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Abstract The generalization of the four-dimensional Kerr–Newman black holes to
include the nonlinear electrodynamics has been one of the famous problems in black
hole physics. In this paper, we address the effects of the small rotation parameter on
the exact black hole solutions of Einstein-dilaton gravity coupled to the exponential
nonlinear electrodynamics. We find a new stationary black hole solutions of this theory,
in the limit of small angular momentum, and in the presence of Liouville-type potential
for the dilaton field and an arbitrary value of the dilaton coupling constant. We compute
the angular momentum and the gyromagnetic ratio of these rotating dilaton black holes.
Interestingly enough, we find that the nonlinearity of the electrodynamics do not affect
the angular momentum and the gyromagnetic ratio of the spacetime, while in contrast,
the dilaton field can modify the angular momentum as well as the gyromagnetic ratio

B S. H. Hendi
hendi@shirazu.ac.ir

A. Sheykhi
asheykhi@shirazu.ac.ir

M. Sepehri Rad
masoud.alahverdi@gmail.com

K. Matsuno
matsuno@sci.osaka-cu.ac.jp

1 Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz
71454, Iran

2 Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441
Maragha, Iran

3 Korea Institute of Science and Technology, Center for Functional Connectomics Seoul, Seoul,
Korea

4 Department of Mathematics and Physics, Osaka City University, Sumiyoshi, Osaka 558-8585,
Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-015-1959-4&domain=pdf


117 Page 2 of 14 S. H. Hendi et al.

of the rotating black holes. We find the gyromagnetic ratio as g = 6/(3 − α2), where
α is the coupling constant of the dilaton and the electrodynamic fields. For α = 0, we
arrive at g = 2, which is the gyromagnetic ratio of the Kerr–Newman black holes in
four dimensions.

Keywords Slowly rotating black hole · Dilaton gravity · Nonlinear electrodynamics

1 Introduction

In the past decades there has been a growing interest for studying the rotating black
hole solutions in the background of anti-de Sitter (AdS) spacetimes. The motivations
for this studying mainly originates from the well-known correspondence between the
gravitating fields in an AdS spacetime and the conformal field theory (CFT) living on
the boundary of the AdS spacetime [1,2]. According to AdS/CFT correspondence, the
rotating black holes in AdS space are dual to certain CFTs in a rotating space [3], while
charged ones are dual to CFTs with chemical potential [4–6]. However, constructing
rotating black holes coupled to the matter field are not a trivial task at all. For exam-
ple, while the charged rotating black holes in four dimensions have been found several
years ago, the counterpart of the Kerr–Newman solution in higher dimensions, that
is the charged generalization of the Myers–Perry solution [7] in (n + 1)-dimensional
Einstein–Maxwell gravity, still remains to be found analytically. The most general
higher dimensional uncharged rotating black holes in AdS spaces with all rotation
parameters have been found [8,9]. Rotating black holes for the Maxwell field mini-
mally coupled to Einstein gravity in higher dimensions do not exist in a closed form,
and one has to rely on perturbative or numerical methods to construct them in the
background of asymptotically flat [10–12] and AdS [13,14] spacetimes. There has
also been a lot of interests in constructing the analogous charged rotating solutions in
the framework of gauged supergravity in various dimensions [15–19]. The studies were
also applied to other gravity theories. In this regards, a class of charged slowly rotating
black hole solutions in Gauss–Bonnet gravity [20,21], third order Lovelock gravity
[22], Chern–Simons gravity [23,24], and Horava–Lifshitz gravity [25,26] has been
constructed. In addition, a class of slowly rotating black hole solution of the Einstein
equations with nonlinear Born–Infeld charge was obtained in [27]. In the presence of
the power-law nonlinear Maxwell field [28] and the Born–Infeld-like nonlinear electro-
dynamics [29–31], charged rotating black holes in the limit of slow rotation parameter
have been explored. In the framework of the Einstein–Hilbert action which is supple-
mented by all possible quadratic and algebraic curvature invariants coupled to a scalar
field, a general stationary, slowly rotating black hole, which is solution to a large class
of alternative theories of gravity in four dimensions, was obtained [32]. Employing
higher order perturbation theory, charged rotating black holes in odd dimensions were
obtained in the context of Einstein–Maxwell Lagrangian which is supplemented with
a Chern–Simons term [33]. Extremal Myers–Perry black holes coupled to Born–Infeld
nonlinear electrodynamics have also been considered in [34,35].

The studies were also extended to include a dilaton field. In the absence of the dilaton
potential, the properties of charged rotating dilaton black holes, for an arbitrary dilaton
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coupling constant, in the small angular momentum limit, in four [36–39] and higher
dimensional spacetimes [40] have been studied. In the presence of a Liouville-type
dilaton potential, a class of charged slowly rotating dilaton black hole solutions in
four [41,42] and higher dimensions [43,44] have been investigated. Because of the
presence of one or two term(s) Liouville-type dilaton potential, these solutions [41–
44] are neither asymptotically flat nor (A)dS. With an appropriate combination of
three Liouville-type dilaton potentials, a class of charged slowly rotating dilaton black
hole solution for asymptotically AdS spacetime in four [45] and higher dimensional
[46,47] spacetimes have been constructed. Slowly rotating charged Kaluza–Klein
black hole solutions of the five-dimensional Einstein–Maxwell-dilaton theory with
arbitrary dilaton coupling constant were obtained in [48]. Considering the electric
charge as the perturbative parameter, extremal Myers–Perry black holes in dilaton
gravity have been studied for linear Maxwell field [49] and nonlinear Born–Infeld
theory [50]. The physical properties of rotating Einstein–Maxwell-dilaton black holes
in odd dimensions also have been investigated [51]. Till now, charged rotating dilaton
black holes coupled to Born–Infeld-like nonlinear electrodynamics have not been
constructed. In this paper, we would like to turn the investigation on the slowly rotating
dilaton black holes by including the Lagrangian of the exponential form of nonlinear
electrodynamics in the action. This is a new step which may shed some light on this
issue for further investigations.

Our paper is structured as follows. In the next section, we introduce the basic
field equations of Einstein-dilaton gravity in the presence of exponential nonlinear
electrodynamics. In Sect. 3, we present a class of slowly rotating charged dilaton black
hole solutions of this theory. We also obtain conserved quantities such as the mass, the
electric charge, the Hawking temperature, the entropy, the angular momentum, and
the gyromagnetic ratio of the solutions. The last section is devoted to summary and
conclusion.

2 Basic field equations

The action of four-dimensional Einstein-dilaton gravity coupled to nonlinear electro-
dynamics (NED) can be written

S = 1

16π

∫
d4x

√−g
(
R − 2gμν∂μΦ∂νΦ − V (Φ) + L(F , Φ)

)

− 1

8π

∫
∂M

d3x
√−γΘ(γ ), (1)

where R, Φ and V (Φ) are, respectively, the Ricci scalar the dilaton field and the
potential for Φ. In addition, Θ and γ are the trace of the extrinsic curvature and the
induced metric on the boundary, respectively. L(F , Φ) can be selected as a new class
of dilaton field coupled with the exponential form of NED, whose Lagrangian is [52]

L(F , Φ) = 4β2e2αΦ

[
exp

(
−e−4αΦF

4β2

)
− 1

]
, (2)
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where α and β are, respectively, the dilaton and the nonlinearity parameter, and F =
FμνFμν is the Maxwell invariant. It is easy to show that in the limit β → ∞ (weak
field limit of NED), the mentioned L(F , Φ) reduces to the Lagrangian of the standard
Maxwell field coupled with a dilaton field, Φ,

L(F , Φ) −→ −Fe−2αΦ. (3)

In addition, the Lagrangian of exponential form of NED may be recovered in the
absence of dilaton field, α −→ 0 [53–55],

L(F , Φ) −→ 4β2
[

exp

(−F
4β2

)
− 1

]
. (4)

Before we proceed, let us provide some motivations for considering this form of NED.
Considering strong electromagnetic field in the regions near to point-like charges, it
was suggested that one may have to use generalized nonlinear Maxwell theory in
those regions [56]. Similar behavior may occur in the vicinity of compact objects and
therefore it is reasonable to consider NED with an astrophysical motivation [57].

In addition, in quantum electrodynamics (QED) context, it was shown that quantum
corrections lead to nonlinear properties of vacuum which affect the photon propagation
[58–63]. Besides, within the framework of AdS/CFT, some authors regard the roles
of NED on shear viscosity [64,65] and also holographic superconductors [66–68].
Regarding these observations, it is worthwhile to study the effects of NED on the
geometrical behavior of black holes.

Although the Born–Infeld theory is a specific model in the context of NED, in recent
years there has been a lot of interests on the other types of NED theories. This is mainly
due to their emergence in the context of low-energy limit of heterotic string theory or
as an effective action for the consideration of effects of loop corrections in QED where
quartic corrections of Maxwell field strength appear [69–77]. In particular, a class of
exponential form of NED was proposed in the form of (4). This model is significantly
richer than that of the Maxwell field, and in the special case β −→ ∞, its Lagrangian
reduces to that of a linear Maxwell field as

L(F) = −F + F2

8β2 + O
(
β−4

)
, (5)

which is exactly like the Born–Infeld theory. In addition to the black hole solutions of
this model, in the context of AdS/CFT correspondence, the effects of the mentioned
nonlinear source on strongly coupled dual gauge theory have been investigated [78,79].

It is worth mentioning that although the exponential form of NED does not cancel
the divergency of the electric field at r = 0, its singularity is much weaker than
Einstein–Maxwell theory. This behavior is more natural with respect to the Born–
Infeld theory in which the electric field of pointlike charges goes to a constant value.
In addition, we should note that considering the E8 × E8 heterotic string theory, the
SO(32) gauge group has a U (1) subgroup. It has been shown that [77,80] taking into
account a constant dilaton, the effective Lagrangian has a Gauss–Bonnet term as well
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as a quadratic Maxwell invariant in addition to the Einstein–Maxwell Lagrangian.
Since, unlike the quadratic Maxwell invariant, the Gauss–Bonnet term becomes a
topological invariant and does not give any contribution in four dimensions, it is
natural to investigate the Einstein–NED in four dimensions. Motivated by the recent
results mentioned above, we take into account the exponential form of NED to obtain
four-dimensional slowly rotating dilatonic black hole solutions.

Using the Euler–Lagrange equation, we can obtain gravitational, electromagnetic
and scalar field equations with the following explicit forms

Gμν = 2
(∇μΦ

)
(∇νΦ) −

(
(∇Φ)2 + V (Φ)

2
+ Π

)
gμν

−2e−2αΦ

(
FμλF

λ
ν − F

2
gμν

)
∂L(Y )

∂Y
, (6)

∂μ

(√−ge−2αΦ ∂L(Y )

∂Y
Fμν

)
= 0, (7)

∇2Φ = 1

4

dV (Φ)

dΦ
+ αΠ, (8)

where

Π = 2β2e2αΦ

[
2Y

∂L(Y )

∂Y
− L(Y )

]
, (9)

and L(F , Φ) = 4β2e2αΦL(Y ) with

L(Y ) = e−Y − 1, Y = e−4αΦF
4β2 . (10)

3 Slowly rotating charged black holes in 4-dimensions

3.1 Solutions

In this section we look for the slowly rotating nonlinear charged dilatonic black hole
solutions in four dimensions. Using series expansion of Kerr and Kerr–Newman space-
times for small values of rotation parameter, a, and keeping the first order of the angular
momentum parameter, one finds that the only term in the metric which is related to
the rotation parameter is gtφ . This motivates us to consider the following line element
and gauge potential

ds2 = −F(r)dt2 + dr2

F(r)

+2aG(r) sin2 θdtdφ + r2R2(r)
(
dθ2 + sin2 θdφ2

)
, (11)

A = h(r)dt + aqC(r) sin2 θdφ, (12)
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where the unknown functions F, G, R, h, C , and the dilaton field Φ depend only
on r , and a, q are parameters associated with the angular momentum and the electric
charge of the black holes. To generalize the four-dimensional static dilaton black holes
with the exponential form of NED [52] to the slowly rotating ones, we substitute the
metric (11) and the gauge potential (12) into the field Eqs. (6)–(8), and solve these
equations up to the linear order of the angular momentum parameter a.

After some algebraic calculations, we find that Eq. (7) leads to two independent
differential equations

j1 = E ′(r) − 2αΦ ′(r)E(r) + 2β2E(r)
[
R(r) + r R′(r)

]
r R(r)

[
E2(r)e−4αΦ + β2

] = 0, (13)

j2 = E ′ − 2α
[
β2 + E2e−4αΦ

]
Φ ′

Ee−4αΦ
− β2

{
2 + r RE

[
3r RG ′ − 2 (r RG)′

]}
qr2R2FEC ′e−4αΦ

= 0,

(14)

where E(r) = h′(r), and prime denotes the first derivative with respect to r . As we
see, Eq. (13) is free of F(r) and G(r), and one can obtain E(r) as a function of Φ(r)
and R(r) with the following explicit form

E(r) = qe2αΦ exp
[− 1

2 LW
]

r2R2(r)
, (15)

where LW = LambertW
(

q2

β2r4R4(r)

)
is the Lambert W function which satisfies

LambertW (x) exp [LambertW (x)] = x , and has a convergent series expansion for
|x | < 1 such that LambertW (x) = x − x2 + 3x3/2 − 8x4/3 + · · · (for more details,
see [81,82]). One can use series expansion of E(r) for large β to obtain the electro-
magnetic field of Maxwell theory in the presence of dilaton field

E(r)|Large β = e2αΦ

[
q

r2R2(r)
− q3

2β2r6R6(r)
+ O

(
q5

β4r10R10(r)

)]
. (16)

This equation shows that for large values of β, the dominant term of the dilatonic
nonlinear electromagnetic field is the same as that in four-dimensional Reissner–
Nordström black holes with the dilaton field [90,91].

Now we focus on other field Eqs. (6) and (8). It is easy to show that Eq. (8) with
the metric (11) and the gauge potential (12) reduces to

j3 = 32αβ2r Re2αΦ

[(
X + 1

2

)
e−X − 1

2

]
+ 4r FRΦ ′′

+ [
8r FR′ + 4R

(
2F + r F ′)] Φ ′ − r R

dV

dΦ
= 0, (17)

where

X = −E2e−4αΦ

2β2 . (18)
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In addition, calculations show that the nonzero components of the gravitational
field Eq. (6) with the metric (11) and the gauge potential (12) are

jt t = r RF ′′ + 2F ′(R + r R′) + 8β2r Re2αΦ

[
1 −

(
2X + 1 + E2e−4αΦ

β2

)
e−X

]

+r RV = 0, (19)

jrr = jt t − 4F
(
r RΦ ′2 + r R′′ + 2R′) = 0, (20)

jφφ = 8β2R2e2αΦ

[(
X + 1

2

)
e−X − 1

2

]
− F

(
RR′)′

− RR′(4F + r F ′)
r

− R2
(
F

r2 + F ′

r
+ V

2

)
+ 1

r2 = 0, (21)

jφt = GF ′′ − FG ′′ + 2G

r2R2 + 8e−2αΦ−X E2
(
qC ′F
E

− G

)
= 0, (22)

jtφ = 2r2GRR′′ − r2R2G ′′ + 2G
(

4r RR′ + r2R′2 + R2
)

+8qC ′r2ER2e−2αΦ−X = 0. (23)

Now we should obtain exact analytical solutions of the field Eqs. (14), (17) and (19)–
(23) up to the linear order of rotation parameter for arbitrary α and β. We follow the
method of [52] to consider a dilaton potential contains two Liouville type terms with
the following form

V (Φ) = 2Λ0e
2ξ0Φ + 2Λe2ξΦ, (24)

where Λ0, ξ0, Λ and ξ are constants. In order to solve Eqs. (14), (17) and (19)–(23),
we use a suitable ansatz such that

R(r) = eαΦ. (25)

Considering Eqs. (19) and (20), one finds that jt t − jrr = 0 leads to a differential
equation for the dilaton field Φ(r) with the following solutions

Φ(r) = α

1 + α2 ln

(
b

r

)
, (26)

where b is an integration constant. Now, we are in a position to obtain F(r), G(r),
and C(r). Inserting E(r), R(r), V (Φ), and Φ(r) in Eqs. (14), (17) and (19)–(23), we
find

F(r) =
[
(1 + α2)

∫
r

−2α2

α2+1 H(r)dr − m

]
r

α2−1
α2+1 , (27)
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H(r) = 4qβ

(
1√
LW

− √
LW

)

−
⎡
⎣Λ0

(
b

r

) 2αξ0
α2+1 + Λ

(
b

r

) 2αξ

α2+1 + 4β2
(
b

r

) 2α2

α2+1

⎤
⎦ r2

+
(
b

r

)−2α2

α2+1
, (28)

with

Λ0 = α2(
α2 − 1

)
b2

, ξ0 = 1

α
, ξ = α, (29)

where m is the integration constant which is related to the Arnowitt–Deser–Misner
(ADM) mass of the black hole. Considering Eqs. (22) and (23), one can obtain

C(r) = r2(1 + α2)G ′ − 2rG

8q2(1 + α2)

(
b

r

) 2α2

α2+1
. (30)

In order to find the explicit form of G(r), we set

G(r) = N (r)F(r) + B(r), (31)

and insert it to Eqs. (22) and (23) with the mentioned C(r).
To obtain consistent solutions, we regard the following ansatz

N (r) = 1, (32)

B(r) = −1 + α2

1 − α2

(
b

r

)−2α2

α2+1
. (33)

We find that, considering the above ansatz, the metric (11), the gauge potential (12),
and the dilaton field (26) satisfy all field equations.

In the a = 0 limit, above solutions reduce to the static dilaton black holes with
the exponential form of NED [52]. In addition, obtained solutions are consistent with
special case β −→ ∞ [42]. For more clarifications, we consider the large values of β

to obtain slowly rotating dilatonic Maxwell black hole solutions with a correction of
NED. Using series expansion of F(r) for large β leads to

F(r) ≈
(

1 + α2

1 − α2 + 2(1 + α2)q2

r2

) (
b

r

)−2α2

1+α2

−mr
α2−1
1+α2 +

(
1 + α2

)2
Λr2

α2 − 3

(
b

r

) 2α2

1+α2

−
(
1 + α2

)2
q4

2β2r6(α2 + 5)

(
b

r

)−6α2

1+α2 + O(β−4), (34)
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where the last term on the right hand side is the leading nonlinear correction to the
dilatonic Maxwell solutions. Moreover, it is easy to show that in the absence of dilaton
field (α −→ 0), Eq. (34) reduces to

F(r) ≈ 1 − m

r
+ 2q2

r2 − Λr2

3
− q4

10β2r6 + O
(
β−4

)
, (35)

which represents Einstein–Maxwell–AdS black holes in the limit of β → ∞.

3.2 Physical properties and conserved quantities

Now, we are in a position to investigate the geometric properties of the solutions
(11). Because of the presence of the dilaton field, the asymptotic behavior of these
solutions are neither flat nor (A)dS. Looking for the curvature singularity, we find that
the Ricci and the Kretschmann scalars are the same as those in the static case [52],
and therefore there is an essential singularity located at the origin. In addition, it is
shown that, similar to the case of the static solution [52], depending on the nonlinearity
parameter, grr = F(r) gives two horizons, one extreme horizon, or one non-extreme
horizon, and therefore the singularity can be covered with an event horizon r+.

Calculations show that the surface gravity and the event horizon area do not change
up to the linear order of a, and thus, we can obtain the the Hawking temperature and
the entropy of slowly rotating dilatonic black hole solutions as

T+ = 1

2π

√
−1

2
(∇μχν)(∇μχν) = F ′(r+)

4π
, (36)

S = A
4

, (37)

where the Killing vector χ is the null generator of the event horizon, and A is the
horizon area. Then we obtain

T+ = −α2 + 1

4π
r

α2−1
α2+1+

⎡
⎣b

− 2α2

α2+1

α2 − 1
+ b

2α2

α2+1 (4β2 + Λ)r
2(1−α2)

α2+1+

+4qβr
− 2α2

α2+1+
(√

LW+ − 1√
LW+

) ⎤
⎦ , (38)

S = ωb
2α2

1+α2 r
2

1+α2

+
4

, (39)

where we have used F(r+) = 0, LW+ = LambertW

(
q2

β2r4+R4(r+)

)
, and ω is the area

of a unit two-sphere.
Here, we would like to calculate the conserved quantities such as the finite mass

and the angular momentum of the slowly rotating black hole solutions we just found.
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There are several approaches for calculating the mass of the black holes. For example,
for asymptotically AdS solutions one can use the counterterm method inspired by
(A)dS/CFT correspondence [83–87]. Another way for calculating the mass is through
the use of the substraction method of Brown and York [88,89]. Such a procedure causes
the resulting physical quantities to depend on the choice of reference background. In
our case, due to the presence of the non-trivial dilaton field, the asymptotic behavior
of the solutions are neither flat nor (A)dS, and therefore, we have used the reference
background metric to calculate the mass. Since gtt does not change up to first order
of rotation parameter, it is reasonable to expect that the mass is independent of the
rotation parameter (for small a). According to the substraction method of [88,89], if
we write the metric of static spherically symmetric spacetime in the form [90,91]

ds2 = −W 2(r)dt2 + dr2

V 2(r)
+ r2dΩ2, (40)

and the matter action contains no derivatives of the metric, then the quasilocal mass
is given by [90,91]

M = rW (r) (V0(r) − V (r)) . (41)

Here V0(r) is an arbitrary function which determines the zero of the energy for a
background spacetime and r is the radius of the spacelike hypersurface boundary. It
was argued that the ADM mass M is the M determined in (41) in the limit r → ∞
[90,91]. It is a matter of calculations to show that the mass of the slowly rotating black
holes is obtained as [52]

M = ωb
2α2

1+α2 m

8π
(
1 + α2

) . (42)

Next, we calculate the angular momentum and the gyromagnetic ratio of these rotating
dilaton black holes which appear in the limit of slow rotation parameter. The angular
momentum of the dilaton black hole can be calculated through the use of the quasi-local
formalism of the Brown and York [88,89]. According to the quasilocal formalism, the
quantities can be constructed from the information that exists on the boundary of a
gravitating system alone. Such quasilocal quantities will represent information about
the spacetime contained within the system boundary, just like the Gauss’s law. In our
case the finite stress-energy tensor can be written as

T ab = 1

8π

(
Θab − Θγ ab

)
, (43)

which is obtained by variation of the action (1) with respect to the boundary metric γab.
To compute the angular momentum of the spacetime, one should choose a spacelike
surface B in ∂M with metric σi j , and write the boundary metric in ADM form

γabdx
adxb = −N 2dt2 + σi j

(
dϕi + V idt

) (
dϕ j + V jdt

)
,
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where the coordinates ϕi are the angular variables parameterizing the hypersurface of
constant r around the origin, and N andV i are the lapse and shift functions respectively.
When there is a Killing vector field ξ on the boundary, then the quasilocal conserved
quantities associated with the stress tensors of Eq. (43) can be written as

Q(ξ) =
∫
B
d2ϕ

√
σTabn

aξb, (44)

where σ is the determinant of the metric σi j , ξ and na are the Killing vector field and
the unit normal vector on the boundary B. For boundaries with rotational (ς = ∂/∂ϕ)
Killing vector field, one obtains the quasilocal angular momentum

J =
∫
B
d2ϕ

√
σTabn

aςb, (45)

provided the surface B contains the orbits of ς . After a few calculations, the angular
momentum J associated with the spacelike Killing vector field ∂/∂φ at infinity can
be obtained as

J = ω
(
3 − α2

)
b

2α2

1+α2 ma

24π
(
1 + α2

) . (46)

We see that, up to the linear order of the angular momentum parameter a, the effect of
nonlinearity parameterized by β does not appear in the angular momentum (46) and the
mass (42), and these conserved quantities coincide with those of the four-dimensional
slowly rotating Einstein–Maxwell-dilaton black holes [42].

Next, we calculate the gyromagnetic ratio of these rotating nonlinear charged black
holes. One of the important subjects about the 4-dimensional charged black hole in
the Einstein gravity is that it can be assigned a gyromagnetic ratio g = 2 just like the
electron in Dirac theory. Here we want to know how does the value of the gyromagnetic
ratio change for slowly rotating nonlinear charged black holes in four dimensions. The
magnetic dipole moment for this slowly rotating black hole is

μ = Qa, (47)

where Q = qω/(4π) denotes the electric charge of the black hole. Therefore, the
gyromagnetic ratio is given by

g = 2μM
QJ

= 6

3 − α2 . (48)

It was shown that the dilaton modifies the gyromagnetic ratio of the charged rotating
black hole solutions [42]. Our result here confirms their arguments. One may also note
that the nonlinear parameter β does not modify the gyromagnetic ratio of the black
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holes in the limit of slow rotation. In the absence of a nontrivial dilaton (α = 0) , the
gyromagnetic ratio reduces to

g = 2, (49)

which is the gyromagnetic ratio of the 4-dimensional Kerr–Newman black holes
[11,12].

4 Summary and conclusion

In this paper, we have presented a new stationary solution of Einstein-dilaton gravity
in the presence of exponential form of nonlinear electrodynamics and in the limit
of small angular momentum. This is the generalization of the corresponding static
and spherically solution of [52] to include a small amount of rotation parameter. Our
strategy for constructing these solutions was the perturbative technique suggested in
[39]. We first studied charged black hole solutions of Einstein-dilaton gravity coupled
to exponential form of NED. Then, we considered the effect of adding a small amount
of rotation parameter a to the black hole. We discarded any terms involvinga2 or higher
power in a. Using series expansion of Kerr–Newman spacetimes for small values of
rotation parameter, a, shows that the only term in the metric changes to O(a) is gtφ .
Similarly, the dilaton does not change to O(a) and Aφ is the only component of the
gauge potential that change to O(a). In the limiting case where β → ∞, the obtained
solution reduces to the slowly rotating dilaton black holes of Einstein–Maxwell-dilaton
gravity presented in [42].

We computed the Hawking temperature and the entropy of black holes, which do
not change to O(a) from the static case. We calculated the angular momentum J and
the gyromagnetic ratio g which appear up to the linear order of the angular momentum
parameter a. We found that the nonlinearity of the electrodynamics do not affect the
mass, the angular momentum, and the gyromagnetic ratio of the spacetime, while in
contrast, the dilaton field modifies the mass and the angular momentum as well as the
gyromagnetic ratio of the rotating black holes. We obtained the gyromagnetic ratio
as g = 6/(3 − α2), where α measures the strength of the dilaton-electromagnetic
coupling. For α = 0, we obtained g = 2, which is the gyromagnetic ratio of the
Kerr–Newman black holes in four dimensions.

It is worth mentioning that our work is the quite one generalization of the slowly
rotating Einstein–Maxwell-dilaton black holes [44] to include the exponential form
of NED. However, even in this special case, we can still learn some new physics by
studying the slowly rotating black holes and taking into account the linear rotation
parameter. For example, the angular momentum and the gyromagnetic ratio appear in
this case and one can consider the effects of dilaton and nonlinear electrodynamics
on these quantities. Besides, if we consider the solutions with higher order of rotating
parameter, we can expect that some conserved quantities such as mass may changes
and there are physical consequences derived from the interaction between the rotation
and the exponential form of NED.
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