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Abstract This work is devoted to drive an energy-momentum complex (due to matter
and fields including gravity) in the realm of modified teleparallel gravity. For this
purpose, the Lagrangian of teleparallel theory is extended to a more general form by
replacing the torsion scalar with an arbitrary function of it. Furthermore, considering
cosmological perturbations, we explicitly calculate energy distribution associated with
the Friedmann–Lemaitre–Robertson–Walker spacetime. Finally, we discuss also the
coupling case between matter and gravity in the context of teleparallel modified theory.

Keywords Energy-momentum prescriptions · Modified gravity · Teleparallel
theory · Dark energy

1 Introduction

The recent observational data have given indication of accelerated expansion of our
Universe [1–5]. Astrophysical evidences show that this strange behavior of the Uni-
verse is driven by an exotic content with large negative pressure (dark energy).
Recently, Planck-2013 observations [5] of the cosmic microwave background have
indicated that the Universe is spatially flat and the matter in our Universe is domi-
nated by dark energy (68.3 %) and dark matter (26.8 %). The remaining part (4.9 %)
is occupied by other ordinary matters.
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There are many candidates given in literature to investigate this enigmatic dark
part of the Universe, but still the nature of dark Universe is completely unknown
[6]. The cosmological constant is the earliest and simplest suggestion to explain dark
energy, but it gives some other difficulties like fine-tuning and cosmic-coincidence
puzzle [7,8]. On the other hand, some of other ones have been given to explain the
nature of dark Universe: scalar fields (k-essence, q-essence, tachyon, DBI-essence,
dilaton) [9], intergalactic gases (Chaplygin gas, Polytropic gas) [10,11], modified
theories of gravity [ f (R)-gravity, f (T )-gravity, scalar-tensor and TeVeS theories,
Brane-worlds gravity, Horava–Lifshitz theory, Gauss–Bonnet gravity] [12–18] and
Unimodular gravity [19,20]. A good review about the mysterious dark energy problem
is written by Bamba et al. [21]. Although some of the above candidates usually used
new degree of freedom such as scalar field in scalar-tensor theory and non-linearity
of f (R) with respect to R that can be written as scalar degree of freedom but the
effects of this degree must be screened in local tests of gravity. Thus, the scalar field
should be coupled to matter in convenient way, e.g. chameleon, symmetron, Vainshtein
mechanisms etc.(for complete review see ref. [22]). Other coupling of gravity with
matter was proposed by Harko in ref. [23] by replacing Ricci scalar with f (R, θ),
where θ is trace of matter energy-momentum tensor and some significant results were
obtained. Traceless matter, like photon, does not change the theory through a such
coupling. Exotic imperfect fluids or quantum effects (conformal anomaly) may make
this coupling. The general coupling of matter Lagrangian Lm , with gravity in the
presence of scalar fields in the context of General Relativity was studied in ref. [24].
The cosmological constant can be obtained as a function of matter energy-momentum
tensor in the case of f (R,Lm) coupling, known as �(θ) gravity, that indicates to
change of cosmological constant in environment [25].

Although the recent observations have been consistent with the single field models,
the fundamental physics motivates us to generalize methodologies with more than
one active scalar field [26,27]. Multi-field theories are different from the single field
models in many aspects, these models are studied well in General Relativity [28]. In
study of renormalization, these fields must be non-minimally coupled to gravity. The
non-canonical kinetic terms also can exist in some models. The kinetic terms coupled
to gravity lead to the instability of the theory. However, some other models including
higher derivation of scalar field lead to carefully tuned cancelation of instability (for
the detailed discussions one can check the ref. [29]).

Einstein’s theory of General Relativity is now a hundred years old and there are
still many unsolved problems. The localized four-momentum problem is one of the
thorny issues which remains unsolved in gravitational theories [30]. To solve this
problem there have been many investigations and the first one was attempted by Ein-
stein himself [31]. After that many prescriptions have been given in the literature;
Bergmann-Thomson [32], Tolman [33], Weinberg [34], Landau-Lifshitz [35], Papa-
petrou [36], Moller [37], Qadir-Sharif [38]. Misner et al. [39] indicated that the energy
is localizable only for spherical spacetimes. Next, Cooperstock and Sarracino [40]
negated this indication and showed that the energy is localizable for all systems. Sev-
eral papers have showed that different four-momentum prescriptions yield the same
result for a given space-time model.
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Furthermore, an interesting class of modified theory can be introduced when we
modify the action of an equivalent methodology of Einstein’s General Relativity based
on torsion [41]. This alternative theory was constructed and named by Einstein himself,
it is known as Teleparallel equivalent of General Relativity (TEGR) [16–18]. The main
idea in teleparallel gravity is to use a geometry with vanishing curvature and non-zero
torsion [17]. In the teleparallel theory, the tetrad field (have 16 independent compo-
nents) are used rather than the metric (have 10 independent components) as the basic
entity. Einstein introduced this theory to unify electromagnetism and gravity with the
concept of parallelism, but he did not succeed. His idea was revived by Aldrovandi [42].
Inspiring from f (R)-gravity, TEGR can also be modified by using an arbitrary function
of torsion scalar in the action. The other possible extension of TEGR is the scalar-tensor
modification [43,44]. It is known that some modified TEGR theories do not satisfy
local Lorentz symmetry [45] (T and T ρ

μν are not scalar under hA
μ = �A

B(x)hB
μ due

to �
ρ
μν = hρ

A∂νhA
μ). These theories have more degrees of freedom that arise from the

local Lorentz violation. When we restrict ourself to assume highly symmetric space-
time models such as background level of Friedmann–Lemaitre–Robertson–Walker
(FLRW) or spherical symmetry, these degrees of freedom will disappear. Moreover,
some works have been devoted to discuss new degrees of freedom for linear (FLRW)
perturbations [46–50]. However, ignoring these degrees of freedom in perturbation
level may leads to inconsistency [51].

The rest of paper is organized as follow; the next Section contains some prelimi-
naries. Then, in Sect. 3, we extend the teleparallel theory of gravity to a more general
form that contains multiple scalar fields. The purpose of Sect. 4 is studying energy
distribution (due to matter plus fields including gravity) associated with the linearly
perturbed FLRW spacetime. Next, the Sect. 5 is devoted to investigate scalar fields
coupled with matter. Finally, we give conclusions in the last Section.

Notations and conventions Throughout this work, we represent the space-time
indices by Greek alphabet (α, β, μ, ν...) and the tangent space indices by Latin alpha-
bet (A, B, C , D...). These indices take the values 0, 1, 2, 3. In addition, we denote that
(i, j, k...) and (a, b, c... = 1, 2, 3) mean spatial parts, the (I, J, K ... = 1, 2, 3, ..., N )
indices define field space, and the subscript TG describes teleparallel quantities.

2 Preliminaries: f (T)-gravity and four-momentum

It is known that vierbein fields {hA(xμ),hA(xμ)} construct a teleparallel structure on
manifold which forms orthonormal basis of the tangent space and hA ·hB = ηAB . The
vierbein fields hA with respect to the coordinate basis can be written as hA = hμ

A∂μ.
For an orthonormal vierbein the metric tensor is defined by the equation

gμν = ηABh
A
μh

B
ν, (1)

where ηAB = diag(+1,−1,−1,−1) is the Minkowski metric. The vierbein fields
and their dual satisfy the following relations;

hA
μh

μ
B = δAB , hA

μh
ν
A = δν

μ. (2)
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Using the parallel transport of vierbein fields and assuming a class of frames in which
spin connection is zero, Weitzenböck connection can be defined as

�α
μν := h α

A ∂νh
A
μ = −hA

μ∂νh
α
A . (3)

Such connection defines absolute parallel transportation with only torsion effects. The
teleparallel’s name comes from here; parallel at a distance. The torsion scalar is a
specific choice;

T = 1

4
T ρμνTρμν + 1

4
T ρμνTνμρ − T ρ

ρμ T νμ
ν

= 1

2
SμνλTμνλ, (4)

where T α
μν = �α

νμ − �α
μν is the torsion tensor and the tensor

Sαμν = 1

4

(
T αμν + Tμαν − T ναμ

) − 1

2

(
gανT βμ

β − gμαT βν
β

)
, (5)

is antisymmetric in the last two indices.
Like we do for the f (R)-gravity that generalizes General Relativity, the teleparallel

Lagrangian can also be extended to a more general form [ f (T )-gravity],

L f = h

16πG
f (T ). (6)

In this definition, the special choice f (T ) = T reduces f(T)-gravity to the teleparallel
theory. Variation with respect to the vierbeins yields the following field equation,

fT (T )
[
∂ρ

(
hh ν

A S
λρ

ν

) − hh ρ
A S

μνλTμνρ

] + fT T (T )hh ν
A S

λρ
ν ∂ρT

+ 1

2
hh λ

A f (T ) = h� λ
A , (7)

where fT (T ) := d f (T )
dT , fT T (T ) := d2 f (T )

dT 2 , and the energy-momentum tensor is

� λ
A := − 1

h

δLm

δhA
λ

. (8)

Here, Lm is the Lagrangian density of matter fields. Next, considering only the Greek
indices, Eq. (7) can be rewritten in the following form

fT G
μ
α + 1

2
δ μ
α ( f − fT T ) + S μν

α ∂ν fT = � μ
α , (9)

where we have dropped the explicit dependences of f in T . We set the square of Planck
mass as M2

pl = 1 here. Furthermore, the energy-momentum should be symmetric and
we have
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(
S λν
α gαμ − S λμ

α gαν
)
∂ν fT = 0. (10)

After considering the Noether theorem and substituting new Lagrangian, one can
obtain a new energy-momentum definition for gravitation,

ht ρ
λ = fT (T )ht ρ

λTG − h

16πG
δ

ρ
λ [ f (T ) − fT (T )T ] . (11)

Hence, the field equation given by (9) can be written in the following form

hT λ
α = 1

8πG
∂σ [ fT (T )hS λσ

α ], (12)

where T λ
ν := tλν + θλ

ν is the total energy-momentum of gravitation and matter. This
relation leads to the following energy-momentum conservation law,

∂λ

(
hT λ

ν

) = 0. (13)

The momentum four-vector can be described by an integration over x0 = constant
hypersurface,

Pμ =
∫

T 0
μ dxdydz. (14)

3 Teleparallel modified gravity with multiple scalar fields

Investigating the presence of scalar fields in gravitational theories is old as General
Relativity. Scalar-tensor gravity is one of the first extensions of Einstein’s general
theory of relativity. In this part of the study, we analyse a very general form of multi-
field models in the teleparallel framework with non-canonical kinetic terms. The form
which is considered in here

S :=
∫

d4xh

(
1

2
f (T, X, φ I ) + Lm

)
, (15)

where GI J (φ
K ) is a metric on N-dimensional field space and is only a function of

fields. The field metric GI J (φ
K ) determines the kinetic terms,

X := 1

2
GI J

(
φK

)
∂μφ I ∂μφ J . (16)

For the canonical form of kinetic terms, GI J becomes δI J . It is important to mention
here that we keep an open mind and do not restrict ourself to consider a flat field space.
One can find many studies given in literature that include non-canonical kinetic terms;
e.g. Dirac–Born–Infeld (DBI) dark energy and inflation:

L = T + P, (17)
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where

P = − 1

f (φ I )

(√
D − 1

)
− V

(
φ I

)
, (18)

and
D := det

(
δν
μ + f G I J ∂

μφ I ∂μφ J
)

. (19)

Other direction in field space can be ignored for the radially motion of brane and the
Lagrangian (17) is reduced to the single-field DBI-essence [52].

On the other hand, in the ADM formalism, the metric can be generally decomposed
as [53,54]

ds2 = Ndt2 − γi j

(
dxi + Nidt

) (
dx j + N jdt

)
, (20)

where N describes lapse function, Ni gives shift vector and γi j is induced metric.
Extrinsic torsion is defined by

�i j = 1

2N
(
γ̇i j − Di N j − D j Ni

)
(21)

where Di is 3-covariant derivative with respect to 3-Weitzenböck connection. Now,
let us focus on the following action

S =
∫

d4xF(φ)
(

1 + ζ

2
∂μφ∂μφ

)
T, (22)

where ζ is a constant. It is known that N is not a dynamical variable in General
Relativity and simplest model of teleparallel gravity. If we use ADM decomposition
to rewrite Eq. (22), there will be a term which contains the time derivative of lapse

function, i.e. ζ
∫
d3xdt

√
γ F�̇i

i
φ̇2

N . Note that the extrinsic torsion contains the lapse
function. Thus the scalar T coupled to X changes the degrees of freedom number, i.e.
it makes the lapse function a dynamical variable. We should set ζ = 0 to avoid this
problem and related instabilities.

At this point, we focus on our model. Variation of the action (15) with respect to
the vierbein fields yields

1

2
f h μ

k + fT
[
h−1∂ν

(
hh ρ

k S μν
ρ

) − h γ

k SρβμTρβγ

] + h ρ
k S μν

ρ ∂ν fT

− 1

2
fXGI J

(
φL

)
h ν
k ∂μφ I ∂νφ

J = �
μ
k , (23)

where the subscript X denotes derivative with respect to X . Then, the field equation,
in Greek indices, transforms into the following form

fT G
μ
α + 1

2
δ μ
α ( f − fT T ) + S μν

α ∂ν fT − 1

2
fXGI J

(
φL

)
∂μφ I ∂αφ J = � μ

α . (24)

In addition, vanishing antisymmetric part of the matter energy-momentum tensor leads

(
S λν
α gαμ − S λμ

α gαν
)
∂ν fT = 0. (25)
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On the other hand, the variation of the action defining the multi-field gravity with
respect to scalar fields gives

∇α∇αφL + ∂μφ J ∂μφK�L
K J + ∂α fX

fX
∂αφL − GLI

fX
f I = 0, (26)

where �L
K J is the field space Christoffel symbols, and f I defines the partial derivation

of f with respect to φ I . Considering the Noether theorem, one can find

htλα = ∂L
∂∂λhA

μ

∂αh
A
μ + ∂L

∂∂λφ J
∂αφL − δλ

αL, (27)

where L is the gravitational part of Lagrangian density used in Eq. (15). Hence, the
gravitational energy-momentum takes the form

htλα = h fT t
λ
αTG − 1

16πG
hδλ

α ( f − fT T ) + 1

16πG
h fXGI J ∂

μφ J ∂αφ J , (28)

and, the energy-momentum conservation law can be written as

∂ν(hT λ
ν) = ∂ν

[
h

(
tλν + θλ

ν

)] = 0, (29)

where
8πGhT λ

α = ∂σ

(
fT hS

λσ
α

)
. (30)

As we see, the result is similar to the one obtained in f (T )-gravity. In the case of
k-essence with the Lagrangian f (T, φ I , X) = T + P(φ I , X), which scalar fields
minimally coupled to gravity, we get same results of simple model of teleparallel
gravity.

4 Cosmological perturbations and energy in FLRW Universe

Now, we study the energy distribution associated with the flat FLRW Universe by
considering cosmological perturbations and discuss the effects of extra degrees of
freedom. The flat FLRW metric is given by

ds2 = dt2 − a2(t)δi j dx
i dx j . (31)

Choosing trivial vierbein fields

hA
μ = diag(1, a, a, a), (32)
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and considering the field equations of teleparallel multi-field gravity, we obtain

3H2 fT − 1

2
( f − fT T ) + 1

2
fXGI J φ̇

I φ̇ J = ρm, (33)

−
(

3H2 + 2Ḣ
)
fT + 1

2
( f − fT T ) − H∂0 fT = pm, (34)

and

φ̈L + �L
K J φ̇

J φ̇K +
(

3H + ∂0 fX
fX

)
φ̇L − GLI

fX
f I = 0. (35)

Here, the derivative with respect to the cosmic time t of a function is denoted by a dot.
After using the definition Dt φ̇

I := φ̈ I +� I
K J φ̇

J φ̇K which describes the acceleration
in field space, one can write Eq. (35) in a more compact form;

Dt

(
a3 fX φ̇ I

)
= a3 f I , (36)

where Dt acts on quantities as ordinary derivative and does not have any effects on
capital Latin letters. Next, the surviving components of S νλ

μ are

S 0i
j = −Hδij . (37)

Thus, it is seen that the background energy-momentum distribution associated with
the FLRW spacetime in TEGR and its modification version are equal to zero.

In this spacetime model, all of the background quantities are time dependent and
indicates that the Universe is homogeneous and isotropic. However, inhomogeneities
of our actual Universe have been already presented. Perturbation theory is widely
applicable for the seed of structure in the Universe. The most general form of perturbed
FLRW metric is

ds2 = (1 + 2ψ)dt2 + 2a(Gi + ∂i B)dtdxi − a2 [
(1 − 2ϕ)δi j + ∂i∂ j E

+ ∂(iC j) + hi j
]
dxidx j , (38)

where ψ , B, ϕ and E are scalar perturbations, Gi and Ci with the conditions ∂ i Gi =
0 = ∂ iCi are vector perturbations and hi j with hii = 0 = ∂ i hi j is the tensor part
of perturbations. It is known that linear order scalar, vector and tensor perturbations
evolve independently. The teleparallel formalism violates local Lorentz symmetry,
thence it gives six extra degrees of freedom. We used the same perturbation as in ref.
[55]. Extra degrees can be described by α, αi and Bi

j where ∂iα
i = 0, Bi j = −B ji

and ∂i∂ j Bi j = 0 (Bi j has one scalar and two vector degrees). These two scalar and
four vector degrees will not appear in metric formalism.

Now, we can assume that vierbein fields are

h0
μ = δ0

μ(1 + ψ) + aδiμ∂i (B + α) + aδiμ(Gi + αi ), (39)

haμ = aδaμ(1 − ϕ) + aδiμ(∂i∂
a E + ∂aCi + hai ) + aδiμB

a
i + δ0

μ(∂aα + αa). (40)
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It is known that the action must be invariant under the gauge transformations. The
coordinate systems of two different gauges are related to each other by the following
transformation

xμ → x̃μ = xμ + ξμ, (41)

and, the vierbein fields transform as

hA
μ̃(x̃) = ∂xν

∂ x̃μ
hA

ν . (42)

Applying the gauge transformation, we get the following vierbein perturbation com-
ponents defined in the new gauge

ψ̃ = ψ − ξ̇0,

aẼ = aE + aξ̇ − ξ0,

α̃ = α − ξ̇ ,

a B̃ = aB − ξ,

ϕ̃ = ϕ + Hξ0,

G̃i = Gi + ξ̇ i(v),

α̃i = αi − ξ̇
(v)
i ,

aC̃i = aCi − ξ
(v)
i ,

a B̃i j = aBi j − ξ
(v)
j,i + ξ

(v)
i, j ,

h̃i j = hi j . (43)

Here, it has been used aξ i := ξ
(v)
i + ξ,i with ∂ iξ

(v)
i = 0. Choosing ξ = aB, ξ0 =

aE + a(aB). and ξ
(v)
i = aCi , one can omit B, E and Ci . For scalar perturbations, we

have

h0
μ = δ0

μ(1 + ψ) + aδiμ∂i (B + α), (44)

haμ = aδaμ(1 − φ) + aδiμ
(
∂i∂

a E + Ba
i

) + δ0
μ∂aα, (45)

and, the case B = 0 = E gives

gμν = diag((1 + 2ψ),−a2(1 + 2ϕ)δi j ), (46)

which is known as conformal Newtonian or Longitudinal gauge (it means that we
choose an observer attached to the unperturbed frame).

Moreover, the surviving components of torsion tensor are

T 0
i0 = ∂iψ − a∂0∂iα,

T i
j0 = (ϕ̇ − H)δij − ∂0B

i
j + a−1∂ j∂

iα,

T i
jk = ∂k

(
δijϕ − Bi

j

)
− ∂ j

(
δikϕ − Bi

k

)
.

(47)
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Here, we need only the following components of superpotential S αν
μ

S 0i
0 = 1

a2

(
∂ iϕ + 1

2
∂ j B

i j
)

. (48)

After using ∂i∂ j Bi j = 0, it is found that

T 0
0 = 1

8πGa2 f̄T�ϕ (49)

where � := ∂i∂
i . One can easily check that the background scalar torsion is equal to

T̄ = −6H2. Thus, we see that the energy density is independent of extra degrees of
teleparallel framework. Now, the total energy distribution can be obtained by using
Eq. (14)

E = P0 = f̄T
8πGa2

∮
d
−→
A .

−→∇ ϕ. (50)

where surface integral denotes to two dimensional boundary of the Universe. We need
to define a background vector or tensor for contraction with the vector and tensor
perturbations in linear order, but it is impossible. Therefore, the vector and tensor
parts of perturbations given in Eqs. (39) and (40) in linear order do not contribute to
the energy, and the study of scalar perturbations is sufficient.

5 Coupling with matter

Up to now we consider geometry and scalar fields minimally coupled to matter.
However, such coupling can exist for some reasons. In this section we study the
energy-momentum complex in some case of non-minimal coupling. In the scalar-
tensor theory, the local gravity constraints imply that the mass of scalar field should
be large. On the other hand, for the cosmic evolution it must be light. Coupling of
scalar fields with matter part of Lagrangian can solve this tricky problem due to the
dependence of effective potential in energy density. Inspiring the chameleon action
defined in General Relativity, we can couple matter fields with scalar fields using the
following action

S :=
∫

d4xh

(
1

2
f
(
T, X, φ I

)
+ Lm

[
h̃ μ
k , �

])
, (51)

where h̃ μ
k has a conformal relation with h μ

k ;

h̃ μ
k := A(φ)h μ

k , g̃μν = A2(φ)gμν. (52)

The chameleonic coupling leads to the following field equations;

fT G
μ
α + 1

2
δ μ
α ( f − fT T ) + S μν

α ∂ν fT − 1

2
fXGI J

(
φL

)
∂μφ I ∂αφ J = �̃ μ

α , (53)
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and

∇α∇αφL + ∂μφ J ∂μφK�L
K J + ∂α fX

fX
∂αφL − GLI

fX

(
f I + βI �̃

)
= 0, (54)

where we set βI := d
dφ

ln A(φ) and defined �̃
μ
α := h̃ A

α�̃
μ
A with �̃ λ

A := − 1
h̃

δLm

δh̃ A
λ

. Field

equation (53) is similar to Eq. (24), thus our previous definition of energy-momentum
leads to the same conservation law, i.e. ∂ν(hT λ

ν) = 0.
One can suppose that the gravity part of action is coupled with the trace of matter

energy-momentum tensor. Inspiring from f (R, θ), we consider more general form of
teleparallel which contains scalar fields, trace of matter energy-momentum tensor and
torsion scalar as follow

S :=
∫

d4xh

(
1

2
f
(
T, X, φ I ,�

)
+ Lm

)
. (55)

Then, variation with respect to the vierbein fields of this action yields

fT G
μ
α + 1

2
δ μ
α ( f − fT T ) − 1

2
fXGI J

(
φL

)
∂μφ I ∂αφ J + S μν

α ∂ν fT

= � μ
α

(
1 − 1

2
f�

)
− 1

2
f�B μ

α , (56)

where

B μ
k := hlα

δ�l
α

δhkμ
. (57)

In the case of perfect fluid assumption, we have �a
α = (ρ + p)uauα + phaα , thus we

get Ba
α = �a

α −2phaα . On the other hand, variation with respect to scalar fields gives
another field equation

∇α∇αφL + ∂μφ J ∂μφK�L
K J + ∂α fX

fX
∂αφL − GLI

fX
f I = 0, (58)

and, with the definition of four-momentum, field equation leads

∂μ(hT μ
ν) = ∂μ

(
1

2
f�

(
Bμ

ν + �μ
ν

)) �= 0. (59)

Hence, the general form that includes the existence of � in the gravity part of
Lagrangian yields a non-conservation case of our prescription. As the last model, lets
consider a bit more complicated modification of teleparallel theory with an assumption

S :=
∫

d4x
h

2
f
(
T, φ I , X,Lm

)
, (60)
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where f is an arbitrary function of torsion scalar, matter Lagrangian density and scalar
fields. Then, variation with respect to the vierbein fields of the action (60) yields a
new field equation;

fT G
μ
α + 1

2
δ μ
α

(
f − fT T − fLMLM

) + S μν
α ∂ν fT

− 1

2
fXGI J

(
φL

)
∂μφ I ∂αφ J = 1

2
fLM� μ

α , (61)

where the subscript LM denotes to derivation with respect to LM . Considering the
Noether theorem for the gravitational energy-momentum and Eq. (60) gives a quantity
that we cannot distinguish between matter and gravity parts, and we encounter more
complication to define an energy momentum complex. Thus, it is better to use our
approach to extend energy-momentum in a simple extension of TEGR.

6 Conclusions

There are many important issues introduced in literature such as cosmological miss-
ing matter problem and four-momentum localization in curved spacetimes, since the
advent of general theory of relativity. These problems are still in doubt and have non-
specific solutions [56]. We could ask why should one investigate four-momentum
distribution associated with a spacetime. The corresponding answer is one can get an
excellent idea of the spacetime by knowing four-momentum distribution. The study of
four-momentum complexes are useful due to it predicts how astrophysical gravitational
lensing phenomena would appear in a given spacetime [56]. The energy distribution
analysis helped Virbhadra to discover great lensing phenomena [57–61].

In the present work, we mainly generalized the teleparallel theory of gravity to a
more general form: the modified teleparallel multi-field gravity. First, we extended
the energy-momentum (due to matter plus fields including gravity) to the one defined
in f (T ) gravity, then it is obtained for the modified multi-field theory in teleparallel
framework. In both cases, our definition of energy-momentum leads to a conservation
law which is similar to the one given in teleparallel gravity. But, the case of coupling
with matter causes a problem, it gives a non-conservation law.

Furthermore, we calculated the energy distribution associated with the FLRW Uni-
verse (here we also considered the linear cosmological perturbations). It is shown that
this quantity is independent of extra degrees of freedom which appear in teleparallel
formalism. Albrow [62] and Tryon [63] assumed that the net energy value of Universe
may be equal to zero. The subject of four-momentum of closed and open Universes was
initiated by an interesting work [64,65]; in this paper Cooperstock and Israelit found
the zero value of energy density for any homogenous isotropic Universe described
by a Friedmann–Robertson–Walker metric in the context of general relativity. This
interesting study influenced some authors [66–69]. In our calculations, if we neglect
the scalar field contributions, the multi-field gravity can be reduced to the teleparallel
equivalent of General Relativity. This special assumption supports the viewpoints of
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Albrow-Tryon [62,63] and agrees with the previous works of Cooperstock-Israelit
[65], Rosen [66], Johri et al. [67], Banerjee-Sen [68], Xulu [69] and Vargas [70].

In the presence of dark contents, we find a surviving energy component for the
four-momentum distribution. Due to the contribution of dark components, the energy
value we find contradicts the assumption of Albrow [62] and Tryon [63]. In per-
turbation level the spacetime is not spatially flat. The Ricci scalar of hypersurface
t = constant in perturbation level is given by R(3) = 4

a2 �ϕ. Thus, the non-vanishing
energy distribution becomes

T 0
0 = 1

32πG
f̄T R

(3). (62)

The extra degrees of freedom does not appear in this quantity. In background and linear
order we can conclude the energy of the closed Universe vanishes. The Universe also
can have vanishing energy in spatially non-flat model due to R(3) = 0 in linear order.
Note that, to describe a spatially flat Universe, Riemann tensor needs to vanish.

On the other hand, our results must be extended to some more complicated cases in a
more general form by considering another approach. Further work towards this inves-
tigation is required and in progress, it is very lengthy and time taking. Our approach is
not convenient for the general matter-gravity coupling, but it is significant to mention
here that the chameleon coupling is good.
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