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Abstract In the present paper we analyze the geodesic structure of black hole space-
time in massive gravity with the scalar charge Q representing the modification to
Einstein’s general relativity. By solving the geodesic equation and analyzing the behav-
ior of effective potential, we investigate the time-like geodesic types of the test particle
around a black hole in massive gravity. At the same time, all kinds of orbits, which
are allowed according to the energy levels of the effective potential, are numerically
simulated in detail.

Keywords Time-like geodesic motion · Effective potential · Massive gravity

1 Introduction

Many test gravitational effects have been predicted by the general relativity, such as
bending of light, precession of planetary orbits, gravitational time-delay and grav-
itational red-shift, etc. The structure of geodesics helps us to understand different
gravitational effects of a gravitational source. Recently the geodesics of different grav-
itational sources have been studied in Refs. [1–5]. The time-like geodesic structure of
the Schwarzschild black hole (anti) de Sitter black hole was studied by Jaklitsch et al.
[6] and Cruz et al. [7]. Podolsky [8] investigated all possible geodesic motions in the
extreme Schwarzschild-de Sitter spacetime. By solving the Hamilton–Jacobi partial
differential equation, Kraniotis [9] investigated the geodesic motion of the massive
particle in the Kerr and Kerr (anti) de Sitter gravitational field. The analysis of the
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effective potential for null geodesics in the Reissner-Nordström-de Sitter and Kerr-
de Sitter spacetime was carried out in Refs. [10,11]. Chen and Wang [12,13] have
investigated the time-like geodesic motion of test particle in Schwarzschild spacetime
surrounded by quintessence and in Hor̆ava–Lifshitz spacetime by analyzing the behav-
ior of the effective potential for the particle. Zhou et al. [14] analyzed the effective of
massless and massive test particles in Bardeen spacetime and numerically simulated
all possible orbits corresponding to all kinds of energy levels. And he also investigated
all geodesic types of the test particle and the photon in JNW spacetime by solving the
geodesic equation and analyzing the behavior of effective potential [15].

Several theories [16–22] have been proposed to generalize general relativity in
order to get an agreement with the observations that the universe is going through
a phase of the accelerated expansion [23,24] without requiring the existence of the
cosmological constant or dark energy and dark matter. One class of these models is
called massive gravity [25] which is a well-developed case in the infrared modification
of gravity, and that all of these points are nicely illustrated. Fierz and Pauli [26] do the
first attempt to include mass for the graviton in 1939. After that, the massive gravity
theory was not concerned until the vigorous development of quantum field theory in
the early 1970s. Especially, in recent years many significant massive gravity models as
a modified Einstein gravity theory (see the excellent reviews on the subject [27–29])
have been proposed. For example, a great of scientists constructed the massive gravity
fulfilling Lorentz invariance [30] and proved to be free from ghosts and instabilities at
a full nonperturbative level, even though there are very few known solutions for such
models [31,32]. Lorentz violation, which are formulated in a nonperturbative way,
makes the study of black holes possible [22,25]. Fortunately the massive gravity theory
with a Lorentz violation gave us an asymptotically flat spherically symmetric space
[33,34] with finite total energy, featuring an asymptotic behavior slower than 1/r and
generically of the form 1/rλ, which makes the black hole solutions be far richer than
in general relativity due to the presence of “hair” λ. Last years Sharmanthie Fernando
[35,36] studied quasinormal modes of scalar and massless Dirac perturbations of this
theory. Capela and Tinyakov [37] and Capela and Nardini [38] has checked the validity
of the laws of thermodynamics in massive gravity by making use of the exact black
hole solution and equilibrium states and phase structures of such a solution enclosed
in a spherical surface kept at a fixed temperature.

In this paper we mainly focus on the geodesic structure of a black hole in massive
gravity which has different effective potential characterized by the scalar charge Q
representing the modification to Einstein’s general relativity due to the presence of
graviton with a mass. The present paper is organized as follows: In Sect. 2 we give a
brief review on the black hole spacetime in massive gravity, then we study the geodesic
equation and its effective potential of the black hole in massive gravity. In Sect. 3 we
analyze the orbit types of test particle to the corresponding effective potential and
the effect of the parameters Q, L , λ on the orbit structure of a black hole in massive
gravity. A brief conclusion is given in the last section.
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2 Geodesic equation and effective potential

It is well known that the massive gravity is a hot topic in theoretical physics in recent
years. The theory of massive gravity is described by the following action

S =
∫

d4x
√−g

[
R

16π
+ �4�(X,Wi j )

]
, (1)

where R is the scalar curvature and � is a function of scalar fields φ0, φi . The functions
X and Wi j are defined as:

X = ∂μφ0∂μφ0

�4 , (2)

Wi j = ∂μφi∂μφ j

�4 − ∂μφi∂μφ0∂νφ j∂νφ
0

�8X
. (3)

Now we present static spherically symmetric black hole solution to the action in
Eq. (1) which a detailed derivation is given in Refs. [22,29]. So the metric is given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (4)

where

f (r) = 1 − 2M

r
− Q

rλ
. (5)

The scalar fields are given by

φ0 = �2(t + h(r)), φi = �2xi , (6)

where

h(r) = ±
∫

dr

α(r)

[
1 − α(r)

(
Qλ(λ − 1)

12m2

1

rλ+2 + 1

)−1
] 1

2

. (7)

Where m is the mass of the graviton. The solution (4) has an attractive behavior at
infinity with positive M . However when M is negative, the corresponding Newton
potential is repulsive at large distances and attractive near the horizon. This situation
does not have a corresponding case in GR, so we only consider the case M > 0. Q
is a scalar charge which reflects the modification of the gravitational interaction as
compared to general relativity. We will get standard Schwarzschild when Q = 0. For
Q > 0, the modified black hole has attractive gravitational potential at all distances and
the horizon size is larger than 2GM . For Q < 0, the horizon exists only for sufficiently
small Q. But When the horizon exists, the gravitational field is attractive all the way to
the horizon while the attraction is weaker than in the case of the usual Schwarzschild
black hole of mass M , and the horizon size is smaller. Here λ is constant. When λ < 0,
the solution does not describe asymptotically flat space. And when 0 < λ < 1, the
Arnowitt–Deser–Misner (ADM) mass will be infinite. For λ > 1, the solution recovers
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standard Schwarzschild term at infinity and the ADM mass is equal to M . Moreover,
we forbid naked singularities, i.e. f (r) must have real roots and the largest of them
determines the radius of the event horizon. In the following we will limit ourselves to
the case λ > 1, so we choose λ = 4 as a test numerical example to simulate in the
following sections.

In order to investigate the time-like geodesics of a test particle around the black hole
in massive gravity, we firstly set up the geodesic equations and its constraint equations
which are given by

ẍμ + �
μ
νλ ẋ

ν ẋλ = 0, (8)

gμν ẋ
μ ẋν = ε. (9)

Here ẋ denotes the differentiation with respect to the affine parameter τ and xμ are
the space time coordinates. ε = 0 and −1 correspond to null and time-like geodesics,
respectively. For convenience we only choose ε = −1 for time-like geodesics to
investigate as an example.

The geodesic equations for the metric we considered take the following forms

ẗ + f ′(r)
f (r)

ṫ ṙ = 0, (10)

r̈ + 1

2
f (r) f ′(r)ṫ2 − f ′(r)

2 f (r)
ṙ2 − r f (r)(θ̇2 + ϕ̇2 sin2 θ) = 0, (11)

θ̈ + 2

r
ṙ θ̇ − sin θ cos θϕ̇2 = 0, (12)

ϕ̈ + 2

r
ṙ ϕ̇ + 2θ̇ ϕ̇ cot θ = 0. (13)

The time-like constraint on the trajectories is given by

− f (r)ṫ2 + 1

f (r)
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2 = −1. (14)

Now we consider the equatorial plan (θ = π
2 ), so the geodesic equations and its

constraint equation can be rewritten as

ẗ + f ′(r)
f (r)

ṫ ṙ = 0, (15)

r̈ + 1

2
f (r) f ′(r)ṫ2 − f ′(r)

2 f (r)
ṙ2 − r f (r)ϕ̇2 = 0, (16)

ϕ̈ + 2

r
ṙ ϕ̇ = 0, (17)

− f (r)ṫ2 + 1

f (r)
ṙ2 + r2ϕ̇2 = −1. (18)
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By integrating Eqs. (15, 17) leads to

ṫ = C1

f (r)
, (19)

ϕ̇ = C2

r2 , (20)

where the integrating constants C1 and C2 correspond to the conserved total energy
E and the conserved angular momentum L of the test particle, respectively.

Substituting Eqs. (19, 20) into Eq. (18), we can obtain

− E2

f (r)
+ ṙ2

f (r)
+ L2

r2 = −1. (21)

Now we solve the above equation for ṙ2 in order to obtain the radial equation, which
allows us to characterize possible moments of the test particle without an explicit
solution of the motion equation in an invariant plane

ṙ2 = E2 − f (r)

(
1 + L2

r2

)
. (22)

We can rewrite the above equation in one-dimension form

ṙ2 = E2 − V 2
e f f , (23)

so we can define the effective potential V 2
e f f as

V 2
e f f = f (r)

(
1 + L2

r2

)
=

(
1 − 2M

r
− Q

rλ

) (
1 + L2

r2

)
. (24)

3 Effective potential and corresponding orbit

For the above Eq. (24), the effective potential Vef f is relevant to the parameters Q, L
and λ. Firstly, we will analyze the impact of scalar charge Q to the potential energy,
and then analyze the impact of angular moment L and λ to the effective potential.

3.1 Q > 0 case

When Q > 0, at all distances, the gravitational potential is attractive and stronger than
the usual Schwarzschild black hole potential. Therefore, the event horizon radius r+
is never smaller than in the standard case. According to the equation of motion (Eq.
22) and Fig. 1a, we can divide the time-like geodesics into several cases according to
different levels of E as follows:
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(1) When E2 > E2
1 , The particle with enough energy will directly fall into the

center from a finite distance. So we expect a plunge orbit which the particle comes
from infinity and then plunges into the center. In Fig. 1b we have simulated the fall-into
orbit for the energy E corresponding to E2 > E2

1 .
(2) When E2 = E2

1 , the particle has an unstable circular orbit. For r < rA (rA is the
radius corresponding to E1), the particle will fall into the center from rA. For r > rA,
the particle will escape from rA to infinity. These two kinds of unstable circular orbits
are showed in Fig. 1c, d.

(3) When E2
1 > E2 > E2

2 , the particle has two different kinds of orbits. If r < rB ,
the particle will fall into the center from rB . For r > rC , the particle will rebound
from rC to infinity. The corresponding orbits are showed in Fig. 1e, f.

In order to analyze the effect of the parameters Q > 0, λ and L on the effective
potential energy, we numerically showed the situation of the effective potential with
different values of the parameters Q, L and λ in Fig. 2, in detail.

Figure 2a shows the effective potential for different values of scalar charge Q. The
maximum value of effective potential decreases with scalar charge Q increasing. We
find that the scalar charge Q mainly take effect on the orbit near the black hole and
take no effect on the orbit far away from the center. In Fig. 2b we showed the effective
potential energy with parameter λ. With increasing of the parameter λ, the effective
potential energy move to the left and the maximum value of effective potential energy
increases. Figure 2c showed the effective potential energy with angular momentum L ,
it is easy to see that the maximum value of effective potential energy increases as the
angular momentum L increases. All in all, we find the parameters Q, λ and L don’t
change the styles of the orbits of the test particle around the black hole spacetime in
massive gravity.

3.2 Q < 0 case

In this case the Newton potential is always attractive until reaching the horizon, but
the attraction is weaker (which makes the event horizon radius r+ smaller) than in the
Schwarzschild case. Now we investigate, in detail, the orbits of the radial particle in
several styles according to different values of E for Q < 0 case in Fig. 3.

(1) When E2 = E2
2 , the particle circles around the center with a constant radius

r = rD . This particle circles around the center with a constant radius r = rD which is
showed in Fig. 3b.

(2) When E2 = E2
1 , the particle has an unstable circular orbit. For r < rA (rA

is the radius corresponding to E1), the particle will fall into the center from rA. For
r > rA, the particle in this kind of orbit escape from rA to infinity. They are simulated
in Fig. 3c, d, respectively.

(3) When E2
1 > E2 > E2

2 , the particle has two different kinds of orbits. If rB < r <

rC , the particle moves in a bound orbit in a range rB < r < rC as Fig. 3e, where rB
and rC are the perihelion and aphelion distances, respectively. If r > rC , the particle
will rebound from rC to infinity, which is showed in Fig. 3f.

(4) When E2 > E2
1 , the particle with enough energy will escape from r = rB to

infinity, seeing Fig. 3g.

123



128 Page 8 of 13 R. Zhang et al.

Q
0

Q
10

Q
20

Q
30

a

0
5

10
15

20
25

020406080

r

Veff
2

1 2 3 4

b

0
5

10
15

20
25

020406080

r

Veff
2

L
20

L
30

L
40

L
50

c

0
5

10
15

20
25

020406080

r

Veff
2

F
ig
.2

T
he

ef
fe

ct
iv

e
po

te
nt

ia
lV

e
ff

ve
rs

us
r

of
th

e
te

st
pa

rt
ic

le
ar

ou
nd

a
bl

ac
k

ho
le

in
m

as
si

ve
gr

av
ity

fo
r

th
e

pa
ra

m
et

er
s
Q

,λ
an

d
L

123



Time-like geodesic structure in massive gravity Page 9 of 13 128

A

B C

D

a

0 10 20 30 40 50

E1
2

E2
2

E2

r

V
ef
f2

b

2 1 0 1 2

2

1

0

1

2

r

r

c

4 2 0 2 4

4

2

0

2

4

r

r

d

4 2 0 2 4

4

2

0

2

4

r

r

e

2 1 0 1 2

2

1

0

1

2

r

r

f

4 2 0 2 4
4

2

0

2

4

r

r

g

10 5 0 5 10
10

5

0

5

10

r

r

Fig. 3 The Vef f versus r and the corresponding time-like geodesic structure of the test particle around a
black hole in massive gravity for the parameters Q = −1.7, λ = 4 and L = 40
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In order to analyze the effect of Q, λ and L on the effective potential energy,
we numerically study the effective potential with different values of the parameters
Q < 0, λ and L in Fig. 4.

Figure 4a shows the effective potential for different values of the scalar charge
Q < 0. We find that the scalar charge Q mainly take effect on the orbit near the black
hole and take no effect on the orbit far away from the center. We also can see that the
bound orbit gap becomes narrow and the energy of particle becomes low as the scalar
charge Q increases. In Fig. 4b we show the effective potential for different values of
the parameter λ. With increasing of parameter λ, the effective potential energy move
to the left and the maximum value of effective potential energy increases. Figure 4c
shows the effective potential for different values of the angular momentum L , we
can see that the maximum value of effective potential energy increases as the angular
momentum L increases.

4 Conclusion

In this paper we have solved the geodesic equation and analyzed the behavior of
effective potential to investigate the motion of massive particles and study the geodesic
structure of a black hole in massive gravity. By using numerical technique, we have
found that for a test particle: (1) When the scalar charge Q > 0, there exist two kinds
of fall into orbit, two kinds of unstable circular orbits, a rebound orbit; (2) When the
scalar charge Q < 0, the test particle will move on an escape orbit, two kinds of
unstable circular orbits, a bound orbit, or a rebound orbit, an stable circular orbit when
the particle energy reaches a minimum. We also have found that the parameters λ

and L don’t change the styles of the orbits of the test particle around the black hole
spacetime in massive gravity.

Appendix

In this section we give a brief review about how the solution Eq. (4) meets the solar
system tests, in particular what limits these tests put on the parameter λ. In order to
describe the star system, (see Ref. [22]), the metric should be an asymptotically flat
space, and the masses of fluctuations around flat space are

m2
0 = 3

4

(
ᾱ1 − 4ᾱ2 + 6ᾱ3 − β̄1 + 4β̄2 − 6β̄3

)
m2,

m2
1 = 0,m2

2 = 1

2

(
ᾱ1 − 2ᾱ2 + β̄1 − 2β̄2

)
m2,

m2
3 = 1

4

(
ᾱ1 − 6ᾱ3 − β̄1 + 8β̄2 − 18β̄3

)
m2,

m2
4 = 1

4

(
ᾱ1 − 4ᾱ2 + 6ᾱ3 − 3β̄1 + 12β̄2 − 18β̄3

)
m2, (25)

where ᾱi and β̄i are constants [22]. By defining another parameter
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μ2 ≡ m2
2

3m4
4 − m2

0

(
m2

2 − 3m2
3

)
m4

4 − m2
0

(
m2

2 − m2
3

) , (26)

we can obvious find that the limit on μ2 can be interpreted as a limit on the graviton
mass scale m2.

Considering a star as a source, the gravitational mass of the body can be written as

M = M0

[
1 − 8μ2R2

5(λ − 1)(λ + 2)

]
, (27)

where M0 is the bare mass of the star and R is the radius of the star. The pressure at
the center of the star is

P(0) � GM0ρ0

2R

[
1 + 16μ2R2(11 + 2λ)

5(2λ + 1)(λ + 4)(λ + 2)

]
, (28)

and the derivative of the pressure is

P
′
(R) � −GM0ρ0

2R

[
1 − 16μ2R2(λ − 2)

5(2λ + 1)(λ + 4)(λ + 2)

]
. (29)

In order to ensure the stability of the matter system, so M > 0, P(0) > 0, P
′
(R) < 0

and μ2 ≤ o(1)

R2 . Comelli et al. [22] discussed earlier that the limit on μ2 can be

interpreted as a limit on the graviton mass scale m2. Therefore for λ > 1, the typical
real stars with R ∼ ×105 km, require m < ×10−11 eV. Considering the Sun with
R � 7 × 105 km and the central pressure not deviating more than few percent from
the standard value [42,43], the graviton mass will be m < ×10−13 eV [39–41]. In
fact, larger objects give rise to stranger limits, for instance, the stability of the largest
bound states in the universe, R � 1/10 Mpc, gives a limit m < ×10−28/29 eV [22].
So we can see that the star system tests, in particular, the solar system tests, limit the
parameter λ > 1 in the black hole solution Eq. (4) in massive gravity.
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