariance. The first author has performed two
experiments, one at the Petra III facility at DESY in Hamburg, and one at the ESRF
synchrotron in Grenoble, to prove the existence of a universal maximal acceleration
and to measure its value. Further experiments are planned.
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